Electrode catheter for ablation purposes and related method thereof

Information

  • Patent Grant
  • 9211405
  • Patent Number
    9,211,405
  • Date Filed
    Thursday, March 20, 2008
    16 years ago
  • Date Issued
    Tuesday, December 15, 2015
    9 years ago
Abstract
An electrode catheter for use with an endocardial ablation catheter, wherein the electrode catheter receives the transmitted energy for ablating a portion of the heart. The electrode catheter comprises a proximal portion, a distal portion, and a longitudinal structure there between; and an electrode in communication with said electrode catheter, wherein said electrode receives the transmitted energy from the endocardial ablation catheter, or alternatively an epicardial ablation catheter.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of medical devices to be used for cardiological procedures. More specifically, the invention is in the subfield of catheterization devices and other tools to be used for cardiac ablation and in electrophysiological procedures.


BACKGROUND OF THE INVENTION

Cardiac arrhythmias are a widespread medical condition facing physicians today. Their most frequent cause is an abnormal routing of electricity though the cardiac tissue. While several surgical approaches have been developed for the purpose of treating or preventing different types of cardiac arrhythmias, ablation is now widely used as the preferred treatment. Typically, a physician places an endocardial catheter with an electrode at its tip inside the heart at a location where cells are giving off abnormal electrical signals. The electrode is activated according to various known modes of operation such that the adjacent targeted tissue is ablated and rendered non-conductive, halting the spread of improper cardiac signals.


The arrhythmia substrate is often deep in the wall of the heart, or transmural. Thus, the clinician performing the ablation wants the input energy and resulting heat to propagate entirely through the endocardium to the epicardium, thus thoroughly lesioning the substrate in question. However, critical structures lie directly outside the epicardium, and the fundamental conflict is one of depositing energy deep within the heart tissue on the one hand, but not damaging tissues, organs and structures beyond the heart wall, on the other. As an example, on average the esophagus in only 2 mm from the atrial epicardium yet the atrial is 3 mm thick. Therefore, ablationists essentially want to burn deep enough, but not too deep.


Although simple ablations are performed with relatively few complications, some of the more complex ablations that have been developed recently use more energy over longer periods of time. For example, whereas the standard ablation for atrioventricular nodal reentry requires only 60 seconds of burning, a standard ablation for atrial fibrillation (AF) may require 4000 seconds of burning. Furthermore, whereas traditional ablations are often done on the inner walls of the heart, the more complex ablations are often performed on the heart's free wall, which is even closer to the lungs, phrenic nerve, and esophagus. Recent case reports have shown complications and even death from burns that damage these structures after an AF ablation.


Modern radiofrequency ablation catheter procedures operate by delivering current between a small (2-8 mm) anode located in the tip of a standard ablation catheter coupled to a large surface area conductive cathode provided on the patient's back. Current flowing between the anode and the cathode is at its highest density at the tissue location directly adjacent to the treatment electrode. Thus, a planar sheet of the current flow can be modeled as a triangle with its apex at the ablation tip (anode) and its base on the patient's back (cathode). Though most of the burning is close to the apex of the triangle, the esophagus, lungs, and phrenic nerve are within the current density triangle. The current does not drop off sufficiently between the epicardium and the adjacent structures due to the inherent proximity.


There is therefore a need in the art for an effective electrode catheter that could be electrically coupled to an endocardial or other type of ablation catheter to provide better and safer modes of treatment. Particular needs remain for such a device with appropriate length, diameter, stabilization, steering capacity, and irrigation to allow effective energy transfers transmurally through the endocardial wall.


To overcome these limitations, we have conceived the subject device and method of use, as described in the Summary of the Invention and Detailed Description of the Drawings below.


SUMMARY OF THE INVENTION

Because ablation lesions must be created such that electrical conductivity is halted in the localized region, it is desirable to have a cathode as close to the anode as possible. The use of two standard endocardial catheters to carry out a procedure wherein one of them served as an epicardial cathode would cause several limiting considerations that would arise from such a practice. Most generally, an endocardial catheter is simply not designed for the mechanics of epicardial use. In particular, special issues regarding device length, diameter, stabilization, and steering capabilities have to be taken into account. Furthermore, the use of two standard endocardial catheters would mean that the anode and cathode would have the same size. Generally, the cathode should present a larger surface area towards the endocardial anode so that there is more current density near the anode. Lastly, the standard endocardial catheter is not able to provide a flow of irrigation fluid that could be used to cool the electrode or to separate the epicardial surface from critical neighboring anatomical structures.


The following U.S. patent documents discuss epicardial electrodes in the context of pacing: U.S. Pat. Nos. 7,085,606; 6,266,567; 5,509,924; 5,300,110; 4,971,070; 4,817,634; and 4,607,644; as well as U.S. Statutory Invention Registration H356, all of which are incorporated by reference herein in their entirety. No references disclose epicardial electrodes in the context of ablation or eletrophysiological procedures.


One aspect of the present invention provides an electrode catheter disposed in the middle mediastinum of the thorax of a subject for use in ablation procedures with an endocardial ablation catheter. The electrode catheter may comprise a proximal portion, a distal portion, and a longitudinal structure there between. In accordance with the invention, the electrode catheter may further include an electrode adapted for receiving energy from the endocardial ablation catheter.


Another aspect of the present invention provides an electrode catheter disposed in the intra-cardiac space of a subject for use in ablation procedures with an epicardial ablation catheter. The electrode catheter may comprise a proximal portion, a distal portion, and a longitudinal structure there between. In accordance with the invention, the electrode catheter may further include an electrode adapted for receiving energy from the epicardial ablation catheter.


Yet another aspect of the present invention relates to a method of ablating a portion of the heart by disposing an electrode in the middle mediastinum of the thorax of a subject and receiving transmitted energy from an endocardial ablation catheter.


Further yet, another aspect of the present invention relates to a method of ablating a portion of the heart by disposing an electrode in the intra-cardiac space of a subject and receiving transmitted energy from an epicardial ablation catheter.


It should be appreciated that the present invention cardiac catheter may be place or disposed in, adjacent or proximal to any space, structure, blood vessel, vasculature or organ.


An aspect of an embodiment of the present invention comprises a method for use with an endocardial ablation catheter, which transmits energy for ablating a portion of a heart. The method may comprise: disposing an electrode in the middle mediastinum of the thorax of a subject; and receiving the transmitted energy from the endocardial ablation catheter. The middle mediastinum may include, for example, an area outside the pericardium, an area inside the pericardium, or the pericardium space itself.


An aspect of an embodiment of the present invention comprises a method for use with an epicardial ablation catheter, which transmits energy for ablating a portion of a heart. The method may comprise: disposing an electrode in the intra-cardiac space of a subject; and receiving the transmitted energy from the epicardial ablation catheter.


