Electrode arrangement for circuit energy conditioning

Information

  • Patent Grant
  • 7262949
  • Patent Number
    7,262,949
  • Date Filed
    Tuesday, August 14, 2001
    22 years ago
  • Date Issued
    Tuesday, August 28, 2007
    16 years ago
Abstract
A predetermined electrode arrangement (1/1, 1/2, 1/3A, 1/6) comprising a plurality of shielded electrodes (213, 215) and a plurality of shielding electrodes (204, 214, 269A, 269B,) that together with other conductive (799, 206, 208, 207, 203, 218, 216, 217, 218) semi-conductive (not shown) and/or non-conductive material elements (212) are formed into a multi-functional energy condition assembly (1-1, 1-2, 1-3A, 1-6) or variant to be selectively coupled into circuitry (4-1, 5-1, 1-2).
Description
TECHNICAL FIELD

The new electrode arrangement relates to energy conditioning assemblies, electrode circuit arrangements, and a portioned electrode arrangement architecture. More specifically, the new electrode arrangement relates to a multi-functional electrode arrangement and shielding element for conditioning of propagating energy portions along energized conductive pathways or energized circuitry.


BACKGROUND OF THE INVENTION

Electrical systems have undergone short product life cycles over the last decade. A system built just two years ago can be considered obsolete to a third or fourth generation variation of the same application. Accordingly, passive componentry and circuitry built into these the systems need to evolve just as quickly. However, the evolvement of passive componentry has not kept pace. The performance of a computer or other electronic systems has typically been constrained by the frequency operating speed of its slowest active elements.


Passive componentry technologies have failed to keep up with these new breakthroughs and have produced only incremental changes in composition and performance. Advances in passive component design and changes have also focused primarily upon component size reduction, slight modifications of discrete component electrode portioning, dielectric discoveries, and modifications of embodiment manufacturing techniques or rates of production that decrease unit production cycle times.


At higher frequencies, energy pathways should normally be grouped or paired as an electrically complementary element or elements that work together electrically and magnetically in harmony and in balance within an energized system. Attempts to condition propagating energy portions with prior art componentry have led to increased levels of interference in the form of EMI, RFI, and capacitive and inductive parasitics. These increases can be due in part to imbalances and performance deficiencies of the passive componentry that create or induce interference into the associated electrical circuitry. These conditions have also created a new industry focus on passive componentry whereas, only a few years ago, the focus was primarily on the interference created by the active components from sources and conditions such as voltage imbalances.


Other disruptions to a circuit derive from large voltage transients, as well as ground loop interference caused by varying voltage or circuit voltage potentials. Certain existing transient or surge and EMI protection embodiments have been lacking in a need to provide adequate protection in one integrated package. Therefore, there remains a need in the art for a universally exploitable solution to overcome these and other deficiencies in certain prior art that is also cost effective and will have a longevity of usages despite the ever-increasing operating frequencies of future circuits.


The new electrode arrangement overcomes the disadvantages of certain prior art devices by providing a multi-functional, component electrode arrangement and shielding element for conditioning of propagating energy portions along conductive by-pass pathways or circuitry. The new electrode arrangement also possesses a commonly shared and centrally positioned energy pathway or electrode(s) that can in many cases, simultaneously shield and allow smooth energy interaction between grouped and energized pathway electrodes. The new electrode arrangement, when energized, will allow the contained energy pathways or electrodes to operate with respect to one another harmoniously, yet in an oppositely phased or charged manner, respectively.


Coupled selectively into a circuit and energized, the new electrode arrangement and other elements will utilize three isolated energy pathways within one integrated package in order to provide simultaneous EMI filtering and energy surge/energy transient protection and/or suppression while still maintaining an apparent even or balanced voltage supply between an energy source and an energy-utilizing load.


The new electrode arrangement will simultaneous and effectively provide energy conditioning functions that can include noise and/or energy bypassing, noise and/or energy filtering, energy decoupling, and/or energy storage. Variations of the new electrode arrangement use commonly found and accepted materials and methodologies for its production.


Today's passive component manufacturing infrastructure will be provided with an unprecedented ability to produce the new electrode arrangement through the usage of current equipment and machinery to allow for an ease of adaptability or production changeover for producing a new product that gives the end user improved final performance for circuitries as compared to certain prior art products.


SUMMARY OF THE INVENTION

It is an advantage of the present new electrode arrangement to provide three isolated energy pathways within one integrated package in order to provide simultaneous EMI filtering and energy surge/energy transient protection and/or suppression while still maintaining an apparent even or balanced voltage supply between an energy source and an energy-utilizing load and to allow conditioning of propagating energy portions along energy pathways or circuitry possessing a commonly shared and centrally positioned energy pathway or electrode that can simultaneously shield and allow smooth energy interaction between paired complementary energy pathways operating in electrically opposite manner with respect to each other.


It is another object of the new electrode arrangement to provide a low impedance energy pathway that will develop upon at least at least single isolated and separate, third energy pathway that was until now, not normally considered possible to now be integral in a single amalgamated grouping or structure for energized circuitry operations.


It is another object of the new electrode arrangement to provide an embodiment in the form of embodiments that form a multi-functioning electronic embodiment to provide a blocking circuit or circuits utilizing an inherent common energy pathway inherent to the embodiment, which is combined with an external conductive portion or “ground” area to provide coupling to an additional energy pathway from the paired energy pathway conductors for attenuating EMI and over voltages.


It is an object of the new electrode arrangement to be able to provide energy decoupling for active system loads while simultaneously maintaining a constant, apparent voltage potential and circuit reference node for that same portion of active componentry and its circuitry.


It is an object of the new electrode arrangement to provide an embodiment substantially free of the need of using additional discrete passive components to achieve the desired filtering and/or energy pathway conditioning that certain prior art components have been unable to provide.


It is an object of the new electrode arrangement to simultaneously minimize or suppress unwanted electromagnetic emissions resulting from differential and common mode currents flowing within electronic pathways that come under the new electrode arrangement influence.


It is an object of the new electrode arrangement to provide an embodiment giving the user an ability to realize an easily manufactured, adaptable, multi-functional electronic embodiment for a homogenous solution to a wide portion of the electrical problems and constraints currently faced when using certain prior art devices.


It is another object of the new electrode arrangement to provide an embodiment that utilizes standard manufacturing processes and be constructed of commonly found materials having predetermined properties and conductive or conductively made materials to reach tight capacitive tolerances between electrical pathways within the embodiment while simultaneously maintaining a constant and uninterrupted energy pathway for energy propagating from a source to an energy utilizing load.


Numerous other arrangements and configurations are also disclosed which implement and build on the above objects and advantages of the new electrode arrangement in order to demonstrate the versatility and wide spread application of a multi-functional, component electrode arrangement and its variations, all of which are within the scope of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a perspective cut away view of a portion of the new electrode arrangement;



FIG. 2 shows a straight cut away view of a portion of the new electrode arrangement;



FIG. 3 shows a perspective cut away view of a portion of the new electrode arrangement with an in-circuit coupling depicted;



FIG. 4 shows a circuit depiction of an energized new electrode arrangement;



FIG. 5 shows an alternate circuit depiction of an energized electrode arrangement;



FIG. 6A shows a semi-transparent view of a portion of the embodiment shown in FIG. 2 now in combination with a conductive covering portion;



FIG. 6B shows a semi-transparent view of a conductive covering portion in FIG. 6A now in combination with a conductive coupling band portion; and



FIG. 7 shows a straight cut away view of an alternate embodiment of the new electrode arrangement.





DETAILED DESCRIPTION OF EMBODIMENTS

The new electrode arrangement begins as a combination of electrically conductive, electrically semi-conductive, and non-conductive materials having predetermined properties, independent materials, portioned and arranged or stacked in various embodiments such as discrete elements. These portions can be combined to form a unique circuit when positioned and energized in a system. The new electrode arrangement embodiments include portions of electrically conductive, electrically semi-conductive, and non-conductive portions that form groups of common energy pathway electrodes, conductors, conductive deposits, conductive pathways (all can generally be referred to as ‘energy pathways’, herein), and the various material elements and combinations having one or more predetermined properties.


These invention portions are normally oriented in a parallel relationship with respect to one another and to a predetermined pairing or groups of conductive elements. These invention portions can also include various combinations of isolated energy pathways and their predetermined arrangement and portioning into a predetermined manufactured embodiment. These new electrode arrangement embodiments also have one or more predetermined properties formed into portions, multiple energy pathways, multiple common energy pathways, shields, sheets, laminates, or deposits in an interweaved arrangement of overlapping and non-overlapping methodologies that couples individual elements together for energization into a larger electrical system in a predetermined manner.


New electrode arrangement embodiments can exist as a un-energized, stand alone, embodiment that is energized with a combination, as a sub-circuit for larger circuitry found in other embodiments such as, but not limited to a circuit board, connector, electric motor, PCB (printed circuit board) or circuit board, multi-layered substrate or printed circuit substrate and the like.


When or after a structured portion arrangement is manufactured, it can be shaped, buried within, enveloped, or inserted into various electrical systems or other sub-systems to perform differentially phased, energy conditioning, decoupling, and/or aid in modifying a transmission of energy or energy portions into a desired energy form or electrical/energy shape.


By interposing complementary energy pathway electrodes with a centralized and shared, common energy pathway, which is subsequently conductively coupled or connected to a larger external area or same potentialed common energy pathway will, in most cases, in an energized system, become a 0-reference voltage or circuit portion for circuit voltages between two oppositely phased or potentialed, complementary energy pathways, of which are generally located on opposite sides of this centralized and shared, common energy pathway, energy pathways, or area extension.


The new electrode arrangement configuration and its variations are preconfigured to function for conditioning energy in a manner that significantly suppress and/or minimizing E-Fields and H-fields, stray capacitances, stray inductances, energy parasitics, and allowing for substantial mutual cancellation of oppositely phased and adjoining/abutting energy field portions propagating along variously coupled energy-in and energy-return pathways of a an energized circuit. A circuit board, connector, electric motor, PCB or circuit board, multi-layered substrate or printed circuit substrate and the like comprising energy pathways built with the new electrode arrangement and/or its variations can take advantage of various grounding schemes and techniques used now by large PCB or circuit board manufacturers.


To produce and propagate electromagnetic interference energy, two fields are required, an electric field and a magnetic field. Electric fields couple energy onto energy pathways or circuits through voltage differential between two or more points. Changing electrical fields in a space can give rise to a magnetic (H) field. Any time-varying magnetic flux will give rise to an electric (E) field. As a result, a pure electric or pure magnetic time-varying field cannot exist independent of each other.


Certain electrode arrangement architectures, such as utilized by the new electrode arrangement and/or its variations can be built to condition or minimize both types of energy fields that can be found in an electrical circuit system. While the new electrode arrangement and/or its variations is not necessarily built to condition one type of field more than another, it is contemplated that different types of materials with predetermined properties such as 212 and 799 “X” can be added or used to build an embodiment that could do such specific conditioning upon one energy field over another.


