The present invention relates to electroconductive proppant compositions and methods of using electroconductive proppant compositions in subterranean formations to determine, among other things, proppant pack characteristics such as dimensions, orientation, and conductivity.
Hydraulic fracturing is a widely-used process for improving well productivity by placing or enhancing cracks or channels from a well bore a surrounding reservoir. This operation essentially is performed by injecting a fracturing fluid into a well bore penetrating a subterranean formation at a pressure sufficient to create a fracture in the formation or to enhance a natural fracture in the formation. Proppant particulates may be placed in the fracture to prevent the fracture from closing once the pressure is released. Upon placement, the proppant particulates usually form proppant packs in or near desired fractures. These proppant packs, thus, may maintain the integrity of those fractures to create conductive paths to the well bore for desirable fluids to flow. Placing an appropriate amount of proppant particulates to form a suitable proppant pack is thus important to the success of a hydraulic fracture treatment.
The geometry of a hydraulic fracture affects the efficiency of the process and the success of a fracturing operation.
The present invention relates to electroconductive proppant compositions and methods of using electroconductive proppant compositions in subterranean formations to determine, among other things, proppant pack characteristics such as dimensions, orientation, and conductivity.
Some embodiments of the present invention provide methods of obtaining data from a portion of a subterranean formation comprising providing proppant particulates wherein at least a portion of the proppant particulates are coated with an electroconductive resin that comprises a resin and a conductive material; placing the proppant particulates into a portion of a fracture so as to form an electroconductive proppant pack; providing a transmitter capable of sending an electric current into the electroconductive proppant pack; sending an electric current into the electroconductive proppant pack with the transmitter; providing a receiver capable of deflecting a reflected or conducted electric signal from the electroconductive proppant pack; and, receiving a reflected electric signal with the receiver.
Other embodiments of the present invention provide electroconductive proppant packs comprising proppant particulates wherein a portion of the proppant particulates are coated with an electroconductive resin and wherein the electroconductive resin comprises a resin and a conductive material.
Other and further features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
The present invention relates to electroconductive proppant compositions and methods of using electroconductive proppant compositions in subterranean formations to determine, among other things, proppant pack characteristics such as dimensions, orientation, and conductivity. The present invention provides novel methods relating to obtaining information on the characteristics of a fracture and proppant pack using both direct and indirect measurements of the fracture growth, final fracture or proppant pack placement, proppant conductivity, and the level of clean up of the fracturing fluid. The methods of the present invention generally related to the use of proppant particulates coated with an electroconductive resin.
In certain embodiments, the improved methods and compositions of the present invention comprise using electroconductive proppant compositions to obtain data from a fracture within a subterranean formation penetrated by a well bore comprising the steps of: forming an electroconductive proppant pack in a subterranean fracture; placing one or more receivers capable of receiving an electric signal into the well bore proximate to the electroconductive proppant pack; contacting the electroconductive proppant pack with an electric charge; and, measuring the resistance of the conductive proppant pack via a receiver. The resistance measurements may be interpreted to provide information regarding, among other things, the proppant pack conductivity and the dimensions and geometry of the subterranean fracture and/or the proppant pack. The receiver also may be designed to sense one or more formation parameters, including, but not limited to, pressure, temperature, dielectric constant, rock strain, porosity, and flow rate. In certain preferred embodiments, data corresponding to the subterranean formation may be obtained during fracture treatment to monitor fracture growth during a treatment operation (e.g., data monitored in “real time”).
The electroconductive proppant compositions of the present invention comprise proppant particulates coated with a curable electroconductive resin. In some embodiments of the present invention, only chosen portions of the proppant particulates making up the proppant pack are coated with electroconductive resins. In other embodiments, substantially all of the proppant particulates making up the proppant pack are coated with electroconductive resin. In some embodiments from about 20% to about 100% of the proppant particulates are coated with a curable electroconductive resin. In other embodiments from about 30% to about 90% of the proppant particulates are coated with a curable electroconductive resin. In other embodiments from about 50% to about 850% of the proppant particulates are coated with a curable electroconductive resin.
In certain preferred embodiments, the electroconductive proppant particulates may be placed in specific desired regions of the subterranean fracture. For example, electroconductive proppant particulates may be used during fracture treatment as only the first portion of proppant placed. Non-conductive proppant particulates or proppant particulates with a distinct conductivity as compared with the earlier placed proppant particulates may then be used during fracture treatment of a second or further portion of the subterranean formation. This method may be repeated to obtain multiple regions of distinctly conductive and/or non-conductive proppant particulates within the subterranean fracture.
