The present invention relates to an electrode for a plasma display panel, PDP, and to a method of manufacturing the electrode on a substrate of a PDP.
A plasma display panel has a substrate on which electrodes are fabricated by performing industry known, photolithographic process steps. First, a photo resist covers a layer of electrode material on the substrate. The, according to a development process, photolithographic patterning is performed by directing a beam of electromagnetic radiation through a patterned photolithographic mask. The beam is patterned by the mask, and is focused to irradiate a photo resist layer with an un-irradiated pattern. Then, the patterned photo resist layer is washed with a developer to remove the non-irradiated part, which leaves behind a patterned photo resist. The patterned photo resist covers a layer of electrode material on the substrate.
With the patterned photo resist in place, selective etching is performed to etch the electrode material, which forms a pattern of electrodes on the substrate of the plasma display panel. The electrodes have elongated bus line conductors that interconnect with spaced apart contact pads.
Then the substrate and the pattern of electrodes are fired, at elevated temperatures to drive off organic compounds, to unify electrode particles into a solid mass, and to increase the conductivity, durability and permanence of the electrodes under voltage stress, as well as, to secure the electrodes on the substrate.
The break is caused by development of a patterned electrode with an abrupt change in the width of an electrode where a corresponding, narrow bus line conductor intersects a wide pad. When the patterned mask is developed, a fluent developer flows lengthwise of the electrodes. Because the electrodes lack a streamlined profile, the fluent developer erodes side cuts laterally into the patterned mask. The side cuts in the patterned mask are transferred to the electrodes, which make electrodes that are weakened by patterned side cuts, and susceptible to a break. During a firing process at a temperature elevated above ambient, a break in an electrode is due to a wide width of the pad that shrinks more, while cooling, than does the narrow width of an intersecting bus line conductor.
A motivation for the invention is to avoid a break that would occur in an electrode of a plasma display device.
According to an embodiment of the invention, the electrode profile is made to be streamlined or curved, such that developer flow avoids erosion of a side cut at a sharp angle in the profile of a patterned mask that would cause an electrode break.
According to another embodiment of the invention, the line width of the electrode changes gradually from narrow to wide, which avoids causing an electrode break during the firing process.
According to an embodiment of the invention, at the intersection of a bus line conductor and a pad, the line width of the electrode is wider than a line width of the bus line conductor and narrower than a line width of a wider section of the pad.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
The break (108) is caused, for example, by development of a patterned electrode (100) with an abrupt change in the width of an electrode (100) at an intersection (110) of a corresponding, narrow bus line conductor (104) and a wide pad (102). In the embodiments disclosed by
Each of
The invention avoids an intersection (110) of a bus line conductor (104) with a pad (102) at its widest line width on a widest section (112) of a pad (102). Instead, the intersection (110) has a line width that is smaller than the line width of a pad (102) at its widest section (112).
At an intersection (110) of each pad (102) with a corresponding bus line conductor (104), a line width of the pad (102) is wider than a line width of the bus line conductor (104), and is substantially narrower than a line width of a wider section (114) of the pad (102). The line width of the pad (102) at the intersection (110) is substantially narrower, which means that the line width is purposely dimensioned to be narrower, than the line width of a wider section (114) of the pad (102). A pad (102) with that feature avoids being a cause for a break (108) in the electrode (100). According to the embodiments of the invention, the wider section (114) of the pad (102) is between the intersection (110) and the widest section (112) of the pad.
Each of
According to an embodiment of the invention, the line width of the electrode (100) changes gradually from narrow to wider, which avoids causing an electrode break (108) during a firing process. Each of
According to an embodiment of the invention, the electrode profile is made by the development process to be streamlined or curved, to eliminate erosion caused by the fluent developer to erode a side cut at a sharp angle in the profile, which would cause an electrode break (108). The streamlined or curved profile extends along a line width of the electrode (100) that changes gradually from narrow to wider. Further, according to an embodiment disclosed by each of
Each of
Further, according to an embodiment disclosed by each of
Further, according to an embodiment disclosed by each of
According to an embodiment disclosed by each of
Each of
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3742279 | Kupsky et al. | Jun 1973 | A |
| 4164678 | Biazzo et al. | Aug 1979 | A |
| 6445120 | Kim et al. | Sep 2002 | B1 |
| 6469441 | Choi | Oct 2002 | B1 |
| 7164394 | Hirose et al. | Jan 2007 | B2 |
| 20050174057 | Su | Aug 2005 | A1 |
| 20060132039 | Murai et al. | Jun 2006 | A1 |
| Number | Date | Country |
|---|---|---|
| 1407583 | Apr 2003 | CN |
| 05-013005 | Jan 1993 | JP |
| 06-044907 | Feb 1994 | JP |
| 2003-068209 | Mar 2003 | JP |
| 0394915 | Jun 2000 | TW |
| 0521291 | Feb 2003 | TW |
| Number | Date | Country | |
|---|---|---|---|
| 20050146273 A1 | Jul 2005 | US |