Claims
- 1. A nanoporous-nanocrystalline film comprising a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 2. A nanoporous-nanocrystalline film comprising a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 3. A nanoporous-nanocrystalline film comprising a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 4. A film according to claim 3, wherein m is 1 or 2 and n is an integer of from 1 to 5.
- 5. A film according to claim 2, wherein R1 is
- 6. A film according to claim 3, wherein R1 is
- 7. A film according to claim 1, wherein the metallic oxide is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 8. A film according to claim 2, wherein the metallic oxide is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 9. A film according to claim 3, wherein the metallic oxide is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 10. A method for the manufacture of an electrochromic system using a nanoporous-nanocrystalline film comprising a semiconducting metallic oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 11. A method for the manufacture of an electrochromic system using a nanoporous-nanocrystalline film comprising a semiconducting metallic oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 12. A method for the manufacture of an electrochromic system using a nanoporous-nanocrystalline film comprising a semiconducting metallic oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 13. The method of claim 12, wherein m is 1 or 2 and n is an integer of from 1 to 5.
- 14. The method of claim 12, wherein R1 is
- 15. The method of claim 13, wherein R1 is
- 16. The method of claim 10, wherein the metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 17. The method of claim 11, wherein the metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 18. The method of claim 12, wherein the metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 19. An electrochromic system comprising: a first electrode disposed on a transparent or translucent substrate; a second electrode; an electrolyte; an electron donor in solution in the electrolyte; and a nanoporous-nanocrystalline film comprising a semiconducting metallic oxide having a redox chromophore adsorbed thereto, intermediate the first and second electrodes.
- 20. An electrochromic system according to claim 19, wherein the nanoporous-nanocrystalline film comprises a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 21. An electrochromic system according to claim 19, wherein the nanoporous-nanocrystalline film comprises a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 22. An electrochromic system according to claim 19, wherein the nanoporous-nanocrystalline film comprises a semiconducting metal oxide having a redox chromophore adsorbed thereto, wherein the redox chromophore comprises a compound of the formula
- 23. The electrochromic system according to claim 19, where m is 1 or 2 and n is an integer of from 1 to 5.
- 24. An electrochromic system according to claim 21,
wherein R1 is 30wherein n is 2 or 3.
- 25. An electrochromic system according to claim 22,
wherein R1 is 31wherein n is 2 or 3.
- 26. An electrochromic system according to claim 19, wherein the semiconducting metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 27. An electrochromic system according to claim 20, wherein the semiconducting metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 28. An electrochromic system according to claim 21, wherein the semiconducting metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 29. An electrochromic system according to claim 22, wherein the semiconducting metallic oxide of the nanoporous-nanocrystalline film is an oxide of a metal selected from titanium, zirconium, hafnium, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, silver, zinc, strontium, iron (Fe2+ and Fe3+) and nickel and perovskites thereof, preferably TiO2, WO3, MoO3, ZnO or SnO2.
- 30. An electrochromic system according to claim 19, wherein the electrolyte is in liquid form, preferably comprising at least one electrochemically inert salt optionally in molten form or in solution in a solvent, the salt preferably being selected from hexafluorophosphate, bis-trifluoromethanesulfonate, bis-trifluoromethyl-sulfonylamidure, tetraalkylammonium, dialkyl-1,3-imidazolium and lithium perchlorate or a mixture thereof and/or is a salt in molten form selected from trifluoromethanesulfonate, 1-ethyl, 3-methyl imidazolium bis-trifluoromethyl-sulfonylamidure and 1-propyl-dimethyl imidazolium bis-trifluoromethyl-sulfonylamidure or a mixture thereof, preferably lithium perchlorate; and/or the solvent is selected from acetonitrile, butyronitrile, glutaronitrile, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methyloxazolidinone, dimethyl-tetrahydropyrimidinone and γ-butyrolactone or a mixture thereof.