Suitable proppant particulates for use in the present invention include those materials often used as proppant particulates, such as nut shells, sand, ceramics, natural sand, quartz sand, particulate garnet, metal particulates, glass, nylon pellets, bauxite and other ores, polymeric materials, combinations, and the like. Suitable sizes range from 4 to 100 U.S. mesh; in certain preferred embodiments the sizes range from 10 to 70 U.S. mesh. In preferred embodiments, the particles themselves may be at least somewhat conductive (as in the case of bauxite-based particles) or very conductive (as in the case of copper-based particles).
In order, among other things, to encourage consolidation of the proppant pack and to tailor the electroconductivity of the proppant, the selected proppant particulates should be at least partially coated with a curable, electroconductive resin. Curable resins that are suitable for use in the present invention include, but are not limited to, two component epoxy-based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped down hole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required for the desired curing characteristics.
While the chosen resin may itself be somewhat conductive, in certain embodiments, the resin may be mixed with a conductive material in an amount sufficient to obtain a desired degree of conductivity. Suitable conductive materials include, but are not limited to, powders that comprise conductive particulates, e.g., graphite, copper, iron, zinc, brass, tin, conductive plastics, conductive graphite materials, or combinations thereof. In one exemplary embodiment, the conductive resin may comprise an epoxy resin containing fine graphite powder. In another exemplary embodiment, the conductive resin may comprise a furan resin containing fine particulate copper. In certain exemplary embodiments, the conductive material has a particle distribution size of from about 0.1 μm to about 100 μm. In other exemplary embodiments, the conductive material has a particle distribution size of from about 15 μm to about 50 μm.
In certain preferred embodiments, the curable electroconductive resin bonds to adjoining particulates to form an aggregate of particulates that may form a proppant pack. The resin may be present in an amount sufficient to consolidate the proppant particulates but should not fill the pore spaces or openings between the particulates. The conductive resin may be coated on the proppant particulates in an amount from about 0.1% to about 6% by weight of the proppant particulates, preferably an amount from about 1% to about 3% by weight of the proppant particulates. In a preferred embodiment, the resin may bond the proppant particulates in a coarse aggregate to fix the particulates in the fracture and provide a flow path for produced fluids through the subterranean fracture.
Some methods of the present invention use transmitters to send an electrical signal into an electroconductive proppant pack and receivers to collect information from the electroconductive proppant pack. In a preferred embodiment, the signal comprises an electric current or an electromagnetic field. In certain preferred embodiments, the electric or electromagnetic signal from the transmitter is conducted along, and reflected back from the electroconductive proppant to the receiver and may be used to determine, inter alia, the dimensions and geometry of the subterranean fracture. For example, the strength, offset, and phase of the reflected signal may be used to determine, inter alia, height, width, length, and orientation of the subterranean fracture. In other preferred embodiments, an electric current can be used to determine the electric impedance within the electroconductive proppant. The measured impedance within the subterranean fracture may be used to quantitatively measure the proppant conductivity or the distribution of proppant conductivity through the subterranean fracture after placement of proppant.
In a preferred embodiment, at least one receiver is placed in the well bore of the subterranean formation. For example, a single receiver may be placed in the well bore at the fracture initiation point. In another example, multiple receivers may be placed in the well bore in the region of the subterranean fracture to determine the spatial distribution of electroconductive proppant in the subterranean fracture (e.g., to determine the fracture height and width).
Some embodiments of the present invention further include self-contained sensors placed in the proppant pack capable of collecting additional data about the proppant and providing the data to the receivers. In certain preferred embodiments, the sensors may be placed within the subterranean fracture during the fracturing treatment. Any sensors known to one skilled in the art may be used with the methods and compositions of the present invention. Examples of suitable sensors that may be used with the methods and compositions of the present invention have been described in U.S. Pat. No. 6,538,576, the relevant disclosure of which is incorporated herein by reference. The sensors may be used to obtain, inter alia, temperature, pressure, porosity, resistivity, magnetic field, and flow rate data. In certain exemplary embodiments, the electric current or electromagnetic field provided by the transmitter into the subterranean fracture may be used to provide power to one or more sensors. Various methods suitable for powering such devices are described, for example, in U.S. Pat. No. 6,408,943, the relevant disclosure of which is incorporated herein by reference.