Use of the new electrode arrangement and/or its variations will allow placement into a differentially operated circuit or any paired differentially phased, energy pathway circuitry providing balanced or essentially, equalized capacitive tolerances, of one new electrode arrangement unit, that is shared and between each paired differentially phased, energy pathway, relatively equally, in an electrical manner.


As for all embodiments of the new electrode arrangement depicted and those not pictured, the applicant contemplates a manufacturer to have options in some cases for combining a variety and wide range of possible materials that can be selected and combined into a make-up of an new electrode arrangement and/or its variations when manufactured, while still maintaining some or all of a desired degree of electrical functions of the new electrode arrangement and/or its variations.


For a particular application, the thickness of a material 212 having varistor properties for example, or a material having predetermined properties 212 for another example may be modified easily to yield the desired amount of filtering, decoupling, and/or transient protection, as necessary. The particular construction also allows for simultaneous filtering of both differential mode and common mode energy, as well as protection against energy transients and other forms of electromagnetic interference over a large frequency range than is possible from the certain prior art.


Materials for composition of the new electrode arrangement embodiments can comprise one or more portions of material elements compatible with available processing technology and are generally not limited to any specific material having predetermined properties 212.


Equally so, the new electrode arrangement and/or its variations may comprise conductive materials of one or more portions of conductive compounds or material elements compatible with available processing technology and are generally not limited to any specific a material including, but not limited to, palladium, magnetic, ferro-magnetic or nickel-based materials, or any other conductive substances and/or processes that can create energy pathways for, or with, a conductive material, a conductive-resistive material and/or any substances or processes that can create conductive areas such as conductively doped, or doped for application of conductive materials. It should be noted that a resistive-conductive material or a resistive material (not shown) that comprises the plurality of electrodes or even a predetermined number of the plurality of electrodes is fully contemplated by the applicants. Electrodes, such as 213, 214, and 204, 215, respectively can be formed with the entire electrode pattern comprised of a resistive-conductive material or a resistive material. Other multi-portioned embodiments are contemplated wherein part of the internal electrode portions are formed comprising portions or combinations of conductive and resistive materials designated as 799“X” (not shown) as opposed to electrodes formed from traditional 799 (not shown) conductive material or material combinations.


In this regard, this electrode material make-up is contemplated for substantially all embodiments of the electrode arrangement in bypass or even a feed-thru circuit configuration, as well. These materials may be a semiconductor material such as silicon, germanium, gallium-arsenide, or a semi-insulating or insulating material and the like such as, but not limited to any particular dielectric constant K.


Use of an electrode arrangement embodiment unit between energized, paired differentially phased, energy pathways rather than certain prior art units will alleviate the problem of circuit voltage imbalance or difference created by units of certain prior art introduced between a paired differentially phased, energy pathways, particularly at sensitive, high frequency operation.


New electrode arrangement tolerances or capacitive balance between a commonly shared central energy pathway found internally within the new electrode arrangement and/or its variations are generally maintained at levels that originated at the factory during manufacturing of the new electrode arrangement and/or its variations, even with the use of X7R dielectric, which is widely and commonly specified with as much as 20% allowable capacitive variation among any discrete units.


Thus, some of new electrode arrangement and/or its variations embodiments that are generally manufactured at 5% capacitive tolerance or less, for example, can be built closely as described in the disclosure will also have a correlated 5% capacitive tolerance or less measured between the differentially phased energy pathways or lines in an energized system and an added benefit exchanging two prior art devices for a single, paired energy pathway unit operating as complementary phased energy pathway pairing like 1-2, or one of the new electrode arrangement embodiment variants.


In bypass and/or decoupling circuit operations a symmetrical capacitive balance between two energy pathways that comprise energy pathways 217 and 216 exists by the utilizing of the third energy pathway elements as a fulcrum to function both as a common voltage divider during dynamic operations as well as physically dividing the capacitance equally and symmetrically (as is practicable using standard manufacturing practices) as is possible to allow this commonly shared fulcrum function to benefit each respective complementary energy pathway. Determining the relative capacitive balance found on either side of a common energy pathway 218 is measurable with today's standard capacitor component test measuring equipment. This new electrode arrangement provides users the opportunity to use an energy conditioning embodiment like 1-2 for that is homogeneous in conductive material make-up as well as homogeneous in any dielectric or material 212 make-ups as well, within a circuit. Now turning to FIGS. 1, 2, 3, 4, 5, 6A, 6B and 7, so that the applicants can move freely back in forth between all of the FIGS. 1, 2, 3, 4, 5, 6A, 6B and 7 to show and to describe all of the embodiment depictions as best they can.


Referring specifically now to FIGS. 1 and 2, an energy conditioning electrode arrangement 1-1 of the new electrode arrangement for use with energized circuitry and circuitry networks is shown. An electrode arrangement 1-1 is shown comprising a same conductive material 799 that can be of a standard or known material or combination of materials known suitable in the art for such applications. These electrodes numbered first electrode to fourth electrode as 213, electrode 214, electrode 204, and 215, respectively, can also be considered aligned in a manner where the perimeter edge of each electrode is evenly aligned with all the other perimeter edges of every other electrode of the arrangement such that they are considered superposed over one another irregardless of their relationship to the earth's horizon.


The first electrode 213 is placed in a position and followed by the second electrode 214, which is adjacent, the first electrode 231, and then the third electrode 204 is arranged adjacent to the second electrode 213. Then a fourth electrode 215 is positioned or arranged adjacent the third electrode 204 such that the first electrode 213 and the fourth electrode 215 are sandwiching the second electrode 214 and the third electrode 204 and other elements conductive coupling material 203 and electrode portion 207 which are all conductively coupled operable for common electrical operation together, yet while the first electrode 213 and the fourth electrode 215 are maintained conductively and thus, electrically isolated from both complementary electrodes, mainly, the second electrode 214 and the third electrode 204, while they themselves (213 and 215) are maintained conductively isolated from each other.


The energy conditioning electrode arrangement 1-1 comprises one material having one or more predetermined properties 212 are formed into at least two main-body electrode portioned assemblies 201A and 201B having electrodes 213, 214, and 204, 215, respectively, coupled thereto each side of each shaped portion of material having predetermined properties 212.


The shaped material having predetermined properties 212 are formed into a planar portion or wafer, laminate or other suitable shape. Electrodes 213, 214, 204, and 215 can be comprised of deposited conductive material standard or combination as state earlier suitable for such applications.


It should be noted that although not shown, interior positioned electrodes 214 and 204 can be slightly larger in diameter and main-body conductive area (not numbered) than the diameter and main-body conductive area size of each respective, complementary paired electrodes 213 and 215, respectively.


This size arrangement differential aids in the electrostatic shielding of respectively positioned complementary electrodes, 213 and 215 from one another's respective energy parasitics emissions that would otherwise attempt to couple upon each other during energized operation.


The smaller area main body electrode areas 80 (not fully shown) of electrodes 213 and 215 and the main body electrode portion 81s (not fully shown) of the 204 and 214 electrodes are positioned along the same imaginary axis center point or line (not shown) that would pass through the center portion of each respective electrode of this arrangement results in a relative insetting effect of the respective superposed main body electrode portion 80s of electrodes 213 and 215 positioned within the electrode area of the superposed electrode main-body areas 81 (not shown) of positioned electrodes 214 and 204.


It should be noted that the inset area 806 (though, not shown) with respect to the actual material having one or more predetermined properties 212 not covering a portion of all conductively portioned areas of electrodes 204 and 214, by positioned electrodes 214 and 204 should be similar, respectively to one another in make-up and size diameter as well as volume, (that standard manufacturing tolerances allow).


Configurations of the invention also offer minimization of conductive area size differentials between the respective superposed conductive material areas 799 that comprise the respective electrodes.


Uniformity of like sizes of various material portions or deposits are normally symmetrically balanced as stated earlier such that this symmetrical balance also will help provide a very tight capacitive and voltage balance for portions of energies located at a moment in time on either side of the central common electrode element 241/250 found within the area of energy convergence 813. Thus, a superposed electrode alignment of all electrodes of the three conductively isolated external pathways 216, 217 and 218 is fully contemplated to undergo usage for facilitating a substantially balanced and symmetrical division of portions of propagating energies moving in a reduced amount (voltage) along portions of the first complementary energy pathway 216, the second complementary energy pathway 217, symmetrical and complementary, yet on opposite sides of third energy pathway 218.


A differentially phased, energy pathway conditioning circuit with new electrode arrangement components like embodiment 1-2 may be used as a voltage dividing capacitor network, constructed in a manner to provide flat or planar-shaped portions, wafers, or laminates of a material having predetermined properties 212 for subsequent or eventual conductive deposit of electrode materials 799 or 799“X” on material 212 by standard manufacturing means known in the art. An alternative of voltage dividing, capacitive network embodiment 1-2 may be provided by coupling together various 212 materials with thin film materials, PET materials, materials 799“X” to be patterned into electrodes (not shown) formed thereon such that in their arranged or stacked in position the thin film materials, PET materials and the like, will provide the desired capacitance or inductive characteristics desired to achieve various desired simultaneous filtering response and/or transient response effects.


A circuit utilizing this variation of new electrode arrangement network could include a new electrode arrangement having an magnetic characteristic and function provided by predetermined materials 212 to increase the inductive characteristics of the invention such as through the use of a ferrite material or ferrite-electric or ferro-dielectric material (not shown) in almost any portion or combination that would be comprising the 212 material portion of the electrode arrangement. Use of ferro-materials that will further add to an invention variation so configured, the energy conditioning abilities or characteristics of such a circuit conditioning assembly comprised of an energized circuit, if desired.


When new electrode arrangement elements are formed into a complete embodiment like electrode arrangement 1-1, a commonly shared and centrally positioned electrode pairing of electrode 214 and electrode 204 with energy pathway electrode portion 207 and solder 203 or conductive coupling material 203 is found either combined, coupled to, fused, sintered, melded or any combination thereof for conductively coupling electrode 214 and electrode 204 to each other.


A circuit with the invention could include an energy source (not shown), an energy-using load (not shown), a first complementary conductive portion 216 coupled from a first side of two sides of the energy source to a first side of two sides of the energy-using load, a second complementary conductive portion 217 coupled from a second side of two sides of the energy-using load to a second side of two sides of the energy source. A separate conductive portion 218 is contemplated for the conductively/electrically isolated (isolated from 216 and 217) and yet, conductive coupling with conductive portions 219 and is used to couple the common shielding structure 241/250, comprising common electrodes 204 and 214 of any embodiment to separate conductive portion 218 for use as a pathway of low energy impedance that will develop at energization of the first and second complementary conductive portions 217 and 216, respectively.


Contiguous electrode portion 207 emerges from the embodiment in the form of what appears to be two separate elongations from within the embodiment 1-1. It is actually same contiguous unit of common energy pathway element 207 that is still structurally and electrically a uniform element.


This same type of electrode portion element makeup, construction or form and appearance of contiguous portion 207 coincides respectively with each complementary energy pathway contiguous electrode portions 208 and 206, respectively.