- 31. An electrochromic system according to claim 20, wherein the electrolyte is in liquid form, preferably comprising at least one electrochemically inert salt optionally in molten form or in solution in a solvent, the salt preferably being selected from hexafluorophosphate, bis-trifluoromethanesulfonate, bis-trifluoromethyl-sulfonylamidure, tetraalkylammonium, dialkyl-1,3-imidazolium and lithium perchlorate or a mixture thereof and/or is a salt in molten form selected from trifluoromethanesulfonate, 1-ethyl, 3-methyl imidazolium bis-trifluoromethyl-sulfonylamidure and 1-propyl-dimethyl imidazolium bis-trifluoromethyl-sulfonylamidure or a mixture thereof, preferably lithium perchlorate; and/or the solvent is selected from acetonitrile, butyronitrile, glutaronitrile, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methyloxazolidinone, dimethyl-tetrahydropyrimidinone and γ-butyrolactone or a mixture thereof.
- 32. An electrochromic system according to claim 21, wherein the electrolyte is in liquid form, preferably comprising at least one electrochemically inert salt optionally in molten form or in solution in a solvent, the salt preferably being selected from hexafluorophosphate, bis-trifluoromethanesulfonate, bis-trifluoromethyl-sulfonylamidure, tetraalkylammonium, dialkyl-1,3-imidazolium and lithium perchlorate or a mixture thereof and/or is a salt in molten form selected from trifluoromethanesulfonate, 1-ethyl, 3-methyl imidazolium bis-trifluoromethyl-sulfonylamidure and 1-propyl-dimethyl imidazolium bis-trifluoromethyl-sulfonylamidure or a mixture thereof, preferably lithium perchlorate; and/or the solvent is selected from acetonitrile, butyronitrile, glutaronitrile, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methyloxazolidinone, dimethyl-tetrahydropyrimidinone and γ-butyrolactone or a mixture thereof.
- 33. An electrochromic system according to claim 22, wherein the electrolyte is in liquid form, preferably comprising at least one electrochemically inert salt optionally in molten form or in solution in a solvent, the salt preferably being selected from hexafluorophosphate, bis-trifluoromethanesulfonate, bis-trifluoromethyl-sulfonylamidure, tetraalkylammonium, dialkyl-1,3-imidazolium and lithium perchlorate or a mixture thereof and/or is a salt in molten form selected from trifluoromethanesulfonate, 1-ethyl, 3-methyl imidazolium bis-trifluoromethyl-sulfonylamidure and 1-propyl-dimethyl imidazolium bis-trifluoromethyl-sulfonylamidure or a mixture thereof, preferably lithium perchlorate; and/or the solvent is selected from acetonitrile, butyronitrile, glutaronitrile, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methyloxazolidinone, dimethyl-tetrahydropyrimidinone and γ-butyrolactone or a mixture thereof.
- 34. An electrochromic system according to claim 19, wherein the electrolyte is in liquid form and/or the electron donor is a metallocene or a derivative thereof, preferably ferrocene.
- 35. An electrochromic system according to claim 20, wherein the electrolyte is in liquid form and/or the electron donor is a metallocene or a derivative thereof, preferably ferrocene.
- 36. An electrochromic system according to claim 21, wherein the electrolyte is in liquid form and/or the electron donor is a metallocene or a derivative thereof, preferably ferrocene.
- 37. An electrochromic system according to claim 22, wherein the electrolyte is in liquid form and/or the electron donor is a metallocene or a derivative thereof, preferably ferrocene.
Priority Claims (3)
Number |
Date |
Country |
Kind |
S970082 |
Feb 1997 |
IE |
|
PCT/IE98/00008 |
Feb 1998 |
IE |
|
S970082 |
Feb 1997 |
IE |
|
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of application no. 09/367,024, filed Aug. 6, 1999, which is based on a International application no. PCT/IE98/00008, with an international filing date Feb. 6, 1998, having a priority based on Irish patent application no. S970082, filed Feb. 6, 1997.
Continuations (1)
|
Number |
Date |
Country |
Parent |
09367024 |
Oct 1999 |
US |
Child |
09952867 |
Sep 2001 |
US |