While the invention has been depicted and described by reference to exemplary embodiments of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts having the benefit of this disclosure. The depicted and described embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalence in all respects.
Number | Name | Date | Kind |
---|---|---|---|
2238671 | Woodhouse | Apr 1941 | A |
2703316 | Schneider | Mar 1955 | A |
3047067 | Williams et al. | Jul 1962 | A |
3123138 | Robichaux | Mar 1964 | A |
3176768 | Brandt et al. | Apr 1965 | A |
3199590 | Young | Aug 1965 | A |
3272650 | MacVittie | Sep 1966 | A |
3297086 | Spain | Jan 1967 | A |
3308885 | Sandiford | Mar 1967 | A |
3316965 | Watanabe | May 1967 | A |
3375872 | McLaughlin et al. | Apr 1968 | A |
3404735 | Young et al. | Oct 1968 | A |
3415320 | Young | Dec 1968 | A |
3492147 | Young et al. | Jan 1970 | A |
3659651 | Graham | May 1972 | A |
3681287 | Brown et al. | Aug 1972 | A |
3754598 | Holloway, Jr. | Aug 1973 | A |
3765804 | Brandon | Oct 1973 | A |
3768564 | Knox et al. | Oct 1973 | A |
3784585 | Schmitt et al. | Jan 1974 | A |
3819525 | Hattenbrun | Jun 1974 | A |
3828854 | Templeton et al. | Aug 1974 | A |
3842911 | Know et al. | Oct 1974 | A |
3854533 | Gurley et al. | Dec 1974 | A |
3857444 | Copeland | Dec 1974 | A |
3863709 | Fitch | Feb 1975 | A |
3868998 | Lybarger et al. | Mar 1975 | A |
3888311 | Cooke, Jr. | Jun 1975 | A |
3912692 | Casey et al. | Oct 1975 | A |
3948672 | Harnberger | Apr 1976 | A |
3955993 | Curtice | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
4008763 | Lowe et al. | Feb 1977 | A |
4031958 | Sandiford et al. | Jun 1977 | A |
4042032 | Anderson et al. | Aug 1977 | A |
4070865 | McLaughlin | Jan 1978 | A |
4074760 | Copeland et al. | Feb 1978 | A |
4127173 | Watkins et al. | Nov 1978 | A |
4169798 | DeMartino | Oct 1979 | A |
4245702 | Haafkens et al. | Jan 1981 | A |
4273187 | Satter et al. | Jun 1981 | A |
4291766 | Davies et al. | Sep 1981 | A |
4305463 | Zakiewicz | Dec 1981 | A |
4336842 | Graham et al. | Jun 1982 | A |
4352674 | Fery | Oct 1982 | A |
4353806 | Canter et al. | Oct 1982 | A |
4387769 | Erbstoesser et al. | Jun 1983 | A |
4415805 | Fertl et al. | Nov 1983 | A |
4439489 | Johnson et al. | Mar 1984 | A |
4443347 | Underdown et al. | Apr 1984 | A |
4460052 | Gockel | Jul 1984 | A |
4470915 | Conway | Sep 1984 | A |
4493875 | Beck et al. | Jan 1985 | A |
4494605 | Wiechel et al. | Jan 1985 | A |
4498995 | Gockel | Feb 1985 | A |
4501328 | Nichols | Feb 1985 | A |
4526695 | Erbstosser et al. | Jul 1985 | A |
4527627 | Graham et al. | Jul 1985 | A |
4541489 | Wu | Sep 1985 | A |
4546012 | Brooks | Oct 1985 | A |
4553596 | Graham et al. | Nov 1985 | A |
4564459 | Underdown et al. | Jan 1986 | A |
4572803 | Yamazoe et al. | Feb 1986 | A |
4649998 | Friedman | Mar 1987 | A |
4664819 | Glaze et al. | May 1987 | A |
4665988 | Murphey et al. | May 1987 | A |
4669543 | Young | Jun 1987 | A |
4675140 | Sparks et al. | Jun 1987 | A |
4683954 | Walker et al. | Aug 1987 | A |
4694905 | Armbruster | Sep 1987 | A |
4715967 | Bellis | Dec 1987 | A |
