Claims
- 1. A corrosion-preventing paint formulation consisting essentially of a vehicle, an electrically conductive pigment, an electrochemically active metal pigment, and a corrosion inhibiting agent, wherein said electrochemically active metal pigment has an electrochemical potential at least as negative as -1.05 volts when measured against a saturated calomel reference electrode in seawater and said corrosion-preventing paint formulation has an electrical resistivity of less than 100,000 ohm-cm when dry, and wherein said electrochemically active metal pigment is selected from the group consisting of magnesium, magnesium-lithium alloy, magnesium-aluminum alloy, and calcium-aluminum alloy powder, said calcium-aluminum alloy having between 0.5 to 50 weight percent calcium, and wherein said magnesium-lithium alloy comprises between 1 to 60 weight percent lithium and said magnesium-aluminum alloy comprises between 1 to 50 weight percent of aluminum and wherein said electrically conductive pigment is selected from the group consisting of carbon black and graphite and wherein said corrosion inhibiting agent is selected from the group consisting of sodium dichromate and potassium dichromate and wherein said corrosion inhibiting agent is present to the extent of between 0.01 and 2.0 percent by weight.
- 2. A corrosion preventing paint formulation as disclosed in claim 1, wherein said corrosion-preventing paint formulation can produce a potential at least as negative as -0.75 volts when said paint formulation is applied to steel and said steel is then exposed to seawater.
- 3. An engineering structure coated with a corrosion-preventing paint formulation consisting essentially of a vehicle, an electrically conductive pigment, an electrochemically active metal pigment, and a corrosion inhibiting agent, wherein said electrochemically active metal pigment has an electrochemical potential at least as negative as -1.05 volts when measured against a saturated calomel reference electrode in seawater and said corrosion-preventing paint formulation has an electrical resistivity of less than 100,000 ohm-cm when dry, and wherein said electrochemically active metal pigment is selected from the group consisting of magnesium, magnesium-lithium alloy, magnesium-aluminum alloy, and calcium-aluminum alloy powder, said calcium-aluminum alloy having between 0.5 to 50 weight percent calcium, and wherein said magnesium-lithium alloy comprises between 1 to 60 weight percent lithium and said magnesium-aluminum alloy comprises between 1 to 50 weight percent of aluminum and wherein said electrically conductive pigment is selected from the group consisting of carbon black and graphite and wherein said corrosion inhibiting agent is selected from the group consisting of sodium dichromate and potassium dichromate and wherein said corrosion inhibiting agent is present to the extent of between 0.01 and 2.0 percent by weight.
- 4. The process of cathodic protection of engineering structures using an electrochemically active paint consisting essentially of a vehicle, an electrically conductive pigment, an electrochemically active metal pigment, and a corrosion inhibiting agent, wherein said electrochemically active metal pigment has an electrochemical potential at least as negative as -1.05 volts when measured against a saturated calomel reference electrode in seawater and said electrochemically active paint has an electrical resistivity of less than 100,000 ohm-cm when dry, and wherein said electrochemically active metal pigment is selected from the group consisting of magnesium, magnesium-lithium alloy, magnesium-aluminum alloy, and calcium-aluminum alloy powder, said calcium-aluminum alloy having between 0.5 to 50 weight percent calcium, and wherein said magnesium-lithium alloy comprises between 1 to 60 weight percent lithium and said magnesium-aluminum alloy comprises between 1 to 50 weight percent of aluminum and wherein said electrically conductive pigment is selected from the group consisting of carbon black and graphite and wherein said corrosion inhibiting agent is selected from the group consisting of sodium dichromate and potassium dichromate and wherein said corrosion inhibiting agent is present to the extent of between 0.01 and 2.0 percent by weight, said process consisting of the steps of applying said paint to an engineering structure, and drying said paint, whereby said engineering structure is electrochemically protected.
Parent Case Info
This is a continuation-in-part application of prior application, Ser. No. 07/700,600, filed May 15, 1991, now abandoned.
US Referenced Citations (4)
| Number |
Name |
Date |
Kind |
|
4081423 |
Hardenfelt |
Mar 1978 |
|
|
4490282 |
Corboy et al. |
Dec 1984 |
|
|
4545926 |
Fouts, Jr. et al. |
Oct 1985 |
|
|
5002826 |
Pollart et al. |
Mar 1991 |
|
Foreign Referenced Citations (1)
| Number |
Date |
Country |
| 57-085994 |
May 1982 |
JPX |
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
700600 |
May 1991 |
|