Advantageously, upon activation of the electrode catheter and endocardial or other type of ablation catheter, energy from the ablation catheter is transmitted through the heart wall and is received by the electrode catheter. In this way, a triangular-shaped current density pattern is formed between the endocardial or other type of ablation catheter and the electrode of the electrode catheter. Tissue within this current flow is ablated, while proximal organs are left undamaged by the ablation energy. In older methods a large electrode is placed on or in contact with the patient's back, allowing ablation energy to reach not only the heart-wall tissue, but to travel through other proximal vital organs.


The invention itself, together with further objects and attendant advantages, will best be understood by reference to the following detailed description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the present invention, as well as the invention itself, will be more fully understood from the following description of preferred embodiments, when read together with the accompanying drawings in which:



FIG. 1 schematically illustrates the overall configuration of the electrode catheter device in position relative to the heart of a patient or subject.


FIGS. 2(A)-(C) schematically illustrate the steering means employed to position the electrode catheter for use in ablation procedures in un-tensioned, partial steering, and full steering modes, respectively.


FIGS. 3(A)-(C) schematically illustrate the configuration of the distal portion of the electrode catheter in the pre-deployment and alternative deployment modes, respectively.



FIG. 4 schematically illustrates the pericardium and heart alone (FIG. 4(A)) and the pericardium and distension thereof following an influx of fluid from the distal aperture of the electrode catheter (FIG. 4(B)).



FIG. 5(A) schematically illustrates the relative positions of the endocardial ablation catheter and the electrode catheter during an ablation procedure, wherein the electrode catheter has been navigated into position outside the epicardium and pericardium. FIG. 5(B) schematically illustrates the relative positions of the endocardial ablation catheter and the electrode catheter during an ablation procedure, wherein electrode catheter has been navigated into position inside the pericardium, but outside the epicardium.



FIG. 6 schematically illustrates a cross-sectional view of the components inside the lumen of the electrode catheter.



FIG. 7 schematically illustrates a diagram representing the standard existing approach to endocardial ablation therapy, wherein an electrode is placed on or in the exterior proximity of a patient's back.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE INVENTION

The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention.



FIG. 1 is a schematic illustration of an overview of an exemplary embodiment of the electrode catheter 6 and its major components relative to the heart 1 of a patient being treated for a cardiac arrhythmia. The electrode catheter 6 in accordance with the present invention may comprise a proximal portion 40, a distal portion 45, and a longitudinal structure there between. It should be appreciated that the distal portion may be considered at the end tip of the catheter; or a portion or segment at or in the vicinity of the end tip of the catheter or a portion or segment leading up to (or partially up to but not all the way up to) the end tip of the catheter as desired or required. It should also be appreciated that the proximal end may be considered the tip of the beginning of the catheter; or a portion or segment at or in the vicinity of the beginning of the tip of the catheter or a portion or segment leading up to (or partially up to but not all the way up to) the beginning of the catheter, as desired or required. The distal portion 45, proximal portion 40, and longitudinal structure 45 there between may be integrally formed from a biocompatible material having requisite strength and flexibility for deployment within a patient. The electrode catheter 6 further comprises an electrode 3, which is commonly referred to in the art as a cathode. The electrode 3 is in communication with the distal portion of the catheter. The electrode 3 may be constructed of platinum, gold, sliver, iridium, or any other conducting material, alloy or other metal known in the art and is contoured for receiving energy from the endocardial ablation catheter. The electrode 3 is contoured to be compatible with proximate anatomical structures and may be semi-cylindrical in shape with a longitudinal length of between about 20 mm and about 50 mm along the catheter.


The proximal portion 40 of the catheter 6 may be implemented as desired or required along any point or segment, for example, as illustrated by the bracket in FIG. 1. It should be appreciated that the proximal portion may include, for example: a point at the proximal tip of the cathode; a portion or segment at or in the vicinity of the proximal tip of the cathode; or a portion or segment leading up to (or partially up to but not all the way up to) the proximal tip of the cathode. The length and location may vary as desired or required in order to practice the invention according to medical procedures and anatomical considerations. In summary, the proximal end may be translated in the proximal or distal direction on a case by case basis.


The electrode catheter 6 may further comprises a distal fluid aperture, 2, located at the distal portion 45, a proximal fluid aperture 7 located at the proximal portion 40, and a fluid lumen 22, 23 (as shown in FIG. 6) extending longitudinally through the catheter connecting the apertures. Both the distal fluid aperture 2 and proximal fluid aperture 7 are adapted for the emitting and extracting of fluid or other medium. The fluid or other medium may be used to distend adjacent tissue and to cool the electrode during ablation procedures. The proximal fluid aperture lis connected to an external fluid source (not shown).


The catheter 6 further comprises a distal steering means 4 and a proximal steering means 5 which have the steering characteristics taught by Mahapatra et al. in PCT International Application No. Serial No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, “Epicardial Ablation Catheter and Method of Use,” hereby incorporated by reference herein in its entirety. The steering means may be guide wires, tensioning lines, pull strings, digitating distal tips, magnetic guidance means, wires, rods, chains, bands, chords, ropes, string tubes, filaments, threads, fibers, stands, other extended elements, or any other method known in the art. At the proximal end of the catheter may be a control handle 8, which may have integral to it the distal steering control means 9, the proximal steering control means 10, and the control means for the stabilization means 14. The handle is preferably sized to be grasped, held and operated by a user. It should be appreciated that other control and operating interface members, devices or means may be utilized for the handle. Attached to the proximal end of the control handle is the handle proximal port 11, which has a second fluid aperture 13, and from which the electrical lead 12 for the electrode 3 extends, in order to make electrical connections. Wire(s) (shown in FIG. 6, for example) may extend through the proximal portion to the distal portion 45 of the catheter.


For instance, referring to FIGS. 4(A)-(C) PCT International Application No. Serial No. PCT/US2008/056816, there is provided the mechanism of action for obtaining bi-directional steering of the distal tip or portion that may be implemented for the present invention via tensioning or steering means whereby the tip or end is straight, towards the left, and towards the right, respectively.


Moreover, for instance and referring to FIGS. 4(A)-(C) PCT International Application No. Serial No. PCT/US2008/056816, there is provided FIGS. 7(A)-(B) are schematic illustrations of the details of an exemplary mechanism of action for directional steering of the medial segment of the device that may be implemented for the present invention.


It should be appreciated that the medium to flow through ablation catheter device or system may be at least one of the following: agent, substance, material, saline solutions, thrombolytic agents, clot lysis agents, chemotherapies, cell slurries, gene therapy vectors, growth factors, contrast agents, angiogenesis factors, radionuclide slurries, anti-infection agents, anti-tumor compounds, receptor-bound agents and/or other types of drugs, therapeutic agent and/or diagnostic agent, or any combination thereof.