4733729 | Copeland | Mar 1988 | A |
4739832 | Jennings, Jr. et al. | Apr 1988 | A |
4785884 | Armbruster | Nov 1988 | A |
4787453 | Hewgill et al. | Nov 1988 | A |
4789105 | Hosokawa et al. | Dec 1988 | A |
4796701 | Hudson et al. | Jan 1989 | A |
4797262 | Dewitz | Jan 1989 | A |
4800960 | Friedman et al. | Jan 1989 | A |
4809783 | Hollenbeck et al. | Mar 1989 | A |
4817721 | Pober | Apr 1989 | A |
4829100 | Murphey et al. | May 1989 | A |
4838352 | Oberste-Padtberg et al. | Jun 1989 | A |
4842072 | Friedman et al. | Jun 1989 | A |
4843118 | Lai et al. | Jun 1989 | A |
4848467 | Cantu et al. | Jul 1989 | A |
4848470 | Korpics | Jul 1989 | A |
4850430 | Copeland et al. | Jul 1989 | A |
4886354 | Welch et al. | Dec 1989 | A |
4888240 | Graham et al. | Dec 1989 | A |
4895207 | Friedman et al. | Jan 1990 | A |
4903770 | Friedman et al. | Feb 1990 | A |
4934456 | Moradi-Araghi | Jun 1990 | A |
4936385 | Weaver et al. | Jun 1990 | A |
4942186 | Murphey et al. | Jul 1990 | A |
4957165 | Cantu et al. | Sep 1990 | A |
4959432 | Fan et al. | Sep 1990 | A |
4961466 | Himes et al. | Oct 1990 | A |
4969522 | Whitehurst et al. | Nov 1990 | A |
4969523 | Martin et al. | Nov 1990 | A |
4986353 | Clark et al. | Jan 1991 | A |
4986354 | Cantu et al. | Jan 1991 | A |
4986355 | Casad et al. | Jan 1991 | A |
5030603 | Rumpf et al. | Jul 1991 | A |
5049743 | Taylor, III et al. | Sep 1991 | A |
5082056 | Tackett, Jr. | Jan 1992 | A |
5107928 | Hilterhaus | Apr 1992 | A |
5128390 | Murphey et al. | Jul 1992 | A |
5135051 | Fracteau et al. | Aug 1992 | A |
5142023 | Gruber et al. | Aug 1992 | A |
5165438 | Fracteau et al. | Nov 1992 | A |
5173527 | Calve | Dec 1992 | A |
5178218 | Dees | Jan 1993 | A |
5182051 | Bandy et al. | Jan 1993 | A |
5199491 | Kutts et al. | Apr 1993 | A |
5199492 | Surles et al. | Apr 1993 | A |
5211234 | Floyd | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5218038 | Johnson et al. | Jun 1993 | A |
5232955 | Caabai et al. | Aug 1993 | A |
5232961 | Murphey et al. | Aug 1993 | A |
5238068 | Fredickson | Aug 1993 | A |
5247059 | Gruber et al. | Sep 1993 | A |
5249628 | Surjaatmadja | Oct 1993 | A |
5256729 | Kutts et al. | Oct 1993 | A |
5273115 | Spafford | Dec 1993 | A |
5285849 | Surles et al. | Feb 1994 | A |
5293939 | Surles et al. | Mar 1994 | A |
5295542 | Cole et al. | Mar 1994 | A |
5320171 | Laramay | Jun 1994 | A |
5321062 | Landrum et al. | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5332037 | Schmidt et al. | Jul 1994 | A |
5335726 | Rodrogues | Aug 1994 | A |
5351754 | Hardin et al. | Oct 1994 | A |
5358051 | Rodrigues | Oct 1994 | A |
5359026 | Gruber | Oct 1994 | A |
5360068 | Sprunt et al. | Nov 1994 | A |
5361856 | Surjaatmajda et al. | Nov 1994 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5386874 | Laramay et al. | Feb 1995 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5393810 | Harris et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5422183 | Sinclair et al. | Jun 1995 | A |
5423381 | Surles et al. | Jun 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5460226 | Lawton et al. | Oct 1995 | A |