Contiguous electrode portion 207 can be positioned or located between commonly shared and centrally positioned electrode pairing of electrode 214 and electrode 204 within a sandwiched arrangement which conductively couple electrodes 214 and 204 to one another respectively, by either solder 203 with conductive coupling material 203 or solder-like methods, coupling or melding, pressure methodologies (not shown) or any other industry accepted practice.


The commonly shared and centrally positioned electrode pairings electrode 214 and electrode 204 are positioned and are sandwiched between externally positioned complementary electrodes 213 and 215. Electrodes 204 and 214 become a common electrode element that can also be used as a separate, third energy pathway 218. Third pathway 218 itself, is an isolated energy pathway from that of energy pathways 206 and 208 as mentioned earlier. A circuit coupled at 216, 217 by 219s′ (along with 218 external area coupled to common element portions 241/250 by 219s′) which are selective portions of the invention, will allow portions of energy utilizing the circuit (not shown) to propagate within an area of energy convergence 813 (not shown) found within the outline of an the new electrode arrangement. Such as circuit is normally electrically located between and servicing portions of energy propagating to and from an energy source and an energy utilizing-load such as a switch-mode power supply or an electric motor (both, not shown), for example.


It is also noted that insulating, non-conductive material potting or encapsulation or non-conductive coupling material 205 is of the standard industry material and can be applied by standard industry methods to be coupled around the invention elements of a typical energy conditioning electrode arrangement like embodiment 1-1, 1-2, etc. to complete this portion of a circuit assembly before the invention assembly is placed into and becomes part of an actual circuit energization. It is preferable to apply the coating 205 over a portion of the larger portion of whole element 1-1 shown in FIG. 2 to maintain the element 1-1's element integrity in a mounted position.


Embodiment 1-1 is conductively coupled with various predetermined portions of the three energy pathways to form embodiment 1-2 such that it comprises a first energy pathway 216 coupled by means of conductive coupling 219 that is coupled between a first portion of at least two portions of an energy source (not shown ) and a first portion of at least two portions of the energy utilizing load (not shown ). Energy pathway 217 in FIG. 3 is coupled between a second portion of the at least two portions of energy-utilizing load to a second portion of at least two portions of the energy source. The third energy pathway 218 which is conductively isolated both internally and externally from each conductively contiguous elements (such as 203, 205, 208, 219s for pathway 217, for example) that are conductively coupled to pathway 216 and pathway 217, respectively for the circuit assembly show in FIG. 3 Third energy pathway 218 is independent of pathways 216 and 217 but is used in tandem with the circuit coupling result just described above, as needed and/or a predetermined by the need of a user or manufacturer.


It should be noted that use of a contiguous, dual lead-appearing configuration of electrode portions or electrode elements 206, as well as contiguous, dual lead-appearing configuration electrode portions 208, and 207 is generally preferred in terms of lowering overall energy pathway inductances for portions of an energized circuit (not all shown) comprising the new electrode arrangement, however it is noted that a single contiguous lead configuration of 206, 207 and 208 is also acceptable.


The contiguous electrode portion 207 will also enhance formation of a low impedance energy pathway created and found along the coupled together shielding energy elements 241/250 and can comprise elements 214 which is an electrode, conductive coupling material 203, electrode 204, conductive aperture or via or conductive coupling portion 219 (if desired or used) and of course energy pathway 218 which is a portion of the external third energy pathway, as disclosed.


The electrode element or contiguous electrode portion 207 can be the centrally located conductor contiguously coupled in a conductive manner between both the shielding electrodes 214 and 204, as well as any other shielding electrodes used (but, not shown) and will also be found to be the centrally located conductor of the electrode arrangement as a whole, as well.


Formation of a low impedance energy pathway normally occurs along pathway portions such as 207 during energization of the assembly and is normally found along this and other third energy pathway elements as just described due to interaction of energy portions propagating along various energy pathways such as 206 and 208 and electrodes 213 and 215, among others, as they, by their physical predetermined proximity and location, along with their predetermined conductive couplings allow energy conditioning to take place. Such a configuration will interactively enhance or electrically encourage a simultaneous and complementary energy portions to propagate independent of a direct conductive coupling to pathway 218 or 207 due to the state of condition created at energization and as described above to be conducive of a low impedance energy pathway now used to both block energy from returning as it moves (what is normally, unwanted) out along this third pathway in a manner harmonious to simultaneous energy conditioning functions.


The utilization of the internally and externally located shielding energy pathway will be described; as portions of energy propagating along paired complementary energy pathways undergo influence within the inventions' area of energy convergence 813, a portion of the energies can subsequently move out onto a common, externally located conductive areas or energy pathway such as 218 which are not of the complementary energy pathways 216 and 217 and thus, these portions of energy will be able to utilize this non-complementary energy pathway 218 as the energy pathway of low impedance for dumping and/or suppressing/blocking the return of unwanted EMI noise and energies from returning back into each of the respective energized complementary energy pathways 216 and 217. 216 and 217 receive symmetrical energy portions relative to the configuration of the balanced and symmetrical invention embodiment as a whole due to its make-up. This symmetrical energy portion conditioning is normally relative in terms of the balance of the various invention portions conductively coupled on either side of the fulcrum or shielding structure combination known as 241/250 (not shown in every FIG.) to them and separately on either side of the common third pathway or node utilized by the operating circuit.


Referring to FIG. 3, electrode 215 is shown conductively coupled to circuitry in a manner which will be described herein and can be applicable for all similar configurations, either common or complementary energy pathways with circuit coupling. Starting from a 203 coupling of the complementary electrode 215 for a specific example, first portion of 208 which could be of a first “leg” of complementary energy pathway 208 is conductively coupled at coupling point or conductive coupling portion 219 by standard means 203 known to the art in a manner to external energy pathway 217 at one or more locations depending on usage.


A second “leg” of complementary energy pathway 208 is conductively coupled at another coupling point or conductive coupling portion 219 by standard means 203 known to the art in a manner to external energy pathway 217 at one or more locations depending on usage.


Alternative variations of 1-2 could allow complementary energy pathway 208 to be twisted or fused together for a single coupling at couple point or conductive coupling portion 219 (not shown).


Complementary energy pathway 208 is conductively coupled to electrode 215 by the application of solder 203 or conductive coupling material 203 or conductive bonding agent in such a manner as to overlap one portion of the 208 energy pathway with the electrode 215 and to extend the remaining portions, outwardly away from electrode 215 in two portions, as shown.


Other energy pathways 217 and 216 and contiguous electrode portions 207 and 206 can be conductively coupled to each respective electrode in a similar manner as just described with 208 and 215 and 217.


A coupling scheme used for a circuit assembly as shown in FIG. 3 and both in FIG. 4 and FIG. 5, will be described. The circuit first will have an energy source, and an energy-utilizing load. The new circuit will normally allow a “0” voltage reference node on conductor 218 (not shown) to develop at energization with respect to each complementary conductor 216 and 217 which are located on opposite sides of the shared central and shielding energy pathway, pathway elements in a coupled combination 241/250 (which are electrode 214, conductive coupling material 203, electrode 204, and contiguous electrode portion 207, complementary energy pathway elements 206 and 208, if any), and an conductive portion 218 (as shown in FIG. 3).



FIGS. 4 and 5 depict circuit embodiments of the new electrode arrangement and/or its variations when energized to form by-pass circuit and/or feed-thru circuit modes which is the result of the various electrode patterning and in circuit couplings to form circuits that will both function as a simultaneous common mode and differential mode filter as well as a surge protection circuit usable but, not limited to switch mode power supplies, electric motors, telecommunication circuits (all not shown) between tip, ring and ground, which have in the past required one, two or sometimes three separate varistors to achieve the balanced protection desired or any other differentially phased or paired, multiple-paired systems circuitries. Balanced protection circuit of either embodiments 4-1 or 5-1 of the new electrode arrangement will ensure that a problem of unbalanced breakdown in most cases will not occur while not affecting normal ring voltage peaks occurring across the telephone conductors (not shown) for example.


Nevertheless, electrodes 213 and 215 coupled upon portions of a material having predetermined properties 212, respectively. The coupled shielding electrodes 214 and 204, along with common energy pathway or contiguous electrode portion 207, and a material having predetermined properties 212 positioned there between, will function as a portion of a balanced surge protection circuit for portions of propagating energy passing therethrough new electrode arrangement area of energy convergence 813 (not shown) of embodiments 1-1 or 1-2 and the like. In this way, surge protection portion of circuit 4-1 and 5-1 to third energy pathway 218 (shown in FIG. 3) by way of attachments or conductive coupling portions 219 and may be used wherein balanced protection for a circuit system is desired to be achieved.


It should be noted that in 5-1, the complementary circuit assembly comprising energy pathways 216 and 217, a non-conductive gap 251 is arranged to space-apart externally positioned pathways of the second complementary energy pathway 217 and first complementary energy pathway 216, as well. Thus, with respect to keeping conductive coupling portions 219 of the first complementary energy pathway 216 and keeping conductive coupling portions 219 of the second complementary energy pathway 217 separate through the utilization of non-conductive gap 251 in 5-1 an alternative circuit assembly configuration is shown. When present, the non-conductive gap 251 of new electrode arrangement embodiment and its circuit assembly variations are operable to be considered “bypassing” a majority of the portions of propagating energy within the various electrode arrangement embodiment's area of energy convergence 813 as seen in FIG. 5, so that embodiment 1-2 can be considered a bypass embodiment as it is known in the art.


Embodiment 4-1 of FIG. 4 shows a non-gapped 251 pathway set-up to allow a “by-passing of portions of energy” propagating along to pathway 208 and thus continue on pathway 217 or first complementary energy pathway 216 and leaving behind only the unwanted noise energy, which is drawn into the new electrode arrangement embodiment 4-1 area of energy convergence 813 to common conductive portion or third energy pathway 218 and within portions of 241/250 of the new electrode circuit arrangement and/or its variations area of energy convergence 813 and by way of the mutual cancellation or minimization effect of the positioning or arrangement of the various new electrode arrangement elements. The flexibility of the new electrode arrangement also provides a bypass/feed-through hybrid circuit mode for 5-1 to be utilized, if so desired. Thus, new electrode arrangement architecture utility is superior as to the choices allowed or available to a user over that of certain prior art.


The circuits as shown in FIGS. 4 and 5 represents dynamic-balanced circuit assembly portions or embodiments that also provide simultaneous surge protection in a circuit. It should be recognized that new electrode arrangement architecture embodiments as shown, are normally very small and compact and are easily arranged over electrical conductors or energy pathways or traces of almost any circuit to provide simultaneous energy decoupling, filtering of both common and differential mode noise energy and surge protection thereto.