It should be appreciated that any of the components or modules referred to with regards to any of the present invention embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented. Moreover, the various components may be communicated locally and/or remotely with any user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardware.


Moreover, it should be appreciated that any of the components or modules referred to with regards to any of the present invention embodiments discussed herein, may be a variety of materials and/or composites as necessary or required. Still further, it should be appreciated that any of the components or modules (or combination thereof) may provide shape, size and volume contoured by adjusting its geometry and flexibility/rigidity according to the target location or anatomy (or region, including structure and morphology of any location) being treated.


Further, it should be appreciated that the present invention ablation system may be inserted into a subject via an interventional procedure or a surgical procedure, as well as a combination thereof.


FIGS. 2(A)-(B) provide a schematic illustration of some details of an exemplary embodiment of the electrode catheter steering means in un-tensioned, partial steering, and full steering modes, respectively. The steering means are preferably of a type known in the art, including, but not limited to, guide wires, tensioning lines, pull strings, digitating distal tips, guidance means, propulsion means, or tensioning means that may be applied to the various sheaths, catheters and guidewires, or any related components disclosed herein. Steering adjustments are made along the centers of curvature, referenced as A and B, at the proximal steering means 5, and the distal 4 steering means, respectively. Specifically, FIG. 2(A) shows the electrode catheter 6 in the undeflected state. FIG. 2(B) shows the electrode catheter 6 in the partially deflected state. FIG. 2(C) shows the electrode catheter 6 in the fully deflected state as would be the case when it has been navigated into the pericardial space of a subject's heart, or other space or structure. The steering means are used to direct the electrode catheter through or navigate it within a patient's body.


It should be appreciated that the various sheaths, catheters and guidewires, or any related components disclosed herein, may have a circular or oval shaped cross-section or various combinations thereof. Further, it should be appreciated that various sheaths, catheters and guidewires, or any related components disclosed herein may have any variety of cross sections as desired or required for the medical procedure or anatomy.


FIGS. 3(A)-(C) schematically illustrate exemplary embodiments of construction of the distal portion 45 of the electrode catheter 6. FIG. 3(A) shows a view in profile of the catheter 6 in the undeployed stage having a distal fluid aperture 2, the electrode 3, one of the two slots 15, from which a stabilization means (see FIGS. 3(B)-(C), for example) can issue or deploy, and a second fluid aperture 30. A fluid lumen and second fluid lumen (as shown in FIG. 6) may extend from the control handle 8 through the proximal portion 40 of the catheter 6 and terminate in a distal fluid aperture 2, and second distal fluid aperture 30, respectively. The fluid aperture 2 and second fluid aperture 40 are adapted for allowing the emitting and extracting of fluid or other medium as desired or required.



FIG. 3(B) schematically illustrates an example embodiment of the distal portion 45 configuration of the catheter 6 in the deployed stage for the case where the stabilization means comprises a pair of tabs 16 that have been extended from the slots 15. The stabilization means may be made of a number of non-conducting materials known in the art in order to allow the rotational orientation of the catheter to remain fixed in place relative to the surface of the heart. The stabilization tabs 16 can engage proximal anatomical structures in order to keep the electrode facing the energy source. If the catheter 6 were allowed to rotate so that the electrode faced away from the energy source, the adjacent anatomical structures could suffer burns from energy during ablation.



FIG. 3(C) schematically illustrates another example embodiment of the catheter 6 in the deployed stage in which the stabilization means is now a pair of wires 17 extending from the slots 15. In the case of either the tabs 16 or the wires 17, the control means 14 on the control handle 8 is used to regulate the degree of extension of said stabilization means via a pull-wire arrangement or some other suitable tensioning, positional adjustment or digitation means know in the art. The tabs 16 and wires 17 are just two examples of stabilization means. There are many other embodiments of stabilization means known in the art.



FIGS. 4(A) and 4(B) schematically illustrates the heart 1 and pericardium 18 of a patient. The pericardium is in close proximity to the epicardium 32. FIG. 4(B) shows an embodiment wherein the catheter 6 has had its distal portion 45 positioned in the pericardial space, cavity or sack 34, or the area between the pericardium 18 and epicardium 32. A fluid can be pumped through the distal fluid aperture 2 or second distal fluid aperture 30 (as shown in FIG. 3) in order to create a distention 19 of the pericardium. As a result, any anatomical structures, such as the esophagus and lungs that might have been as close as about 2 mm from the epicardium will now be substantially farther from it. The danger of suffering burns during ablation is, therefore, reduced or eliminated. Danger to the esophagus from ablation is described in detail by H. Aupperle et al. in their article “Ablation of Atrial Fibrillation and Esophageal Injury: Effects of Energy Source and Ablation Technique, “Journal of Thoracic and Cardiovascular Surgery, Vol. 130, pp. 1549-1554, (2005), of which is hereby incorporated by reference herein. The fluid not only distends the pericardium, but also serves to cool the electrode, 3, during the ablation process.



FIG. 5(A) schematically illustrates an exemplary embodiment wherein an endocardial ablation catheter 20 is in place inside the heart 1 just inside the endocardium 33, as illustrated by D. Schwartzman et al. in FIG. 3 of their article, “Catheter Ablation of Ventricular Tachycardia Associated with Remote Myocardial Infarction: Utility of the Atrial Transseptal Approach,” Journal of Interventional Cardiac Electrophysiology, Vol. 1, pp. 67-71, (1997), of which is hereby incorporated by reference herein in its entirety. The electrode catheter 6 has been navigated into position outside and in close proximity to the epicardium 32 and pericardium 18, or as desired or required. The electrode catheter 6 is oriented such that the electrode 3 faces the heart. The distal portion of the electrode catheter 45 is held in place by the stabilization means of the invention, and the ablation process is started. The electrode 3 of the electrode catheter 6 receives the current from the endocardial ablation catheter 20. In one embodiment, the ablation energy is in the form of RF waves. The characteristic triangular-shaped current density pattern 21 is then observed between the tip of the endocardial ablation catheter 20 and the electrode 3 as the majority of current density remains between the two catheters. In this way, the anatomical structures located outside the triangular-shaped current density pattern 21 are protected from burns.



FIG. 5(B) schematically illustrates another exemplary embodiment similar to FIG. 5(A), but wherein the electrode catheter 6 is positioned between the epicardium 32 and pericardium 18 in the pericardial space, cavity or sack 34.


For instance, but not limited thereto, the electrode catheter may be disposed in the middle mediastinum, any area outside the pericardium, or any area inside the pericardium.


Although not illustrated, an embodiment of the present invention provides an endocardial electrode catheter disposed in the intra-cardiac space of a subject for use in ablation procedures with an epicardial ablation catheter. In accordance with the invention, the electrode catheter further includes an electrode adapted for receiving energy from the epicardial ablation catheter. For example, but not limited thereto, the intra-cardiac space includes the left ventricle and/or right ventricle, as well as any interior region or region in proximity to the interior of the heart.