5464060 | Hale et al. | Nov 1995 | A |
5475080 | Gruber et al. | Dec 1995 | A |
5484881 | Gruber et al. | Jan 1996 | A |
5492178 | Nguyen et al. | Feb 1996 | A |
5494103 | Surjaatmadja et al. | Feb 1996 | A |
5497830 | Boles et al. | Mar 1996 | A |
5498280 | Fistner et al. | Mar 1996 | A |
5499678 | Surjaatmadja et al. | Mar 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5505787 | Yamaguchi | Apr 1996 | A |
5512071 | Yam et al. | Apr 1996 | A |
5520250 | Harry et al. | May 1996 | A |
5522460 | Shu | Jun 1996 | A |
5529123 | Carpenter et al. | Jun 1996 | A |
5531274 | Bienvenu, Jr. | Jul 1996 | A |
5536807 | Gruber et al. | Jul 1996 | A |
5545824 | Stengel et al. | Aug 1996 | A |
5547023 | McDaniel et al. | Aug 1996 | A |
5551513 | Suries et al. | Sep 1996 | A |
5551514 | Nelson et al. | Sep 1996 | A |
5582249 | Caveny et al. | Dec 1996 | A |
5582250 | Constein | Dec 1996 | A |
5588488 | Vijn et al. | Dec 1996 | A |
5591700 | Harris et al. | Jan 1997 | A |
5594095 | Gruber et al. | Jan 1997 | A |
5595245 | Scott, III | Jan 1997 | A |
5597784 | Sinclair et al. | Jan 1997 | A |
5604184 | Ellis et al. | Feb 1997 | A |
5604186 | Hunt et al. | Feb 1997 | A |
5609207 | Dewprashad et al. | Mar 1997 | A |
5620049 | Gipson et al. | Apr 1997 | A |
5639806 | Johnson et al. | Jun 1997 | A |
5670473 | Scepanski | Sep 1997 | A |
5697440 | Weaver et al. | Dec 1997 | A |
5698322 | Tsai et al. | Dec 1997 | A |
5712314 | Surles et al. | Jan 1998 | A |
5732364 | Kalb et al. | Mar 1998 | A |
5765642 | Surjaatmadja | Jun 1998 | A |
5775425 | Weaver et al. | Jul 1998 | A |
5782300 | James et al. | Jul 1998 | A |
5783822 | Buchanan et al. | Jul 1998 | A |
5787986 | Weaver et al. | Aug 1998 | A |
5791415 | Nguyen et al. | Aug 1998 | A |
5799734 | Norman et al. | Sep 1998 | A |
5806593 | Suries | Sep 1998 | A |
5830987 | Smith | Nov 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5836391 | Jonasson et al. | Nov 1998 | A |
5836392 | Urlwin-Smith | Nov 1998 | A |
5837656 | Sinclair et al. | Nov 1998 | A |
5837785 | Kinsho et al. | Nov 1998 | A |
5839510 | Weaver et al. | Nov 1998 | A |
5840784 | Funkhouser et al. | Nov 1998 | A |
5849401 | El-Afandi et al. | Dec 1998 | A |
5849590 | Anderson, II et al. | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5864003 | Qureshi et al. | Jan 1999 | A |
5865936 | Edelman et al. | Feb 1999 | A |
5871049 | Weaver et al. | Feb 1999 | A |
5873413 | Chatterji et al. | Feb 1999 | A |
5875844 | Chatterji et al. | Mar 1999 | A |
5875845 | Chatterji et al. | Mar 1999 | A |
5875846 | Chatterji et al. | Mar 1999 | A |
5893383 | Fracteau | Apr 1999 | A |
5893416 | Read | Apr 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5911282 | Onan et al. | Jun 1999 | A |
5916933 | Johnson et al. | Jun 1999 | A |
5921317 | Dewprashad et al. | Jul 1999 | A |
5924488 | Nguyen et al. | Jul 1999 | A |
5929437 | Elliott et al. | Jul 1999 | A |
5944105 | Nguyen | Aug 1999 | A |
5945387 | Chatterji et al. | Aug 1999 | A |
5948734 | Sinclair et al. | Sep 1999 | A |