As a further example of the new electrode arrangement and/or its variation utility, a voltage potential (not shown) across the second complementary energy pathway 217 and the first complementary energy pathway 216, each relative to a common conductive portion or third energy pathway 218 (as shown in FIG. 3) is a given voltage or V1, and the potential (not shown) between these conductors and each respective side of the interposed common conductive portion or third energy pathway 218 (shown in FIG. 3) is now a given voltage V2 (not shown) and which is approximately half of the respectively of the voltage V1 potential and attributed to the second complementary energy pathway 217 and the first complementary energy pathway 216, each relative to a common conductive portion or third energy pathway 218 (as shown in FIG. 3) respectively, and is accomplished by interposing the new electrode arrangement, a material having predetermined properties 212 and energy pathway elements in a coupled combination 241/250 are electrode 214, conductive coupling material 203, electrode 204, and contiguous electrode portion 207 in a centrally arranged manner between complementary energy pathways 213 and 215 located externally on material 212.


Thus, for example an embodiment when energized becomes a phase balanced embodiment easily and economically achieved utilizing a material portion that could be up to 50% or more less in the thickness of MOV material Or material 212 that is normally disposed between electrodes 213 and 215, for example, and relative to the prior art when complementary pathway elements and in a coupled combination 241/250 are electrode 214, conductive coupling material 203, electrode 204, and electrode portion 207 to accommodate the voltage V2 as desired. It is of course recognized that the energy propagated along the assembly and external energy pathways in a combination configuration or location could be modified to reflect the voltage dividing relationship of voltages V1 and V2, respectively.


The novel electrode patterns of the new electrode arrangement embodiment 1-1 and/or its variations, etc. that are coupled thereon in conjunction with the material making up a material having predetermined properties 212 help to produce a commonality between electrodes or energy pathways, thereby producing a balanced and symmetrical circuit arrangement or network like 4-1 and 5-1 for a larger circuit.


Alternatively, or in conjunction with this type of differentially phased, energy conditioning circuit network 5-1 or 4-1, many material variations of the electrodes and the material having predetermined properties 212, as well as any ferro-magnetic, MOV combinations of materials, either non-conductive, and/or semi-conductive, and/or full conductive in nature, either made or utilized naturally or by processing or even doping may be constructed and used as the make up of the electrode and/or spaced-apart material used to electrically isolate electrodes of the invention electrode arrangement may be utilized in a similar manner for obtaining variations or even the same functionality results of a typical invention embodiment.


Normally, intimacy or commonality between complementary electrodes is not desirable, as all conductors carrying portions of propagating energy in circuits that are generally directly connected to a “ground” portion. In the new electrode arrangement, complementary interactive intimacy of complementary electrodes 213 and 215 is desirable Oust not direct conductive coupling) as the differentially phased, energy pathways of the conditioning circuits 5-1 and 4-1 are operable when these elements are electrically isolated from one another, yet positioned very close to one another as well to facilitate incoming and outgoing energy portions to come under influence of one another to allow complementary electrical interaction to occur. For example location of the configuration as apportion of a energy plug or I/O port or the like, so as to more effectively filter energy interference along these differentially operating energy pathways coupled to complementary electrodes 213 and 215, respectively.


Construction of the various new electrode arrangement circuits such as 4-1 and 5-1 allow simultaneous surge protection, filtering and decoupling of energy to take place within new electrode arrangement networks that are formed in a simple and miniaturized manner to provide an electrical plug, energy circuit, or other electrical circuit arrangement a needed multifunctional solution. New electrode arrangement circuitry utilizing these combined elements may be grouped into one package and are generally simply and easily constructed into the final electrical or electromechanical equipment to reduce labor and construction costs as well as to provide a miniaturized and effective circuit arrangement.


Additionally, the electrode arrangement architecture is for the most part so efficient that it allows faster clamping and recovery of energy then is possible for many MOV materials and thus standard dielectrics such as X7R can readily be substitute in place of MOV to accomplish almost identical transient energy handling capability in an energized circuit.


Coupling to an external conductive area 218 can include areas such as commonly described as a “floating”, non-potential conductive area, a circuit system return, chassis or PCB or circuit board “ground” portion, or even an earth ground (all not shown). Through other functions such as cancellation or minimization of mutually opposing complementary energy pathway conductors 216 and 217, new electrode arrangement and/or its variations allow a low impedance pathway (not shown) to develop within the Faraday cage-like 241/250 unit like that shown in embodiment 1-3A of FIG. 6A or FIG. 6B or FIG. 7, although present, but not shown in circuits 5-1 and 4-1.


Embodiment 1-3A with respect to the enveloping conductive common shield conductive covering portion 245 and third energy pathway 218, the 1-3A unit as a whole, can subsequently continue to move energy out onto an externally located conductive area 218, thus completing an energy pathway of low impedance for unwanted EMI noise, if desired.


As depicted with new electrode arrangement conditioning circuit arrangement 5-1 shown in FIG. 5, new circuit embodiment 1-2 can be utilized wherein a desired capacitance value must be maintained for the filtering, and at the same time an increased voltage handling function is needed and thus created by the energy conditioning electrode arrangement of the new electrode arrangement embodiment and is effectively a surge clamp or surge protection embodiment, as well. One will note as in all embodiments selectively coupled into a predetermined circuit assembly arrangement as shown in FIG. 3 and FIG. 5 a symmetrical and balanced capacitive network is created that includes at least (2) energy pathway to GnD capacitors 220A and 220B are created between energy pathway 208 to GnD, (energy pathway 218) and one between energy pathway 206 to GnD (energy pathway 218, respectively), while (1) energy pathway to energy pathway capacitor 220C is created between energy pathway 206 and energy pathway 208, as well as.


A differentially phased, new electrode arrangement conditioning circuit arrangement 5-1 may be used in a larger system circuit arrangement wherein circuit arrangement 5-1 comprises at least one paired but differentially phased energy pathways coupled to the new electrode arrangement conditioning circuit arrangement made of a MOV (metal oxide varistor), an MOV/Ferrite material combination or any other MOV-type material which is constructed as a planar shaped portion or wafer having first and second parallel portions thereon.


Due to its larger diameter (or at least the same size electrode sizing) size in comparison to electrodes 213, 215, electrical coupling to third energy pathway 218 (like shown in FIG. 3) of the shielding structure 241/250 can be accomplished by soldering at one or preferably multiple points. This allows Faraday-like cage or shielded properties to begin and that function such that the total common shielding structure 241/250 that comprises the conductive covering portion 245, conductive coupling portion 270, contiguous electrode portion 207, conductive coupling materials 203, shielding electrodes 269A, 269B, 204 (if used) and/or 214 (if used) is operable to perform the unenergized shielding function as well as the energized electrostatic shielding function needed for minimization or suppression of energy parasitics attributed to the complementary conductive elements 213 and 215 of the new embodiment shown. For embodiments having the larger shielding electrodes the complementary conductive elements 213 and 215 are substantially inset and overlapped by the larger shielding electrodes 269A, 269B, 204 (if used) and/or 214 (if used).


Use of new electrode arrangement embodiments 1-1, 1-2, 1-3A, 1-3B, 4-1, 5-1, or any of their possible variations like 1-6 shown in FIG. 7, allow circuit voltage to be maintained and balanced even with SSO (Simultaneous Switching Operations) states among gates located within an integrated circuit (not shown) and without contributing disruptive energy parasitics back into the circuit system as the new electrode arrangement and/or its variations is passively operated, within said circuit system (not shown). With the use of FIG. 6A embodiments, parasitics of all types (not shown) are normally prevented or minimized from upsetting the capacitive or voltage balance that was manufactured into the unenergized new electrode arrangement and will be contrary to what occurs with every other prior art unit not using the conductive shield element 245 in combination with the other common elements to produce shielding structure 241/250. Certain prior art devices have failed to prevent the effects from free parasitics in both directions from disrupting a circuit despite the best attempts to the contrary.



FIG. 7 is another alternate embodiment 1-6, of the new electrode arrangement and is similar to embodiment 1-1 and 1-3A except that this embodiment has a majority of its electrode arrangement comprising at least a pair of shielded electrodes, all of substantially the same size and shape to each other and including, a first electrode 213 and a second electrode 215 that are complementary and superposed to each other. A plurality of shielding electrodes all of substantially the same size and shape to each other. This plurality of shielding electrodes is also included and are arranged superposed to one another such that a first shielding electrode 269A, a second shielding electrode 214, a third shielding electrode 204 and a fourth shielding electrode 269B will sandwich at least a pair of shielded electrodes, 213 and 215.


This plurality of shielding electrodes is also shown in FIG. 7 conductively coupled to each other by at least a conductive coupling portion or conductive coupling band 270A. This conductive coupling portion 270A is coupled by either by a resistive fit as partially shown from 270A to each shielding electrode in preferably at least two spaced-apart locations per shielding electrode, or (this is not shown) by a conductive material 203 through a soldering operation as is desired to provide conductive coupling from 270A to each shielding electrode in preferably at least two spaced-apart locations, as well. It is also noted that shielding electrodes 269A, 269B also do not have electrode lead portions and that these shielding electrodes rely on conductive coupling from 270A to provide the total conductive coupling to the other shielding electrodes 204 and/or 214 (if only one electrode is used as disclosed below). It is very important to note, that although not shown, the applicant contemplates a single shielding electrode, such as 204, placed in position without electrode 214 so as to suffice as a single central shielding electrode with electrode portion 207 coupled. This electrode 204 would then be considered both the central electrode of the overall electrode stack as well as the central electrode of the plurality of shielding electrodes. This configuration would provide a minimum (3) conductively coupled shielding electrode with the paired complementary electrodes 213 and 215 configuration versus the configuration shown in FIG. 7 of (4) conductively coupled shielding electrodes to the paired complementary electrodes 213 and 215.


It should also be noted that in all embodiments (although not shown) the first electrode 213 and the fourth electrode 215 of the at least one pair of complementary electrodes can be generally smaller than any one shielding electrode or any one shielding electrodes such as the second electrode 214 and the third electrode 204 of the common or shielding electrodes. This size differential between shielded electrodes 213 and 215 and the various shielding electrodes allows for the physical shielding of these complementary conductive pathways 213 and 215 to be accomplished just by the larger sized of the shielding conductive pathways or electrodes 214 and 204 and both the fifth electrode 269A of FIG. 7 and the sixth electrode 269B of FIG. 7, if used which is another variant of the invention embodiment.


Thus a shielding function is based on the relative size of the differentially conductive pathways to the larger shielding electrodes that in turn allow for energized, electrostatic shielding suppression or minimization of energy parasitics originating from the isolated but corresponding, complementary energy conductors 213 and 215, and substantially prevents them from escaping. In turn, the larger conductive covering 245 and the shielding electrodes as well as are preventing external energy parasitics not original to the contained complementary pathways from conversely attempting to couple on to the corresponding, shielded complementary energy pathways, sometimes referred to among others as capacitive coupling. Parasitic coupling is related to what is known as electric field (“E”) coupling and this shielding function amounts to primarily shielding electrostatically against electric field parasitics. Parasitic coupling involving the passage of interfering propagating energies because of mutual or stray capacitances that originated from the complementary conductor pathways is suppressed within the new invention. The invention blocks parasitic coupling by substantially enveloping the oppositely phased conductors within Faraday cage-like conductive shield structures 245 and shielding electrodes pathways or shielding electrodes which are the second electrode 214 and the third electrode 204, as well as the fifth electrode 269A of FIG. 7 and the sixth electrode 269B of FIG. 7 that provide an electrostatic or Faraday shielding effect and with the positioning of the electrode layering and pre-determined electrode layering and conductive covering 245 position.