Although not illustrated, an embodiment of the present invention provides an electrode catheter disposed in the intra-cardiac space of a subject for use in ablation procedures with an endocardial ablation catheter. In accordance with the invention, the electrode catheter further includes an electrode adapted for receiving energy from the endocardial ablation catheter. For example, but not limited thereto, the endocardial cathode catheter may be disposed in the intra-cardiac space and the endocardial ablation catheter may be in a second intra-cardiac space. The intra-cardiac spaces may be various ventricles or chambers of the heart, or any desirable or required regions of the heart.


An aspect of an embodiment of the present invention ablation system may be implemented with an access needle (introducer needle), conduit or the like. The access needle or conduit is adapted to be inserted into the epicardial region or other body part or body space so as to provide an access or guideway for the present invention ablation catheter, sheath, guidewire, etc. An example of an access system is disclosed in PCT International Application No. Serial No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, “Access Needle Pressure Sensor Device and Method of Use,” of which is hereby incorporated by reference herein in its entirety. See for example, but not limited thereto, FIGS. 2 and 5 of the PCT International Application No. Serial No. PCT/US2008/056643. The access needle sensor device or the like serves as a guideway for introducing other devices into the pericardium, for instance sheath catheters that might subsequently be employed for procedures in the pericardium and the epicardium of the heart, or other applicable regions, space or anatomy. Other devices that the access device may accommodate with the practice of this invention include, but not limited thereto, the following: ablation catheters, guidewires, pacing leads, pacing catheters, pacemakers, visualization and recording devices, drugs, and drug delivery devices, lumens, steering devices or systems, drug or cell delivery catheters, fiber endoscopes, suctioning devices, irrigation devices, electrode catheters, needles, optical fiber sensors, sources of illumination, vital signs sensors, and the like Theses devices may be deployed for procedures in an integral body part or space.


Although not shown, as mentioned above, the insertion of the electrode catheter into the epicardial region may be aided by the use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted into the epicardium, with the guidewire then put in place. The electrode catheter may then be coaxially slid over the guidewire to access the epicardial region.


Although not shown and involving another approach, the insertion of a sheath into the epicardial region may be aided by the use of an access needle and subsequent passage of a guidewire. The access needle may first be inserted into the epicardium, with the guidewire then put in place. The sheath may then be coaxially slid over the guidewire to access the epicardial region. After positioning the sheath in the desired position, the catheter may then be inserted through the sheath to reach the epicardium.


For example, with present invention, an epicardial access needle-stick is may be implemented in the subxiphoid area of the chest and the catheter device must then only be advanced a short distance to get to the heart. However, it may immediately be steered through an acute angle to avoid the heart itself. Because of this, aspects of the present invention devices and those used in conventional techniques can be contrasted. For instance, conventional endocardial catheters may typically be 100 cm in length or longer since they must go from the leg to the heart, while an embodiment of the present invention electrode catheter could be, for example, about 30 cm or less since it may only need to go from the chest to the heart. It should be appreciated that the length may be greater than 30 cm as well. Similarly, catheters in excess of the required 30 cm could be an awkward physical obstacle that would interfere with the procedure and, if inadvertently bumped or moved, could injure the patient. Similarly the conventional long catheters used in cathode and ablation devices, while not dangerous as such, are nevertheless awkward. Another reason that present invention shorter catheters may be preferred in epicardial procedures is that it is easier to effect rotation of the distal end of a catheter through rotation of the proximal end if the length of the catheter is shorter. Therefore, a shorter sheath and catheter would be less awkward, easier to use, and safer.


It should be appreciated that various embodiments of the present invention electrode catheter may have a total length of less than about 200 cm, less than about 100, less than about 50 cm, less than about 25 cm, or less than about 20 cm, or may be shorter even yet if desired or required. It should be appreciated that the total length may be longer than any of the ranges provided above.


Although not shown, in another exemplary embodiment the electrode catheter 6 may be placed endocardially in order to receive transmitted energy from an epicardial ablation catheter or another endocardial ablation catheter.



FIG. 6 schematically illustrates a cross sectional view of an exemplary embodiment of the electrode catheter located on the proximal portion. The fluid lumen 22 and second fluid lumen 23 occupy internal cross-sectional area of the electrode catheter 6. The fluid lumen 22 may extend from the proximal fluid aperture 7 (for example, as shown in FIG. 1) to the distal fluid aperture 2 (as shown in FIG. 3). The second fluid lumen 23 may extend from the second proximal fluid aperture 13 (as shown in FIG. 1) to the second distal fluid aperture 30 (as shown in FIG. 3). The steering pull-wire or tensioning means 24 for controlling the steering means and second steering means are also shown. The steering tensioning means 24 extend from the control handle 8 (for example, as shown in FIG. 1) through the body catheter 6 and terminate at or near a point of curvature (for example, as referenced as A and B of FIG. 2). In this particular embodiment, there are two distal steering means (bi-directional control) and one proximal steering means (uni-directional control). Many other configurations of the steering tensioning means for adjustable positioning and digitation can be implemented. The stabilization pull-wire or tensioning means 25 for the deployment of the stabilization means are also shown. The stabilization tensioning means 25 extend from the control handle 8 (for example, as shown in FIG. 1) through the body of the catheter 6 and terminate at or near the stabilization means 25 at the distal portion 45 of the electrode catheter 6. Lastly, the electrical lead wire(s) 26 for the electrode is shown. The lead wire 26 may extend from the control handle 8 through the body of the catheter 6 and terminates at the electrode 3 at the distal portion 45 of the electrode catheter 6.



FIG. 7 schematically illustrates an approach to endocardial ablation therapy, in contrast to the method of the subject invention. The figure may follow most of the details of FIG. 1 from J.C. Lin, “Catheter Microwave Ablation Therapy for Cardiac Arrhythmias,” Bioelectromagnetics, Vol. 20, pp. 120-132, (1999), incorporated by reference herein in its entirety. In an approach, an endocardial catheter, 2, is placed in the heart of a patient as is known in the art. A radiofrequency generator 27 is used to produce a high frequency or radio frequency AC signal that is passed to the tip of the endocardial ablation catheter 20 when the system switch 28 is closed by the operator. A return path for the RF energy is provided by the dispersive electrode 29 (as shown with dashed lines) that is mounted on the back of the patient in proximity to the heart. This approach stands in contrast to that of the subject invention, as illustrated in detail in FIGS. 1-6, and discussed throughout.


It should be appreciated that as discussed herein, a subject may be a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to human (e.g. rat, dog, pig, monkey), etc. It should be appreciated that the subject may be any applicable human patient, for example.