5957204 | Chatterji et al. | Sep 1999 | A |
5960877 | Funkhouser et al. | Oct 1999 | A |
5960880 | Nguyen et al. | Oct 1999 | A |
5964291 | Bourne et al. | Oct 1999 | A |
5969006 | Onan et al. | Oct 1999 | A |
5977283 | Rossitto | Nov 1999 | A |
5994785 | Higuchi et al. | Nov 1999 | A |
RE36466 | Nelson et al. | Dec 1999 | E |
6003600 | Nguyen et al. | Dec 1999 | A |
6004400 | Bishop et al. | Dec 1999 | A |
6006835 | Onan et al. | Dec 1999 | A |
6006836 | Chatterji et al. | Dec 1999 | A |
6012524 | Chatterji et al. | Jan 2000 | A |
6016870 | Dewprashad et al. | Jan 2000 | A |
6024170 | McCabe et al. | Feb 2000 | A |
6028113 | Scepanski | Feb 2000 | A |
6028534 | Ciglenec et al. | Feb 2000 | A |
6040398 | Kinsho et al. | Mar 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6059034 | Rickards et al. | May 2000 | A |
6059035 | Chatterji et al. | May 2000 | A |
6059036 | Chatterji et al. | May 2000 | A |
6068055 | Chatterji et al. | May 2000 | A |
6069117 | Onan et al. | May 2000 | A |
6074739 | Katagiri | Jun 2000 | A |
6079492 | Hoogteijling et al. | Jun 2000 | A |
6098711 | Chatterji et al. | Aug 2000 | A |
6114410 | Betzold | Sep 2000 | A |
6123871 | Carroll | Sep 2000 | A |
6123965 | Jacon et al. | Sep 2000 | A |
6124246 | Heathman et al. | Sep 2000 | A |
6130286 | Thomas et al. | Oct 2000 | A |
6135987 | Tsai et al. | Oct 2000 | A |
6140446 | Fujiki et al. | Oct 2000 | A |
6148911 | Gipson et al. | Nov 2000 | A |
6152234 | Newhouse et al. | Nov 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172011 | Card et al. | Jan 2001 | B1 |
6172077 | Curtis et al. | Jan 2001 | B1 |
6176315 | Reddy et al. | Jan 2001 | B1 |
6177484 | Surles | Jan 2001 | B1 |
6184311 | O'Keefe et al. | Feb 2001 | B1 |
6187834 | Thayer et al. | Feb 2001 | B1 |
6187839 | Eoff et al. | Feb 2001 | B1 |
6189615 | Sydansk | Feb 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6192986 | Urlwin-Smith | Feb 2001 | B1 |
6196317 | Hardy | Mar 2001 | B1 |
6202751 | Chatterji et al. | Mar 2001 | B1 |
6209643 | Nguyen et al. | Apr 2001 | B1 |
6209644 | Brunet | Apr 2001 | B1 |
6210471 | Craig | Apr 2001 | B1 |
6214773 | Harris et al. | Apr 2001 | B1 |
6231644 | Jain et al. | May 2001 | B1 |
6234251 | Chatterji et al. | May 2001 | B1 |
6238597 | Yim et al. | May 2001 | B1 |
6241019 | Davidson et al. | Jun 2001 | B1 |
6242390 | Mitchell et al. | Jun 2001 | B1 |
6244344 | Chatterji et al. | Jun 2001 | B1 |
6257335 | Nguyen et al. | Jul 2001 | B1 |
6260622 | Blok et al. | Jul 2001 | B1 |
6271181 | Chatterji et al. | Aug 2001 | B1 |
6274650 | Cui | Aug 2001 | B1 |
6279652 | Chatterji et al. | Aug 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6283214 | Guinot et al. | Sep 2001 | B1 |
6302207 | Nguyen et al. | Oct 2001 | B1 |
6306998 | Kimura et al. | Oct 2001 | B1 |
6311773 | Todd et al. | Nov 2001 | B1 |
6321841 | Eoff et al. | Nov 2001 | B1 |
6323307 | Bigg et al. | Nov 2001 | B1 |
6326458 | Gruber et al. | Dec 2001 | B1 |
6328105 | Betzold | Dec 2001 | B1 |
6328106 | Griffith et al. | Dec 2001 | B1 |
6330916 | Rickards et al. | Dec 2001 | B1 |
6330917 | Chatterji et al. | Dec 2001 | B1 |