The first electrode 213 of the pair of shielded electrodes and the second electrode 215 of the pair of shielded electrodes are sandwiched by predetermined shielding electrodes of the plurality of shielding electrodes, respectively. The pair of shielded electrodes 213 and 215 is also conductively isolated from both the plurality of shielding electrodes and from each other within the electrode arrangement. Now, turning to FIG. 6A, new electrode arrangement embodiment 1-3A and/or its variations can be manufactured and subsequently coupled to two complementary energy pathways and an externally manufactured common conductive portion or third energy pathway 218 (shown in FIG. 3), separate from the complementary energy pathways 216 and 217 that can be also utilizing new electrode arrangement embodiment 1-3A and/or its variations, the new electrode arrangement will simultaneous provide energy conditioning functions that include bypassing, energy and power line decoupling, and, but not limited to energy storage, such that the complementary electrodes that are generally enveloped within shield embodiment 241/250 that are generally free from almost all, internally generated capacitive or energy parasitics (not shown) trying to escape from the enveloped containment area surrounding the energy pathway electrode and at the same time, will act to prevent any externally generated capacitive or energy parasitics such as “floating capacitance” or even “floating capacitance” from coupling onto the complementary energy pathways due to the physical shielding, separate of the electrostatic shield effect created by the energization of the common shielding embodiment 241/250 and its coupling with common means or conductive coupling portions 219 know to the art to an externally located conductive area 218 (shown in FIG. 3).



FIG. 6A is an alternate embodiment of the new electrode arrangement and depicted as 1-3A. Energy conditioning electrode arrangement 1-3A is similar to embodiment 1-1 except that embodiment 1-3A has a majority of its finished volume arranged within or into a conductive covering portion 245, which can be of any shape or size in order to operable as described below. Conductive covering portion 245 is secured to portions of common energy pathway combination 241/250 by standard means know in the art such as a resistive or tension fit and covered by portions of non-conductive material potting or encapsulation 205 which is arranged or placed around the electrode arrangement to provide protection and final protection of direct contact of the electrodes from non-arrangement portions of the outside world. Thus, FIG. 6A allows complementary energy pathway elements 213, 206, 208, 215 along with any other of their respective connecting conductive elements or conductive coupling portions like 219 to be insulated or isolated from electrical coupling to conductive covering portion 245.


Conductive covering portion 245 can also be electrically connected or coupled to common energy pathway combination 241/250 of having a larger diameter extending past material having predetermined properties 212 or by additional conductive coupling provided by other means (not shown) such as a monolithic conductive interposing embodiment. Due to its larger diameter in comparison to electrodes 206, 208, 213, 215, electrical coupling to third energy pathway 218 (shown in FIG. 3) can be accomplished by soldering at one or preferably multiple points. This allows Faraday-like cage or shielded properties to begin and that function such that conductive covering portion 245, contiguous electrode portion 207, conductive coupling material 203, electrode 214, electrode 204 complete most of the functions desired for minimization or suppression of energy parasitics attributed to the complementary conductive elements 213 and 215 of embodiment 1-3A. It also should be noted that conductive covering portion 245 can also itself have an outer coating (not shown) to insulate the outer portion of 245 as well to prevent direct electrical conductivity to or from non-arrangement portions of the outside world.


Not shown in FIG. 6A is any conductive covering portion 245 depicted with an internal conductive coupling portion 270B contiguously or subsequently conductively coupled to conductive covering portion 245 when it is made can also be another way to conductively couple the first shielding electrode 269A, the second or third shielding electrode 214 (depending upon configuration), the second or third shielding electrode 204 (depending upon configuration) and the third or the fourth shielding electrode 269B (depending upon configuration) to one another. Therefore, FIG. 6B is shown as an alternate conductive covering portion 245 for an embodiment of the new electrode arrangement and depicted in FIG. 7. Energy conditioning electrode arrangement 1-6 of FIG. 7 would have a majority of its finished volume arranged within conductive covering portion 245 as well. The conductive coupling portion 270B is shown coupled by either by a resistive fit as partially shown to conductive covering portion 245 or through a soldering operation as desired to provide conductive coupling from 270B to conductive covering portion 245 in preferably at least two spaced-apart locations. Conductive covering portion 245 is also covered by portions of non-conductive material potting or encapsulation 205 to allow 245's conductive coupling to the larger shielding electrodes 269A, 269B, 204 (if used) and 214 (if used) and conductive coupling portion 270 which is arranged or placed around the electrode arrangement to provide protection and final protection of direct contact of the electrodes from non-arrangement portions of the outside world. Conductive covering portion 245 can also itself have an outer coating (not shown) to insulate the outer portion of 245 as well. This allows substantial and almost complete enveloped shielding of complementary electrodes so that complementary energy pathway elements 213, 206, 208, 215 and their respective connecting conductive elements or conductive coupling portions 219 can be insulated or electrically isolated from electrical coupling to conductive covering portion 245 and the larger shielding electrodes 269A, 269B, 204 and 214.


Although conductive covering portion 245 can also be coupled to the total common energy pathway combination of the larger shielding electrodes 269A, 269B, 204 (if used) and 214 (if used), conductive coupling portion 270, as well as their conductive elements 203, 207, etc to form a shielding structure 241/250, it is noted that shielding electrodes 269A, 269B do not have electrode lead portions and that these shielding electrodes rely on covering 245 and common conductive portion 270 for conductive combination with 204 (if used) and/or 214 (if used).


As previously, noted, propagated electromagnetic interference can be the product of both electric and magnetic fields, respectively. The new electrode arrangement and/or its variations is capable of conditioning energy that uses DC, AC, and AC/DC hybrid-type propagation of energy along energy pathways found in an electrical system or test equipment. This includes use of the new electrode arrangement and/or its variations to condition energy in systems that contain many different types of energy propagation formats, in systems that contain many kinds of circuitry propagation characteristics, within the same electrical system platform.


In some variations depicted, principals of a Faraday cage-like shielding embodiment 241/250 are used when the shielding pathway element or combination conductive covering portion 245 of an electrode arrangement 1-2 is coupled to one or groupings of energy pathways, including conductive covering portion 245, coupling portion 242, electrode portion 207, third energy pathway 218 (shown in FIG. 3), together co-act with the larger, external conductive area or third pathway 218 (shown in FIG. 3) to electrostatically minimize or suppress radiated electromagnetic emissions and provide a greater conductive portion or area in which to dissipate over voltages and surges and initiate Faraday cage-like electrostatic suppression or minimization of energy parasitics and other transients, simultaneously, when a plurality of shielding energy pathways are normally electrically coupled to system or chassis “ground” (not shown) and is relied upon for reference “ground” 218 (shown in FIG. 3) for a circuit 4-1 or 5-1 of FIGS. 4 and 5 which is created when the electrode arrangement and/or its variations is arranged into a system and energized. As mentioned earlier, one or more of a plurality of materials 212 having different electrical characteristics can be inserted and maintained between shielding energy pathways and complementary energy pathways. Complementary elements 213 and 215 are normally separated electrically from one another and do not touch within the electrode arrangement and/or its variations.


Conductively coupled, internal common energy pathway combination 241/250, electrode 204, electrode portion 207, electrode 214, and conductive coupling material 203 along with conductive covering portion 245 that make up Faraday cage-like element as shown in FIG. 6A allow external conductive area or common conductive portion or third energy pathway 218 (shown in FIG. 3) to become, in essence, an extended, closely positioned, and essentially parallel arrangement of third energy pathway 218 by said conductive elements or common energy pathway combination 241/250 include electrode 204, electrode portion 207, electrode 214, coupling material 203, coupling portion 242, which couples to conductive covering portion 245 through non-conductive material 205 with respect to their position between an energy source and an energy-utilizing load, even if located internally within a pre-determined portioned PCB or circuit board or similar electronic circuitry at subsequent energization.


In all embodiments whether shown or not, the number of pathways, both shielding energy pathway electrodes and complementary energy pathway electrodes, can be multiplied in a predetermined manner to create a number of energy pathway element combinations, all in a generally physical parallel relationship that also be considered electrically parallel in relationship with respect to these elements in an energized existence with respect to a circuit source will exist additionally in parallel which thereby add to create increased capacitance values.


Secondly, additional shielding energy pathways surrounding the combination of center energy pathway elements in a coupled combination 241/250 are electrode 214, conductive coupling material 203, electrode 204, and a plurality of electrodes can be employed to provide an increased inherent “ground” with the utilization of a coupled common conductive shielding combination 241/250 for an optimized Faraday cage-like function and surge dissipation area in all embodiments.


Third, although a minimum of one common energy shielding embodiment 241/250 is made of in a coupled combination 241/250 are electrode 214, conductive coupling material 203, electrode 204 and paired with additionally positioned shielding energy pathway or shielding combination 241/250 is generally desired, the electrode arrangement requires positioned elements such that it allows energy to propagate evenly, if possible, on opposite sides of the common energy shielding combination 241/250 and in a coupled combination 241/250 are electrode 214, conductive coupling material 203, electrode 204 (other elements such as material having predetermined properties 212 and complementary electrodes can be located between these shields as described). Additional common energy pathways can be employed with any of the embodiments shown and is fully contemplated herein.


Finally, from a review of the numerous embodiments it should be apparent that the shape, thickness or size may be varied depending on the electrical application derived from the arrangement of common energy pathways, coupling elements that form at least one single conductively homogenous, Faraday cage-like element or utilized with other shielded energy pathways.


Although the principals, preferred embodiments and preferred operation of the new electrode arrangement have been described in detail herein, this is not to be construed as being limited to the particular illustrative forms disclosed. It will thus become apparent to those skilled in the art that various modifications of the preferred embodiments herein can be made without departing from the spirit or scope of the electrode arrangement and/or its variations as defined.