One skilled in the art can see that many other embodiments of means and methods for using the electrode catheter in the ablation of cardiac tissues according to the technique of the invention, and other details of construction and use thereof, constitute non-inventive variations of the novel and insightful conceptual means, system and technique which underlie the present invention.


EXAMPLES

Practice of the invention will be still more fully understood from the following examples, which are presented herein for illustration only and should not be construed as limiting the invention in any way.


Example No. 1

In a specific example embodiment, the overall length of the electrode catheter from the distal end to the proximal end is approximately 30 cm: 5 cm from the distal tip of the catheter to the distal steering point, 15 cm from the distal steering point to the proximal steering point, and 10 cm from the proximal steering point to the control handle or proximal fluid aperture. The electrode catheter is nominally 8 french in about 2.7 mm. The catheter further comprises a platinum cathode at the distal tip having a semi-cylindrical geometry (an arc of 180 degrees), a circumference of 5.7 mm (consistent with the 8 Fr size), and an axial length of 25 mm. Additionally, the catheter comprises two distal fluid apertures of different sizes, wherein the larger of the two apertures is used for suction of fluid and the smaller is used for emission of fluid, preventing tamponade. Further, the catheter is steerable at two points along its axial length. Finally, the catheter is able to deploy two side flaps or extensions that, when open, work to rotationally stabilize the catheter so that it can not flip over, thus providing confidence that only the desired side of the device would be facing the heart during heating or usage.


References Cited


The following patents, applications and publications as listed below and throughout this document are hereby incorporated by reference in their entirety herein.


The devices, systems, compositions and methods of various embodiments of the invention disclosed herein may utilize aspects disclosed in the following references, applications, publications and patents and which are hereby incorporated by reference herein in their entirety:














U.S. PATENT AND APPLICATION DOCUMENTS













7,147,633
December 2006
Chee et al
606/41


7,146,225
December 2006
Guenst et al
607/119


7,101,362
September 2006
Vanney
604/523


7.090,637
August 2006
Danitz et al
600/141


7,041,099
May 2006
Thomas et al
606/41


6,974,454
December 2005
Hooven
606/41


6,960,205
November 2005
Jahns et al
606/41


6,916,318
July 2005
Francischelli et al
606/41


6,849,075
February 2005
Bertolero et al
606/41


6,827,715
December 2004
Francischelli et al
606/34


6,827,714
December 2004
Swanson
606/32


6,752,805
June 2004
Maguire et al
606/41


6,723,092
April 2004
Brown et al
606/41


6,689,128
February 2004
Sliwa et al
606/41


6,558,382
May 2003
Jahns et al
606/41


6,231,518
May 2001
Grabek et al
600/508


6,206,004
May 2001
Schmidt et al
604/500


6,156,009
December 2000
Grabek
604/117;


5,972,013
October 1999
Schmidt
606/185







U.S. Pat. Application Publication 2002/0045895 A1 to Sliwa et al.,


Apr. 18, 2002










FOREIGN PATENT DOCUMENTS














EP
1181896
February 2002



WO
01/05306
January 2002



WO
01/80757
November 2001



WO
01/68173
September 2001



WO
01/58373
August 2001



WO
01/80724
April 2001



WO
99/18869
April 1999



Au
70522/96
October 1996



WO
95/10319
April 1995



DE
43 13 903
September 1994



WO
93/20886
October 1993



EP
0 450 608
October 1991



CA
2236958
July 1973










Other Publications

A. d'Avila et al., “Transthoracic Epicardial Catheter Ablation of Ventricular Tachycardia,” Heart Rhythmn, Vol. 3, pp. 1110-1111, (2006).


E. Sosa et al., “Epicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,” Journal of Cardiovascular Electrophysiology, Vol. 16, pp. 449-452, (2005).


S. Mahapatra et al., “Incidence and Predictors of Cardiac Perforation after permanent Pacemaker Placement,” Heart Rhythm, Vol. 2, pp. 907-911, (2005).


D. L. Packer et al., “Multimodality 3-D Ultrasound and Computed Tomographic Image Fusion: A Novel Basis for Catheter Navigation and Electroanatomic Mapping,” Circulation, Vol. 112, p. U684, (2005).


E. Sosa et al., “Nonsurgical Transthoracic Epicardial Approach in Patients with Ventricular Tachycardia and Previous Cardiac Surgery,” Journal of Interventional Cardiac Electrophysiology, Vol. 10, pp. 281-288, (2004).


W. P. Beukema et al., “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Concommitant Cardiac Surgery. First Experience,” PACE, Vol. 20 (Part II), p. 1100, (April 1997).


L. S. Klein et al., “Radiofrequency Ablation of Cardiac Arrhythmias,”Scientific American Science & Medicine, pp. 48-57, (May/June 1994).


The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.


In summary, while the present invention has been described with respect to specific embodiments, many modifications, variations, alterations, substitutions, and equivalents will be apparent to those skilled in the art. The present invention is not to be limited in scope by the specific embodiment described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Accordingly, the invention is to be considered as limited only by the spirit and scope of the following claims, including all modifications and equivalents.


Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of this application. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim herein or of any application claiming priority hereto of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particularly interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein. Any information in any material (e.g., a United States/foreign patent, United States/foreign patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render invalid any claim herein or seeking priority hereto, then any such conflicting information in such incorporated by reference material is specifically not incorporated by reference herein.