6350309 | Chatterji et al. | Feb 2002 | B1 |
6357527 | Norman et al. | Mar 2002 | B1 |
6364018 | Brannon et al. | Apr 2002 | B1 |
6364945 | Chatterji et al. | Apr 2002 | B1 |
6367165 | Huttlin | Apr 2002 | B1 |
6367549 | Chatterji et al. | Apr 2002 | B1 |
6372678 | Youngsman et al. | Apr 2002 | B1 |
6376571 | Chawla et al. | Apr 2002 | B1 |
6387986 | Moradi-Araghi et al. | May 2002 | B1 |
6390195 | Nguyen et al. | May 2002 | B1 |
6401817 | Griffith et al. | Jun 2002 | B1 |
6405797 | Davidson et al. | Jun 2002 | B1 |
6406789 | McDaniel et al. | Jun 2002 | B1 |
6408943 | Schultz et al. | Jun 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6439309 | Matherly et al. | Aug 2002 | B1 |
6439310 | Scott, III et al. | Aug 2002 | B1 |
6440255 | Kohlhammer et al. | Aug 2002 | B1 |
6446727 | Zemlak et al. | Sep 2002 | B1 |
6448206 | Griffith et al. | Sep 2002 | B1 |
6450260 | James et al. | Sep 2002 | B1 |
6454003 | Chang et al. | Sep 2002 | B1 |
6458885 | Stengal et al. | Oct 2002 | B1 |
6485947 | Rajgarhia et al. | Nov 2002 | B1 |
6488091 | Weaver et al. | Dec 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B1 |
6494263 | Todd | Dec 2002 | B1 |
6503870 | Griffith et al. | Jan 2003 | B1 |
6508305 | Brannon et al. | Jan 2003 | B1 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6528157 | Hussain et al. | Mar 2003 | B1 |
6531427 | Shuchart et al. | Mar 2003 | B1 |
6538576 | Schultz et al. | Mar 2003 | B1 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6552333 | Storm et al. | Apr 2003 | B1 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6555507 | Chatterji et al. | Apr 2003 | B1 |
6569814 | Brady et al. | May 2003 | B1 |
6582819 | McDaniel et al. | Jun 2003 | B1 |
6593402 | Chatterji et al. | Jul 2003 | B1 |
6599863 | Palmer et al. | Jul 2003 | B1 |
6608162 | Chiu et al. | Aug 2003 | B1 |
6616320 | Huber et al. | Sep 2003 | B1 |
6620857 | Valet | Sep 2003 | B1 |
6626241 | Nguyen | Sep 2003 | B1 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6632892 | Rubinsztajn et al. | Oct 2003 | B1 |
6642309 | Komitsu et al. | Nov 2003 | B1 |
6648501 | Huber et al. | Nov 2003 | B1 |
6659179 | Nguyen | Dec 2003 | B1 |
6664343 | Narisawa et al. | Dec 2003 | B1 |
6667279 | Hessert et al. | Dec 2003 | B1 |
6668926 | Nguyen et al. | Dec 2003 | B1 |
6669771 | Tokiwa et al. | Dec 2003 | B1 |
6681856 | Chatterji et al. | Jan 2004 | B1 |
6686328 | Binder | Feb 2004 | B1 |
6705400 | Nugyen et al. | Mar 2004 | B1 |
6710019 | Sawdon et al. | Mar 2004 | B1 |
6713170 | Kaneka et al. | Mar 2004 | B1 |
6725926 | Nguyen et al. | Apr 2004 | B1 |
6725931 | Nguyen et al. | Apr 2004 | B1 |
6729404 | Nguyen et al. | May 2004 | B1 |
6732800 | Acock et al. | May 2004 | B1 |
6745159 | Todd et al. | Jun 2004 | B1 |
6749025 | Brannon et al. | Jun 2004 | B1 |
6763888 | Harris et al. | Jul 2004 | B1 |
6766858 | Nguyen et al. | Jul 2004 | B1 |
6776236 | Nguyen | Aug 2004 | B1 |
6832650 | Nguyen et al. | Dec 2004 | B1 |
6851474 | Nguyen | Feb 2005 | B1 |
6887834 | Nguyen et al. | May 2005 | B1 |
6978836 | Nguyen et al. | Dec 2005 | B1 |