Claims
  • 1. An electrode arrangement comprising: a pair of shielded electrodes that is complementary and superposed to each other including, a first shielded electrode and a second shielded electrode;a plurality of shielding electrodes that are superposed to each other including at least a first shielding electrode, a second shielding electrode, and a third shielding electrode;a common conductive coupling portion;wherein the plurality of shielding electrodes are coupled to one another by at least the common conductive coupling portion;wherein the first shielding electrode is in a first position;wherein the first shielded electrode is in a second position adjacent the first shielding electrode;wherein the second shielding electrode is in a third position adjacent the first shielded electrode;wherein the second shielded electrode is in a fourth position adjacent the second shielding electrode;wherein the third shielding electrode is in a fifth position adjacent the second shielded electrode;wherein the first shielded electrode and the second shielded electrode are sandwiched by predetermined shielding electrodes of the plurality of shielding electrodes; andwherein the pair of shielded electrodes are conductively isolated from both the plurality of shielding electrodes, and from each other.
  • 2. An electrode arrangement comprising: a plurality of electrodes that are superposed with one another including at least a first electrode, a second electrode, a third electrode, and a fourth electrode;a plurality of material portions, wherein each material portion of the plurality of material portions has predetermined properties;wherein the first electrode is adjacent to at least a first material portion of the plurality of material portions;wherein the second electrode is adjacent to and spaced-apart from the first electrode by at least the first material portion of the plurality of material portions;wherein the third electrode is adjacent to at least the second electrode;wherein the fourth electrode is spaced-apart from and adjacent to the third electrode by at least a second material portion of the plurality of material portions;wherein the second electrode and the third electrode are conductively coupled to each other;wherein the first electrode and the fourth electrode sandwich the second electrode and the third electrode;wherein the first electrode and the fourth electrode are conductively isolated from the second electrode and the third electrode; andwherein the first electrode and the fourth electrode are conductively isolated from each other.
  • 3. An electrode arrangement comprising: a plurality of electrodes that are superposed with one another including at least a first electrode, a second electrode, a third electrode, and a fourth electrode;a plurality of electrode portions including, a first electrode portion, a second electrode portion, and a third electrode portion; wherein the first electrode portion is coupled to the first electrode;wherein the second electrode portion is coupled to both the second electrode and the third electrode;wherein the third electrode portion is coupled to the fourth electrode;a plurality of material portions, wherein each material portion of the plurality of material portions has predetermined properties;wherein the first electrode is adjacent to at least a first material portion of the plurality of material portions;wherein the second electrode is adjacent to and spaced-apart from the first electrode by at least the first material portion of the plurality of material portions;wherein the third electrode is adjacent to at least the second electrode;wherein the fourth electrode is spaced-apart from and adjacent to the third electrode by at least a second material portion of the plurality of material portions;wherein the second and the third electrode are conductively coupled to each other;wherein the first electrode and the fourth electrode are conductively isolated from the second electrode and the third electrode; andwherein the first electrode and the fourth electrode are conductively isolated from each other.
  • 4. An electrode arrangement comprising: a plurality of electrodes that are superposed with one another including at least a first electrode, a second electrode, a third electrode, and a fourth electrode;a plurality of material portions that are superposed with one another, wherein each material portion of the plurality of material portions has predetermined properties;a plurality of electrode portions including, a first electrode portion, a second electrode portion, a third electrode portion;wherein the first electrode portion is coupled to the first electrode, wherein the second electrode portion is coupled to both the second electrode and the third electrode, wherein the third electrode portion is coupled to the fourth electrode;wherein the first electrode is in a predetermined position, wherein the second electrode is adjacent to and spaced-apart from the first electrode by a first material portion of the plurality of material portions, wherein the third electrode is spaced-apart from and adjacent to the second electrode, wherein the fourth electrode is adjacent to and spaced-apart from the third electrode by a second material portion of the plurality of material portions, wherein the second and the third electrode are conductively coupled to each other; andwherein the first and the fourth electrode are conductively isolated from both the second and the third electrode, as well as from each.
  • 5. The electrode arrangement according to claim 1 further comprising a plurality of material portions; wherein each material portion of the plurality of material portions has predetermined properties; andwherein each material portion of the plurality of material portions is operable to provide support of at least two electrodes of the plurality of electrodes.
  • 6. A circuit including the electrode arrangement as in any one of the preceding claims.
  • 7. The electrode arrangement as in one of claims 2-5, in which each material portion of the plurality of material portions is a material portion having at least dielectric properties.
  • 8. The electrode arrangement as in one of claims 2-5, in which each material portion of the plurality of material portions is a material portion having at least ferro-magnetic properties.
  • 9. The electrode arrangement as in one of claims 2-5, in which each material portion of the plurality of material portions is a material portion having at least metal oxide varistor properties.
  • 10. The electrode arrangement as in one of claims 2-5, in which each material portion of the plurality of material portions is a material portion having any combination of ferrite properties and metal oxide varistor properties.
  • 11. The electrode arrangement as in one of claims 2-5, in which each material portion of the plurality of material portions is a material portion having any combination of dielectric properties, ferrite properties and metal oxide varistor properties.
  • 12. The electrode arrangement as in one of claims 2-5, in which the electrode arrangement is operable as a capacitor.
  • 13. The electrode arrangement as in one of claims 2-5, in which the electrode arrangement is operable as an energy conditioner.
  • 14. The electrode arrangement as in one of claims 2-5, in which the electrode arrangement is operable as portion of a capacitive network.
  • 15. The electrode arrangement as in one of claims 2-5, in which the electrode arrangement is operable to provide at least three isolated energy pathways wherein at least one energy pathway of the three isolated energy pathways is a pathway of lowest impedance for energy.
  • 16. A circuit assembly comprising: a predetermined means for conditioning energy;a circuit, including; an energy source;an energy-using load; a first complementary conductive portion coupled from the energy source to the energy-using load;a second complementary conductive portion coupled from the energy-using load to the energy source;a common conductive portion;a means for conductive coupling;wherein the means for conductive coupling couples a first conductive portion of the predetermined means for conditioning energy to the first complementary conductive portion of the circuit;wherein the means for conductive coupling couples a second conductive portion of the predetermined means for conditioning energy to the second complementary conductive portion of the circuit;wherein the means for conductive coupling couples a third conductive portion of the predetermined means for conditioning energy to the common conductive portion; andwherein the first complementary conductive portion and the second complementary conductive portion are at least separated from one another.
  • 17. The circuit assembly of claim 16 further comprising at least a portion of a capacitive network.
  • 18. The circuit assembly of claim 16, wherein the energy-utilizing load is a switch-mode power supply.
  • 19. The circuit assembly of claim 16, wherein the energy-utilizing load is an electric motor.
  • 20. The circuit assembly as in one of claims 16-19, in which the predetermined means for conditioning energy is operable for combined differential mode and common mode filtering including a transient energy suppression function.
Parent Case Info