Claims
  • 1. A device, comprising: an energy source;an endocardial ablation catheter electrically connected to the energy source and configured to be disposed in a heart and to transmit energy received from the energy source for ablating a portion of the heart;an electrode catheter configured to be disposed in the middle mediastinum of the thorax of a subject and configured for use with the endocardial ablation catheter, said electrode catheter comprising: a proximal portion, a distal portion, and a longitudinal structure there between;at least one distal fluid aperture adapted for passage of a fluid; andan electrode in communication with said electrode catheter,wherein said electrode is configured to receive the transmitted energy from the endocardial ablation catheter, andwherein said electrode catheter is configured to be placed outside of the heart, and to receive the transmitted energy from the endocardial ablation catheter via said electrode while the endocardial ablation catheter is disposed inside of the heart.
  • 2. The device of claim 1, wherein the electrode catheter is configured to be disposed in the pericardial space.
  • 3. The device of claim 1, wherein the electrode catheter is configured to be disposed in outside the pericardium.
  • 4. The device of claim 1, wherein the electrode catheter is configured to be disposed inside the pericardium.
  • 5. The device of claim 1, wherein said at least one distal fluid aperture is in communication with a fluid lumen extending longitudinally through said longitudinal structure toward said proximal end.
  • 6. The device of claim 5, wherein said distal fluid aperture is configured to emit a fluid.
  • 7. The device of claim 5, wherein said distal fluid aperture is configured to extract a fluid.
  • 8. The device of claim 5, wherein said distal fluid aperture is configured to emit and extract a fluid.
  • 9. The device of claim 5, further comprising: at least one proximal fluid aperture at said proximal portion, wherein said at least one proximal fluid aperture is in communication with said fluid lumen, and wherein said at least one proximal fluid aperture is adapted for passage of fluid.
  • 10. The device of claim 9, wherein said proximal fluid aperture is configured to emit a fluid.
  • 11. The device of claim 9, wherein said proximal fluid aperture is configured to extract a fluid.
  • 12. The device of claim 9, wherein said proximal fluid aperture is configured to emit and extract a fluid.
  • 13. The device of claim 9, further comprising a fluid control means configured for controlling passage of the fluid.
  • 14. The device of claim 13, wherein said control means comprises a control handle in communication with said electrode catheter.
  • 15. The device of claim 13, wherein said control means is in communication with an external fluid source.
  • 16. The device of claim 9, wherein the device is configured such that the fluid may be used to cool said electrode.
  • 17. The device of claim 9, wherein the device is configured such that the fluid may be used to distend proximate anatomical structures.
  • 18. The device of claim 1, further comprising a stabilization means configured for stabilizing said electrode catheter.
  • 19. The device of claim 18, wherein said stabilization means comprises at least one deployable member.
  • 20. The device of claim 18, wherein said stabilization means comprises one or more protrusions for engaging proximal anatomical structures.
  • 21. The device of claim 18, wherein said stabilization means comprises a non-conducting material.
  • 22. The device of claim 18, further comprising a control means configured for controlling or adjusting said stabilization means.
  • 23. The device of claim 22, wherein said control means comprises a control handle in communication with said electrode catheter.
  • 24. The device of claim 1, further comprising a steering means configured for positioning said electrode catheter.
  • 25. The device of claim 24, further comprising a second steering means configured for steering said electrode catheter.
  • 26. The device of claim 24, wherein said steering means is configured to orient said electrode catheter about one center of curvature.
  • 27. The device of claim 24, wherein said steering means is configured to adjust a curvature of said electrode catheter about two or more preconfigured centers of curvature.
  • 28. The device of claim 24, wherein said steering means comprises at least one of the following: guide wire, pull string, positional adjustment device, tensioning line, or digitating distal tip.
  • 29. The device of claim 24, further comprising a control means configured for controlling said steering means.
  • 30. The device of claim 29, wherein said control means comprises a control handle in communication with said electrode catheter.
  • 31. The device of claim 1, further comprising an electrical lead in communication with said electrode configured for supplying energy to said electrode.
  • 32. The device of claim 31, further comprising a control handle in communication with said electrode catheter, wherein said control handle is controllably connected to said electrical lead.
  • 33. The device of claim 1, wherein said electrode is made of a conducting material.
  • 34. The device of claim 33, wherein said conducting material comprises at least one of the following: platinum, gold, silver, iridium or any other type of conducting material, alloy or metal.
  • 35. The device of claim 1, wherein said electrode is contoured for the receiving of said transmitted energy.
  • 36. The device of claim 1, wherein said electrode is contoured to be compatible with proximate anatomical structures.
  • 37. The device of claim 1 wherein said electrode is semi-cylindrical in shape.
  • 38. The device of claim 1, wherein said electrode is disposed on said distal portion of said electrode catheter.
  • 39. The device of claim 1, wherein said electrode has a longitudinal length of between about 20 mm and about 50 mm.
  • 40. The device of claim 1, wherein said electrode catheter has a total length of less than about 200 cm.
  • 41. The device of claim 1, wherein said electrode catheter has a total length of less than about 100 cm.
  • 42. The device of claim 1, wherein said electrode catheter has a total length of less than about 50 cm.
  • 43. The device of claim 1, wherein said electrode catheter has a total length of less than about 25 cm.
  • 44. The device of claim 1, wherein said electrode catheter has a total length of less than about 20 cm.
  • 45. The device of claim 1, wherein said electrode catheter is configured to be used simultaneously in conjunction with the endocardial ablation catheter for the purpose of achieving localized burning of heart tissues.
  • 46. The device of claim 45, wherein said device is configured to provide a roughly triangular shaped pattern of current density.
  • 47. The device of claim 1, which when used in conjunction with the endocardial ablation catheter, is configured to provide a roughly triangular shaped pattern of current density.
  • 48. The device of claim 1, wherein the device is configured to be navigated through a puncture of the thorax.
  • 49. The device of claim 48, wherein the device is configured to puncture the sub-xiphoid.
  • 50. The device of claim 48, further comprising a pressure probe needle configured to be used in navigating said electrode catheter.
  • 51. The device of claim 50, wherein said pressure probe needle comprises an access needle.
  • 52. The device of claim 50, wherein said pressure probe needle comprises a sensor configured for sensing pressure in the thorax.
  • 53. The device of claim 48, further comprising an access needle, said access needle adapted to be inserted into the thorax.
  • 54. The device of claim 53, further comprising a guidewire, wherein said guidewire is adapted to be inserted into said access needle.
  • 55. A method using an endocardial ablation catheter, which transmits energy for ablating a portion of a heart, and an electrode catheter including an electrode and at least one aperture, said method comprising: disposing the endocardial ablation catheter in the heart;disposing the electrode in the middle mediastinum of the thorax of a subject;at least one of providing a fluid or extracting a fluid via the aperture of the electrode catheter; andreceiving the transmitted energy with the electrode from the endocardial ablation catheter.
  • 56. The method of claim 55, wherein navigation of the electrode is carried out through a sub-xiphoid puncture.
  • 57. The method of claim 55, wherein the electrode is disposed in the pericardial space.
  • 58. The method of claim 55, wherein the electrode is disposed outside the pericardium.
  • 59. The method of claim 55, wherein the electrode is disposed inside the pericardium.
  • 60. The method of claim 55, wherein the electrode is disposed in a first ventricle of the heart.
  • 61. The method of claim 60, wherein the endocardial ablation catheter is positioned in a second ventricle of the heart.
  • 62. The method of claim 61, wherein said first ventricle is the right ventricle of the heart and said second ventricle is the left ventricle of the heart.
  • 63. The method of claim 61, wherein said first ventricle is the left ventricle of the heart and said second ventricle is the right ventricle of the heart.
  • 64. The method of claim 55, wherein the electrode is made from a conducting material.
  • 65. The method of claim 55, wherein the electrode is contoured for said receiving of the transmitted energy.
  • 66. The method of claim 55, wherein the electrode is contoured to be compatible with proximate anatomical structures.
  • 67. The method of claim 55, wherein the electrode is between 20 mm and 50 mm.
  • 68. The method of claim 55, further comprising disposing the electrode on the electrode catheter.
  • 69. The method of claim 68, wherein said disposing comprises the catheter being inserted into the middle mediastinum of the thorax by inserting the catheter into an access needle.
  • 70. The method of claim 69, further comprising providing a guidewire, wherein the guidewire is adapted to be inserted into the access needle.
  • 71. The method of claim 68, wherein the electrode is disposed on a distal portion of the catheter.
  • 72. The method of claim 68, wherein the catheter further comprises a means for the passage of fluid through the catheter.
  • 73. The method of claim 72, further comprising using the fluid to cool the electrode.
  • 74. The method of claim 72, further comprising using the fluid to distend proximal anatomical structures.
  • 75. The method of claim 68, further comprising using a stabilization means of the catheter for holding the electrode in a position facing the endocardial ablation catheter.
  • 76. The method of claim 55, wherein electrode catheter further comprises at least one steering means for positioning the electrode, the method further comprising adjusting a curvature of the electrode catheter about two or more preconfigured centers of curvature via the at least one steering means.
RELATED APPLICATIONS