20010016562 | Muir et al. | Aug 2001 | A1 |
20020043370 | Poe | Apr 2002 | A1 |
20020048676 | McDaniel et al. | Apr 2002 | A1 |
20020070020 | Nguyen | Jun 2002 | A1 |
20030006036 | Malone et al. | Jan 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030114314 | Ballard et al. | Jun 2003 | A1 |
20030130133 | Vollmer | Jul 2003 | A1 |
20030131999 | Nguyen et al. | Jul 2003 | A1 |
20030148893 | Lungofer et al. | Aug 2003 | A1 |
20030186820 | Thesing | Oct 2003 | A1 |
20030188766 | Banerjee et al. | Oct 2003 | A1 |
20030188872 | Nguyen et al. | Oct 2003 | A1 |
20030196805 | Boney et al. | Oct 2003 | A1 |
20030205376 | Ayoub et al. | Nov 2003 | A1 |
20030230408 | Acock et al. | Dec 2003 | A1 |
20030234103 | Lee et al. | Dec 2003 | A1 |
20040000402 | Nguyen et al. | Jan 2004 | A1 |
20040014607 | Sinclair et al. | Jan 2004 | A1 |
20040014608 | Nguyen et al. | Jan 2004 | A1 |
20040040706 | Hossaini et al. | Mar 2004 | A1 |
20040040708 | Stephenson et al. | Mar 2004 | A1 |
20040040713 | Nguyen et al. | Mar 2004 | A1 |
20040048752 | Nguyen et al. | Mar 2004 | A1 |
20040055747 | Lee | Mar 2004 | A1 |
20040106525 | Willbert et al. | Jun 2004 | A1 |
20040138068 | Rimmer et al. | Jul 2004 | A1 |
20040149441 | Nguyen et al. | Aug 2004 | A1 |
20040152601 | Still et al. | Aug 2004 | A1 |
20040177961 | Nguyen et al. | Sep 2004 | A1 |
20040194961 | Nguyen et al. | Oct 2004 | A1 |
20040206499 | Nguyen et al. | Oct 2004 | A1 |
20040211559 | Nguyen et al. | Oct 2004 | A1 |
20040211561 | Nguyen et al. | Oct 2004 | A1 |
20040221992 | Nguyen et al. | Nov 2004 | A1 |
20040231845 | Cooke, Jr. | Nov 2004 | A1 |
20040231847 | Nguyen et al. | Nov 2004 | A1 |
20040256099 | Nguyen et al. | Dec 2004 | A1 |
20040261995 | Nguyen et al. | Dec 2004 | A1 |
20040261997 | Nguyen et al. | Dec 2004 | A1 |
20050000731 | Nguyen et al. | Jan 2005 | A1 |
20050006093 | Nguyen et al. | Jan 2005 | A1 |
20050006095 | Justus et al. | Jan 2005 | A1 |
20050006096 | Nguyen et al. | Jan 2005 | A1 |
20050045326 | Nguyen | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2063877 | May 2003 | CA |
0313243 | Oct 1988 | EP |
0528595 | Aug 1992 | EP |
0510762 | Nov 1992 | EP |
0643196 | Jun 1994 | EP |
0834644 | Apr 1998 | EP |
0853186 | Jul 1998 | EP |
0864726 | Sep 1998 | EP |
0879935 | Nov 1998 | EP |
0933498 | Aug 1999 | EP |
1001133 | May 2000 | EP |
1132569 | Sep 2001 | EP |
1326003 | Jul 2003 | EP |
1362978 | Nov 2003 | EP |
1394355 | Mar 2004 | EP |
1396606 | Mar 2004 | EP |
1398640 | Mar 2004 | EP |
1403466 | Mar 2004 | EP |
1464789 | Oct 2004 | EP |
1292718 | Oct 1972 | GB |
2382143 | Apr 2001 | GB |
WO 9315127 | Aug 1993 | WO |
WO 9407949 | Apr 1994 | WO |
WO 9408078 | Apr 1994 | WO |
WO 9408090 | Apr 1994 | WO |
WO 9509879 | Apr 1995 | WO |
WO 9711845 | Apr 1997 | WO |
WO 9927229 | Jun 1999 | WO |
WO 0181914 | Nov 2001 | WO |
WO 0187797 | Nov 2001 | WO |
WO 0212674 | Feb 2002 | WO |
WO 03027431 | Apr 2003 | WO |
WO 04037946 | May 2004 | WO |
WO 04038176 | May 2004 | WO |
WO 05021928 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050274510 A1 | Dec 2005 | US |