This application is a US national stage application of international application PCT/US01/41720, filed Aug. 14, 2001, which claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 60/225,497, filed Aug. 15, 2000.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US01/41720 8/14/2001 WO 00 5/30/2003
Publishing Document Publishing Date Country Kind
WO02/15360 2/21/2002 WO A
US Referenced Citations (484)
Number Name Date Kind
3240621 Flower, Jr. et al. Mar 1966 A
3343034 Ovshinsky Sep 1967 A
3573677 Detar Apr 1971 A
3736471 Donze et al. May 1973 A
3742420 Harnden, Jr. Jun 1973 A
3790858 Brancaleone et al. Feb 1974 A
3842374 Schlicke Oct 1974 A
4023071 Fussell May 1977 A
4119084 Eckels Oct 1978 A
4135132 Tafjord Jan 1979 A
4139783 Engeler Feb 1979 A
4191986 ta Huang et al. Mar 1980 A
4198613 Whitley Apr 1980 A
4259604 Aoki Mar 1981 A
4262317 Baumbach Apr 1981 A
4275945 Krantz et al. Jun 1981 A
4292558 Flick et al. Sep 1981 A
4308509 Tsuchiya et al. Dec 1981 A
4320364 Sakamoto et al. Mar 1982 A
4335417 Sakshaug et al. Jun 1982 A
4353044 Nossek Oct 1982 A
4366456 Ueno et al. Dec 1982 A
4384263 Neuman et al. May 1983 A
4394639 McGalliard Jul 1983 A
4412146 Futterer et al. Oct 1983 A
4494092 Griffin et al. Jan 1985 A
4533931 Mandai et al. Aug 1985 A
4553114 English et al. Nov 1985 A
4563659 Sakamoto Jan 1986 A
4586104 Standler Apr 1986 A
4587589 Marek May 1986 A
4590537 Sakamoto May 1986 A
4592606 Mudra Jun 1986 A
4612140 Mandai et al. Sep 1986 A
4612497 Ulmer Sep 1986 A
4636752 Saito Jan 1987 A
4682129 Bakermans et al. Jul 1987 A
4685025 Carlomagno Aug 1987 A
4688151 Kraus et al. Aug 1987 A
4694265 Kupper Sep 1987 A
4698721 Warren Oct 1987 A
4703386 Speet et al. Oct 1987 A
4712540 Takamine Dec 1987 A
4713540 Gilby et al. Dec 1987 A
4720760 Starr Jan 1988 A
4746557 Sakamoto et al. May 1988 A
4752752 Okubo Jun 1988 A
4760485 Ari et al. Jul 1988 A
4772225 Ulery Sep 1988 A
4777460 Okubo Oct 1988 A
4780598 Fahey et al. Oct 1988 A
4782311 Ookubo Nov 1988 A
4789847 Sakamoto et al. Dec 1988 A
4793058 Venaleck Dec 1988 A
4794485 Bennett Dec 1988 A
4794499 Ott Dec 1988 A
4795658 Kano et al. Jan 1989 A
4799070 Nishikawa Jan 1989 A
4801904 Sakamoto et al. Jan 1989 A
4814295 Mehta Mar 1989 A
4814938 Arakawa et al. Mar 1989 A
4814941 Speet et al. Mar 1989 A
4819126 Kornrumpf et al. Apr 1989 A
4845606 Herbert Jul 1989 A
4847730 Konno et al. Jul 1989 A
4904967 Morii et al. Feb 1990 A
4908586 Kling et al. Mar 1990 A
4908590 Sakamoto et al. Mar 1990 A
4924340 Sweet May 1990 A
4942353 Herbert et al. Jul 1990 A
4967315 Schelhorn Oct 1990 A
4978906 Herbert et al. Dec 1990 A
4990202 Murata et al. Feb 1991 A
4999595 Azumi et al. Mar 1991 A
5029062 Capel Jul 1991 A
5034709 Azumi et al. Jul 1991 A
5034710 Kawaguchi Jul 1991 A
5051712 Naito et al. Sep 1991 A
5059140 Philippson et al. Oct 1991 A
5065284 Hernandez Nov 1991 A
5073523 Yamada et al. Dec 1991 A
5079069 Howard et al. Jan 1992 A
5079223 Maroni Jan 1992 A
5079669 Williams Jan 1992 A
5089688 Fang et al. Feb 1992 A
5105333 Yamano et al. Apr 1992 A
5107394 Naito et al. Apr 1992 A
5109206 Carlile Apr 1992 A
5140297 Jacobs et al. Aug 1992 A
5140497 Kato et al. Aug 1992 A
5142430 Anthony Aug 1992 A
5148005 Fang et al. Sep 1992 A
5155655 Howard et al. Oct 1992 A
5161086 Howard et al. Nov 1992 A
5167483 Gardiner Dec 1992 A
5173670 Naito et al. Dec 1992 A
5179362 Okochi et al. Jan 1993 A
5181859 Foreman et al. Jan 1993 A
5186647 Denkmann et al. Feb 1993 A
5208502 Yamashita et al. May 1993 A
5219812 Doi et al. Jun 1993 A
5220480 Kershaw, Jr. et al. Jun 1993 A
5236376 Cohen Aug 1993 A
5243308 Shusterman et al. Sep 1993 A
5251092 Brady et al. Oct 1993 A
5257950 Lenker et al. Nov 1993 A
5261153 Lucas Nov 1993 A
5262611 Danysh et al. Nov 1993 A
5268810 DiMarco et al. Dec 1993 A
5290191 Foreman et al. Mar 1994 A
5299956 Brownell et al. Apr 1994 A
5300760 Batliwalla et al. Apr 1994 A
5310363 Brownell et al. May 1994 A
5311408 Ferchau et al. May 1994 A
5321373 Shusterman et al. Jun 1994 A
5321573 Person et al. Jun 1994 A
5326284 Bohbot et al. Jul 1994 A
5337028 White Aug 1994 A
5353189 Tomlinson Oct 1994 A
5353202 Ansell et al. Oct 1994 A
5357568 Pelegris Oct 1994 A
5362249 Carter Nov 1994 A
5362254 Siemon et al. Nov 1994 A
5378407 Chandler et al. Jan 1995 A
5382928 Davis et al. Jan 1995 A
5382938 Hansson et al. Jan 1995 A
5386335 Amano et al. Jan 1995 A
5396201 Ishizaki et al. Mar 1995 A
5401952 Sugawa Mar 1995 A
5405466 Naito et al. Apr 1995 A
5414393 Rose et al. May 1995 A
5414587 Kiser et al. May 1995 A
5420553 Sakamoto et al. May 1995 A
5432484 Klas et al. Jul 1995 A
5446625 Urbish et al. Aug 1995 A
5450278 Lee et al. Sep 1995 A
5451919 Chu et al. Sep 1995 A
RE35064 Hernandez Oct 1995 E
5455734 Foreman et al. Oct 1995 A
5461351 Shusterman Oct 1995 A
5463232 Yamashita et al. Oct 1995 A
5471035 Holmes Nov 1995 A
5477933 Nguyen Dec 1995 A
5481238 Carsten et al. Jan 1996 A
5483407 Anastasio et al. Jan 1996 A
5488540 Hatta Jan 1996 A
5491299 Naylor et al. Feb 1996 A
5493260 Park Feb 1996 A
5495180 Huang et al. Feb 1996 A
5500629 Meyer Mar 1996 A
5500785 Funada Mar 1996 A
5512196 Mantese et al. Apr 1996 A
5531003 Seifried et al. Jul 1996 A
5534837 Brandt Jul 1996 A
5535101 Miles et al. Jul 1996 A
5536978 Cooper et al. Jul 1996 A
5541482 Siao Jul 1996 A
5544002 Iwaya et al. Aug 1996 A
5546058 Azuma et al. Aug 1996 A
5548255 Spielman Aug 1996 A
5555150 Newman, Jr. Sep 1996 A
5568348 Foreman et al. Oct 1996 A
5570278 Cross Oct 1996 A
5583359 Ng et al. Dec 1996 A
5586007 Funada Dec 1996 A
5592391 Muyshondt et al. Jan 1997 A
5612657 Kledzik Mar 1997 A
5614881 Duggal et al. Mar 1997 A
5619079 Wiggins et al. Apr 1997 A
5624592 Paustian Apr 1997 A
5640048 Selna Jun 1997 A
5645746 Walsh Jul 1997 A
5647766 Nguyen Jul 1997 A
5647767 Scheer et al. Jul 1997 A
5668511 Furutani et al. Sep 1997 A
5682303 Goad Oct 1997 A
5692298 Goetz et al. Dec 1997 A
5700167 Pharney et al. Dec 1997 A
5708553 Hung Jan 1998 A
5719450 Vora Feb 1998 A
5719477 Tomihari Feb 1998 A
5719750 Iwane Feb 1998 A
5751539 Stevenson et al. May 1998 A
5767446 Ha et al. Jun 1998 A
5789999 Barnett et al. Aug 1998 A
5790368 Naito et al. Aug 1998 A
5796568 Baiatu Aug 1998 A
5796595 Cross Aug 1998 A
5797770 Davis et al. Aug 1998 A
5808873 Celaya et al. Sep 1998 A
5825084 Lau et al. Oct 1998 A
5825628 Garbelli et al. Oct 1998 A
5828093 Naito et al. Oct 1998 A
5828272 Romerein et al. Oct 1998 A
5828555 Itoh Oct 1998 A
5831489 Wire Nov 1998 A
5834992 Kato et al. Nov 1998 A
5838216 White et al. Nov 1998 A
5867361 Wolf et al. Feb 1999 A
5870272 Seifried et al. Feb 1999 A
5875099 Maesaka et al. Feb 1999 A
5880925 DuPre et al. Mar 1999 A
5889445 Ritter et al. Mar 1999 A
5895990 Lau Apr 1999 A
5898403 Saitoh et al. Apr 1999 A
5898562 Cain et al. Apr 1999 A
5905627 Brendel et al. May 1999 A
5907265 Sakuragawa et al. May 1999 A
5908151 Elias Jun 1999 A
5909155 Anderson et al. Jun 1999 A
5909350 Anthony Jun 1999 A
5910755 Mishiro et al. Jun 1999 A
5912809 Steigerwald et al. Jun 1999 A
5917388 Tronche et al. Jun 1999 A
5926377 Nakao et al. Jul 1999 A
5928076 Clements et al. Jul 1999 A
5955930 Anderson et al. Sep 1999 A
5959829 Stevenson et al. Sep 1999 A
5959846 Noguchi et al. Sep 1999 A
5969461 Anderson et al. Oct 1999 A
5977845 Kitahara Nov 1999 A
5978231 Tohya et al. Nov 1999 A
5980718 Van Konynenburg et al. Nov 1999 A
5995352 Gumley Nov 1999 A
5999067 D″Ostilio Dec 1999 A
5999398 Makl et al. Dec 1999 A
6004752 Loewy et al. Dec 1999 A
6013957 Puzo et al. Jan 2000 A
6016095 Herbert Jan 2000 A
6018448 Anthony Jan 2000 A
6021564 Hanson Feb 2000 A
6023406 Kinoshita et al. Feb 2000 A
6031710 Wolf et al. Feb 2000 A
6034576 Kuth Mar 2000 A
6034864 Naito et al. Mar 2000 A
6037846 Oberhammer Mar 2000 A
6038121 Naito et al. Mar 2000 A
6042685 Shinada et al. Mar 2000 A
6046898 Seymour et al. Apr 2000 A
6052038 Savicki Apr 2000 A
6061227 Nogi May 2000 A
6064286 Ziegner et al. May 2000 A
6072687 Naito et al. Jun 2000 A
6075211 Tohya et al. Jun 2000 A
6078117 Perrin et al. Jun 2000 A
6078229 Funada et al. Jun 2000 A
6088235 Chiao et al. Jul 2000 A
6091310 Utsumi et al. Jul 2000 A
6092269 Yializis et al. Jul 2000 A
6094112 Goldberger et al. Jul 2000 A
6094339 Evans Jul 2000 A
6097260 Whybrew et al. Aug 2000 A
6097581 Anthony Aug 2000 A
6104258 Novak Aug 2000 A
6104599 Ahiko et al. Aug 2000 A
6108448 Song et al. Aug 2000 A
6111479 Myohga et al. Aug 2000 A
6120326 Brooks Sep 2000 A
6121761 Herbert Sep 2000 A
6125044 Cherniski et al. Sep 2000 A
6130585 Whybrew et al. Oct 2000 A
6137392 Herbert Oct 2000 A
6142831 Ashman et al. Nov 2000 A
6144547 Retseptor Nov 2000 A
6147587 Hadano et al. Nov 2000 A
6150895 Steigerwald et al. Nov 2000 A
6157528 Anthony Dec 2000 A
6157547 Brown et al. Dec 2000 A
6160705 Stearns et al. Dec 2000 A
6163454 Strickler Dec 2000 A
6163456 Suzuki et al. Dec 2000 A
6165814 Wark et al. Dec 2000 A
6175287 Lampen et al. Jan 2001 B1
6180588 Walters Jan 2001 B1
6181231 Bartilson Jan 2001 B1
6183685 Cowman et al. Feb 2001 B1
6185091 Tanahashi et al. Feb 2001 B1
6188565 Naito et al. Feb 2001 B1
6191475 Skinner et al. Feb 2001 B1
6191669 Shigemura Feb 2001 B1
6191932 Kuroda et al. Feb 2001 B1
6195269 Hino Feb 2001 B1