The present invention is a national stage filing of International Application. No. PCT/US2008/057626, filed on Mar. 20. 2008, which claims priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 60/919,351 filed Mar. 22, 2007, entitled “Epicardial-Cathode Catheter for Ablation Purposes and Related Method Thereof;” the disclosures of which are hereby incorporated by reference herein in their entirety. This application is related to PCT International Application No. Ser. No. PCT/US2008/056643, filed Mar. 12, 2008, entitled, “Access Needle Pressure Sensor Device and Method of Use,” (and its corresponding U.S. National Stage application Ser. No. 12/530,830, filed Sep. 11. 2009) which claims benefit of priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 60/918,782, filed Mar. 19, 2007, entitled “Manometrically Monitored Introducer Needle and Method of Use;” the disclosures of which are hereby incorporated by reference herein in their entirety. This application is related to PCT International Application No. Ser. No. PCT/US2008/056816, filed Mar. 13, 2008, entitled, “Epicardial Ablation Catheter and Method of Use,” (and its corresponding U.S. National Stage application Ser. No. 12/530,938, filed Sep. 11, 2009) which claims benefit of priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 60/906,689, filed Mar. 13, 2007, entitled “Epicardial Ablation Catheter and Access Sheath and Method of Use;” the disclosures of which are hereby incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2008/057626 3/20/2008 WO 00 9/21/2009
Publishing Document Publishing Date Country Kind
WO2008/118737 10/2/2008 WO A
US Referenced Citations (229)
Number Name Date Kind
3794026 Jacobs Feb 1974 A
4349023 Gross Sep 1982 A
4607644 Pohndorf Aug 1986 A
4817634 Holleman Apr 1989 A
4935008 Lewis, Jr. Jun 1990 A
4971070 Holleman Nov 1990 A
4991603 Cohen Feb 1991 A
5033477 Chin Jul 1991 A
5071428 Chin Dec 1991 A
5158097 Christlieb Oct 1992 A
5213570 VanDeripe May 1993 A
5269326 Verrier Dec 1993 A
5300110 Latterell Apr 1994 A
5335313 Douglas Aug 1994 A
5336252 Cohen Aug 1994 A
5395349 Quiachon Mar 1995 A
5465711 Moll Nov 1995 A
5484423 Waskonig Jan 1996 A
5500012 Brucker et al. Mar 1996 A
5509924 Paspa Apr 1996 A
5544654 Murphy Aug 1996 A
5662647 Crow et al. Sep 1997 A
5669882 Pyles Sep 1997 A
5702438 Avitall Dec 1997 A
5725504 Collins Mar 1998 A
5733280 Avitall Mar 1998 A
5779699 Lipson Jul 1998 A
5792217 Camps et al. Aug 1998 A
5797870 March Aug 1998 A
5800428 Nelson et al. Sep 1998 A
5807249 Qin et al. Sep 1998 A
5812978 Nolan Sep 1998 A
5827216 Igo Oct 1998 A
5843048 Gross Dec 1998 A
5846239 Swanson Dec 1998 A
5885217 Gisselberg Mar 1999 A
5916194 Jacobsen Jun 1999 A
5928191 Houser et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5970457 Brant Oct 1999 A
5972013 Schmidt Oct 1999 A
6032674 Eggers et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6051008 Saadat Apr 2000 A
6120476 Fung et al. Sep 2000 A
6123084 Jandak Sep 2000 A
6148825 Anderson Nov 2000 A
6156009 Grabek Dec 2000 A
6156018 Hassett Dec 2000 A
6162195 Igo Dec 2000 A
6200303 Verrior Mar 2001 B1
6200315 Gaiser et al. Mar 2001 B1
6206004 Schmidt Mar 2001 B1
6206874 Ubby et al. Mar 2001 B1
6216704 Ingle et al. Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6237605 Vaska May 2001 B1
6263241 Rosborough Jul 2001 B1
6266567 Ishikawa Jul 2001 B1
6270476 Santoianni Aug 2001 B1
6270484 Yoon Aug 2001 B1
6273877 West Aug 2001 B1
6278975 Brant Aug 2001 B1
6314963 Vaska Nov 2001 B1
6322536 Rosengart Nov 2001 B1
6325776 Anderson Dec 2001 B1
6416505 Fleischman et al. Jul 2002 B1
6423051 Kaplan Jul 2002 B1
6500130 Kinsella Dec 2002 B2
6527767 Wang Mar 2003 B2
6551289 Higuchi Apr 2003 B1
6554809 Aves Apr 2003 B2
6558382 Jahns May 2003 B2
6569082 Chin May 2003 B1
6579288 Swanson et al. Jun 2003 B1
6592552 Schmidt Jul 2003 B1
6602242 Fung et al. Aug 2003 B1
6613062 Leckrone Sep 2003 B1
6616676 Bashiri Sep 2003 B2
6666844 Igo Dec 2003 B1
6666861 Grabek Dec 2003 B1
6689128 Sliwa Feb 2004 B2
6711436 Duhaylongsod Mar 2004 B1
6723092 Brown Apr 2004 B2
6752805 Maguire Jun 2004 B2
6771996 Bowe et al. Aug 2004 B2
6783510 Gibson Aug 2004 B1
6786898 Guenst Sep 2004 B2
6811544 Schaer Nov 2004 B2
6827714 Swanson Dec 2004 B2
6827715 Francischelli Dec 2004 B2
6835193 Epstein Dec 2004 B2
6837848 Bonner Jan 2005 B2
6837886 Collins Jan 2005 B2
6849075 Bertolero Feb 2005 B2
6868291 Bonner Mar 2005 B1
6869414 Simpson Mar 2005 B2
6876885 Swoyer Apr 2005 B2
6899710 Hooven May 2005 B2
6916318 Francischelli Jul 2005 B2