6198123 Linder et al. Mar 2001 B1
6198362 Harada et al. Mar 2001 B1
6204448 Garland et al. Mar 2001 B1
6205014 Inomata et al. Mar 2001 B1
6207081 Sasaki et al. Mar 2001 B1
6208063 Horikawa Mar 2001 B1
6208225 Miller Mar 2001 B1
6208226 Chen et al. Mar 2001 B1
6208494 Nakura et al. Mar 2001 B1
6208495 Wieloch et al. Mar 2001 B1
6208501 Ingalls et al. Mar 2001 B1
6208502 Hudis et al. Mar 2001 B1
6208503 Shimada et al. Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6208525 Imasu et al. Mar 2001 B1
6211754 Nishida et al. Apr 2001 B1
6212078 Hunt et al. Apr 2001 B1
6215647 Naito et al. Apr 2001 B1
6215649 Appelt et al. Apr 2001 B1
6218631 Hetzel et al. Apr 2001 B1
6219240 Sasov Apr 2001 B1
6222427 Kato et al. Apr 2001 B1
6222431 Ishizaki et al. Apr 2001 B1
6225876 Akino et al. May 2001 B1
6226169 Naito et al. May 2001 B1
6226182 Maehara May 2001 B1
6229226 Kramer et al. May 2001 B1
6236572 Teshome et al. May 2001 B1
6240621 Nellissen et al. Jun 2001 B1
6243253 DuPre et al. Jun 2001 B1
6249047 Corisis Jun 2001 B1
6249439 DeMore et al. Jun 2001 B1
6252161 Hailey et al. Jun 2001 B1
6262895 Forthun Jul 2001 B1
6266228 Naito et al. Jul 2001 B1
6266229 Naito et al. Jul 2001 B1
6272003 Schaper Aug 2001 B1
6281704 Ngai et al. Aug 2001 B2
6282074 Anthony Aug 2001 B1
6282079 Nagakari et al. Aug 2001 B1
6285109 Katagiri et al. Sep 2001 B1
6285542 Kennedy, III et al. Sep 2001 B1
6292350 Naito et al. Sep 2001 B1
6292351 Ahiko et al. Sep 2001 B1
6309245 Sweeney Oct 2001 B1
6310286 Troxel et al. Oct 2001 B1
6313584 Johnson et al. Nov 2001 B1
6320547 Fathy et al. Nov 2001 B1
6324047 Hayworth Nov 2001 B1
6324048 Liu Nov 2001 B1
6325672 Belopolsky et al. Dec 2001 B1
6327134 Kuroda et al. Dec 2001 B1
6327137 Yamamoto et al. Dec 2001 B1
6331926 Anthony Dec 2001 B1
6331930 Kuroda Dec 2001 B1
6342681 Goldberger et al. Jan 2002 B1
6373673 Anthony Apr 2002 B1
6388856 Anthony May 2002 B1
6395996 Tsai et al. May 2002 B1
6448873 Mostov Sep 2002 B1
6456481 Stevenson Sep 2002 B1
6469595 Anthony et al. Oct 2002 B2
6498710 Anthony Dec 2002 B1
6504451 Yamaguchi Jan 2003 B1
6509807 Anthony et al. Jan 2003 B1
6510038 Satou et al. Jan 2003 B1
6522516 Anthony Feb 2003 B2
6549389 Anthony et al. Apr 2003 B2
6563688 Anthony et al. May 2003 B2
6580595 Anthony et al. Jun 2003 B2
6594128 Anthony Jul 2003 B2
6603372 Ishizaki et al. Aug 2003 B1
6603646 Anthony et al. Aug 2003 B2
6606011 Anthony et al. Aug 2003 B2
6606237 Naito et al. Aug 2003 B1
6618268 Dibene, II et al. Sep 2003 B2
6636406 Anthony Oct 2003 B1
6650525 Anthony Nov 2003 B2
6687108 Anthony et al. Feb 2004 B1
6696952 Zirbes Feb 2004 B2
6717301 De Daran et al. Apr 2004 B2
6738249 Anthony et al. May 2004 B1
6806806 Anthony Oct 2004 B2
6873513 Anthony Mar 2005 B2
6894884 Anthony, Jr. et al. May 2005 B2
6950293 Anthony Sep 2005 B2
6954346 Anthony Oct 2005 B2
6995983 Anthony et al. Feb 2006 B1
7042303 Anthony et al. May 2006 B2
7042703 Anthony et al. May 2006 B2
7050284 Anthony May 2006 B2
7106570 Anthony, Jr. et al. Sep 2006 B2
7110227 Anthony et al. Sep 2006 B2
7110235 Anthony, Jr. et al. Sep 2006 B2
7113383 Anthony et al. Sep 2006 B2
7141899 Anthony et al. Nov 2006 B2
7180718 Anthony et al. Feb 2007 B2
20010001989 Smith May 2001 A1
20010002105 Brandelik et al. May 2001 A1
20010002624 Khandros et al. Jun 2001 A1
20010008288 Kimura et al. Jul 2001 A1
20010008302 Murakami et al. Jul 2001 A1
20010008478 McIntosh et al. Jul 2001 A1
20010008509 Watanabe Jul 2001 A1
20010009496 Kappel et al. Jul 2001 A1
20010010444 Pahl et al. Aug 2001 A1
20010011763 Ushijima et al. Aug 2001 A1
20010011934 Yamamoto Aug 2001 A1
20010011937 Satoh et al. Aug 2001 A1
20010013626 Fujii Aug 2001 A1
20010015643 Goldfine et al. Aug 2001 A1
20010015683 Mikami et al. Aug 2001 A1
20010017576 Kondo et al. Aug 2001 A1
20010017579 Kurata Aug 2001 A1
20010019869 Hsu Sep 2001 A1
20010020879 Takahashi et al. Sep 2001 A1
20010021097 Ohya et al. Sep 2001 A1
20010022547 Murata et al. Sep 2001 A1
20010023983 Kobayashi et al. Sep 2001 A1
20010024148 Gerstenberg et al. Sep 2001 A1
20010028581 Yanagisawa et al. Oct 2001 A1
20010029648 Ikada et al. Oct 2001 A1
20010031191 Korenaga Oct 2001 A1
20010033664 Poux et al. Oct 2001 A1
20010035801 Gilbert Nov 2001 A1
20010035802 Kadota Nov 2001 A1
20010035805 Suzuki et al. Nov 2001 A1
20010037680 Buck et al. Nov 2001 A1
20010039834 Hsu Nov 2001 A1
20010040484 Kim Nov 2001 A1
20010040487 Ikata et al. Nov 2001 A1
20010040488 Gould et al. Nov 2001 A1
20010041305 Sawada et al. Nov 2001 A1
20010043100 Tomita et al. Nov 2001 A1
20010043129 Hidaka et al. Nov 2001 A1
20010043450 Seale et al. Nov 2001 A1
20010043453 Narwankar et al. Nov 2001 A1
20010045810 Poon et al. Nov 2001 A1
20010048581 Anthony et al. Dec 2001 A1
20010048593 Yamauchi et al. Dec 2001 A1
20010048906 Lau et al. Dec 2001 A1
20010050550 Yoshida et al. Dec 2001 A1
20010050600 Anthony et al. Dec 2001 A1
20010050837 Stevenson et al. Dec 2001 A1
20010052833 Enokihara et al. Dec 2001 A1
20010054512 Belau et al. Dec 2001 A1
20010054734 Koh et al. Dec 2001 A1
20010054756 Horiuchi et al. Dec 2001 A1
20010054936 Okada et al. Dec 2001 A1
20020000521 Brown Jan 2002 A1
20020000583 Kitsukawa et al. Jan 2002 A1
20020000821 Haga et al. Jan 2002 A1
20020000893 Hidaka et al. Jan 2002 A1
20020000895 Takahashi et al. Jan 2002 A1
20020003454 Sweeney et al. Jan 2002 A1
20020005880 Ashe et al. Jan 2002 A1
20020024787 Anthony Feb 2002 A1
20020027263 Anthony et al. Mar 2002 A1
20020027760 Anthony Mar 2002 A1
20020044401 Anthony et al. Apr 2002 A1
20020075096 Anthony Jun 2002 A1
20020079116 Anthony Jun 2002 A1
20020089812 Anthony et al. Jul 2002 A1
20020113663 Anthony et al. Aug 2002 A1
20020122286 Anthony Sep 2002 A1
20020131231 Anthony Sep 2002 A1
20020149900 Anthony Oct 2002 A1
20020158515 Anthony, Jr. et al. Oct 2002 A1
20020186100 Anthony et al. Dec 2002 A1
20030029632 Anthony, Jr. et al. Feb 2003 A1
20030029635 Anthony, Jr. et al. Feb 2003 A1
20030048029 DeDaran et al. Mar 2003 A1
20030067730 Anthony et al. Apr 2003 A1
20030161086 Anthony Aug 2003 A1
20030202312 Anthony et al. Oct 2003 A1
20030206388 Anthony et al. Nov 2003 A9
20030210125 Anthony Nov 2003 A1
20030231451 Anthony Dec 2003 A1
20030231456 Anthony et al. Dec 2003 A1
20040004802 Anthony et al. Jan 2004 A1
20040008466 Anthony et al. Jan 2004 A1
20040012949 Anthony et al. Jan 2004 A1
20040027771 Anthony Feb 2004 A1
20040032304 Anthony et al. Feb 2004 A1
20040054426 Anthony Mar 2004 A1
20040085699 Anthony May 2004 A1
20040105205 Anthony et al. Jun 2004 A1
20040130840 Anthony Jul 2004 A1
20040218332 Anthony et al. Nov 2004 A1
20040226733 Anthony et al. Nov 2004 A1
20050016761 Anthony, Jr. et al. Jan 2005 A9
20050018374 Anthony Jan 2005 A1
20050063127 Anthony Mar 2005 A1
20050248900 Anthony Nov 2005 A1
20050286198 Anthony et al. Dec 2005 A1
20060023385 Anthony et al. Feb 2006 A9
20060139836 Anthony Jun 2006 A1
20060139837 Anthony et al. Jun 2006 A1
20060193051 Anthony et al. Aug 2006 A1
20060203414 Anthony Sep 2006 A1
20070019352 Anthony Jan 2007 A1
20070047177 Anthony Mar 2007 A1
Foreign Referenced Citations (86)
Number Date Country
197 28 692 Jan 1999 DE
198 57 043 Mar 2000 DE
0623363 Nov 1994 EP
98915364 Nov 1994 EP
0776016 May 1997 EP
0933871 Aug 1999 EP
1022751 Jul 2000 EP
1024507 Aug 2000 EP
1061535 Dec 2000 EP
2765417 Dec 1998 FR
2808135 Oct 2001 FR
2808135 Nov 2001 FR
2217136 Apr 1988 GB
2341980 Mar 2000 GB
63-269509 Nov 1988 JP
1-27251 Jan 1989 JP
01-120805 May 1989 JP
01-212415 Aug 1989 JP
02-267879 Nov 1990 JP
03-018112 Jan 1991 JP
03-71614 Mar 1991 JP
5-283284 Oct 1993 JP
05-299292 Nov 1993 JP
06-053048 Feb 1994 JP
06-053049 Feb 1994 JP
06-53049 Feb 1994 JP
06-053075 Feb 1994 JP
06-053077 Feb 1994 JP
06-053078 Feb 1994 JP
06-084695 Mar 1994 JP
06-151014 May 1994 JP
06-151244 May 1994 JP
06-151245 May 1994 JP
06-325977 Nov 1994 JP
07-235406 Sep 1995 JP
07-235852 Sep 1995 JP
07-240651 Sep 1995 JP
08-124795 May 1996 JP
08-163122 Jun 1996 JP
06-172025 Jul 1996 JP
08-172025 Jul 1996 JP
8172025 Jul 1996 JP
09-232185 Sep 1997 JP
09-284077 Oct 1997 JP
09-284078 Oct 1997 JP
9-294041 Nov 1997 JP
11-21456 Aug 1999 JP
11-214256 Aug 1999 JP
11-223396 Aug 1999 JP
11-294908 Oct 1999 JP
11-305302 Nov 1999 JP
11-319222 Nov 1999 JP
11-345273 Dec 1999 JP
WO 9115046 Oct 1991 WO
WO 9743786 Nov 1997 WO
WO 9845921 Oct 1998 WO
WO 9904457 Jan 1999 WO
WO 9919982 Apr 1999 WO
WO 9937008 Jul 1999 WO
WO 9952210 Oct 1999 WO
WO 0016446 Mar 2000 WO
WO 0065740 Nov 2000 WO
WO 0074197 Dec 2000 WO
WO 0077907 Dec 2000 WO
0106631 Jan 2001 WO
WO 0110000 Feb 2001 WO
WO 0141232 Jun 2001 WO
WO 0141233 Jun 2001 WO
WO 0145119 Jun 2001 WO
WO 0171908 Sep 2001 WO
WO 0175916 Oct 2001 WO
WO 0184581 Nov 2001 WO
WO 0186774 Nov 2001 WO
WO 0259401 Jan 2002 WO
WO 0211160 Feb 2002 WO
WO 0215360 Feb 2002 WO
WO 0233798 Apr 2002 WO
WO 021227794 Apr 2002 WO
WO 0245233 Jun 2002 WO
WO 0265606 Aug 2002 WO
WO 02080330 Oct 2002 WO
WO 03005541 Jan 2003 WO
WO 2004070905 Aug 2004 WO
WO 2005002018 Jan 2005 WO
WO 2005015719 Feb 2005 WO
WO 2005065097 Jul 2005 WO
Related Publications (1)
Number Date Country
20040004802 A1 Jan 2004 US
Provisional Applications (1)
Number Date Country
60225497 Aug 2000 US