6918890 Schmidt Jul 2005 B2
6918908 Bonner Jul 2005 B2
6921295 Sommer Jul 2005 B2
6928313 Peterson Aug 2005 B2
6936040 Kramm Aug 2005 B2
6960205 Jahns Nov 2005 B2
6968223 Hanover Nov 2005 B2
6973352 Tsutsui Dec 2005 B1
6974454 Hooven Dec 2005 B2
7004937 Lentz Feb 2006 B2
7008418 Hall Mar 2006 B2
7027876 Casavant Apr 2006 B2
7037296 Kadziauskas May 2006 B2
7041099 Thomas May 2006 B2
7059878 Hendrixson Jun 2006 B1
7063693 Guenst Jun 2006 B2
7085606 Flach Aug 2006 B2
7089063 Lesh Aug 2006 B2
7090637 Danitz Aug 2006 B2
7101362 Vanney Sep 2006 B2
7104986 Hovda et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130699 Huff Oct 2006 B2
7142919 Hine Nov 2006 B2
7146225 Guenst Dec 2006 B2
7147633 Chee Dec 2006 B2
7207988 Leckrone Apr 2007 B2
7214180 Chin May 2007 B2
7226448 Bertolero Jun 2007 B2
7226458 Kaplan Jun 2007 B2
7232422 Gibson Jun 2007 B2
7247139 Yudkovitch Jul 2007 B2
7259906 Islam Aug 2007 B1
7264587 Chin Sep 2007 B2
7286992 Sander Oct 2007 B2
7309328 Kaplan Dec 2007 B2
7398781 Chin Jul 2008 B1
7468029 Robertson Dec 2008 B1
8048072 Verin et al. Nov 2011 B2
8271095 O'Sullivan Sep 2012 B2
20010001314 Davison et al. May 2001 A1
20010020166 Daly Sep 2001 A1
20010025178 Mulier et al. Sep 2001 A1
20010039410 Verrier Nov 2001 A1
20010056280 Underwood et al. Dec 2001 A1
20020019626 Sharkey et al. Feb 2002 A1
20020045895 Sliwa Apr 2002 A1
20020055714 Rothschild May 2002 A1
20020058925 Kaplan May 2002 A1
20020072737 Belden Jun 2002 A1
20020077600 Sirimanne Jun 2002 A1
20020082523 Kinsella Jun 2002 A1
20020161361 Sherman Oct 2002 A1
20030028187 Vaska Feb 2003 A1
20030065318 Pendekanti Apr 2003 A1
20030069572 Wellman Apr 2003 A1
20030114796 Schmidt Jun 2003 A1
20030181855 Simpson Sep 2003 A1
20040024397 Griffin Feb 2004 A1
20040024413 Lentz Feb 2004 A1
20040024435 Leckrone Feb 2004 A1
20040034365 Lentz Feb 2004 A1
20040064138 Grabek Apr 2004 A1
20040068312 Sigg et al. Apr 2004 A1
20040087831 Michels May 2004 A1
20040087938 Leckrone May 2004 A1
20040102804 Chin May 2004 A1
20040138526 Guenst Jul 2004 A1
20040138527 Bonner Jul 2004 A1
20040138531 Bonner Jul 2004 A1
20040147826 Peterson Jul 2004 A1
20040186507 Hall Sep 2004 A1
20040215168 Verrier Oct 2004 A1
20040216748 Chin Nov 2004 A1
20040267303 Guenst Dec 2004 A1
20040267326 Ocel Dec 2004 A1
20050020914 Amundson Jan 2005 A1
20050027243 Gibson Feb 2005 A1
20050085769 MacMahon Apr 2005 A1
20050096522 Reddy et al. May 2005 A1
20050154376 Riviere Jul 2005 A1
20050234507 Geske Oct 2005 A1
20050251094 Peterson Nov 2005 A1
20050256368 Klenk Nov 2005 A1
20050261673 Bonner Nov 2005 A1
20050273006 Stewart Dec 2005 A1
20050273144 Lennox Dec 2005 A1
20060025705 Whittaker Feb 2006 A1
20060025762 Mohan Feb 2006 A1
20060041243 Nayak Feb 2006 A1
20060052660 Chin Mar 2006 A1
20060064056 Coyle Mar 2006 A1
20060064058 Coyle Mar 2006 A1
20060074397 Shimada Apr 2006 A1
20060106442 Richardson May 2006 A1
20060122591 Keidar Jun 2006 A1
20060189840 Walsh Aug 2006 A1
20060200002 Guenst Sep 2006 A1
20060229490 Chin Oct 2006 A1
20060247522 McGee Nov 2006 A1
20060247672 Vidlund Nov 2006 A1
20060259017 Heil Nov 2006 A1
20060270900 Chin Nov 2006 A1
20060271032 Chin Nov 2006 A1
20070016068 Grunwald Jan 2007 A1
20070016069 Grunwald Jan 2007 A1
20070016070 Grunwald Jan 2007 A1
20070016072 Grunwald Jan 2007 A1
20070032796 Chin-Chen Feb 2007 A1
20070038052 Swoyer Feb 2007 A1
20070043397 Ocel Feb 2007 A1
20070055142 Webler Mar 2007 A1
20070198041 Rupp Aug 2007 A1
20070270882 Hjelle Nov 2007 A1
20080015625 Ventura Jan 2008 A1
20080051671 Broome Feb 2008 A1
20080091109 Abraham Apr 2008 A1
20080097399 Sachar Apr 2008 A1
20080108945 Kaplan May 2008 A1
20080183080 Abraham Jul 2008 A1
20080208184 Davies Aug 2008 A1
20080262432 Miller Oct 2008 A1
20080294174 Bardsley Nov 2008 A1
20090030469 Meiry Jan 2009 A1
20100069849 Kassab Mar 2010 A1
20100094143 Mahapatra Apr 2010 A1
20100114093 Mahapatra May 2010 A1
20100211064 Mahapatra Aug 2010 A1
20100241185 Mahapatra Sep 2010 A1
Foreign Referenced Citations (23)
Number Date Country
7052296 Jan 1997 AU
2236958 May 1998 CA
43 13 903 Sep 1994 DE
0 450 608 Oct 1991 EP
1 129 681 Sep 2001 EP
1 181 896 Feb 2002 EP
2279773 Feb 2011 EP
WO 8704081 Jul 1987 WO
WO 9320878 Oct 1993 WO
WO 9320886 Oct 1993 WO
WO 9510319 Apr 1995 WO
WO 9515115 Jun 1995 WO
WO 9733526 Sep 1997 WO
WO 9918869 Apr 1999 WO
WO 0105306 Jan 2001 WO
WO 0158373 Aug 2001 WO
WO 0168173 Sep 2001 WO
WO 0180724 Nov 2001 WO
WO 0180757 Nov 2001 WO
WO 2008112870 Sep 2008 WO
WO 2008115745 Sep 2008 WO
WO 2008118737 Oct 2008 WO
WO 2009062061 May 2009 WO
Non-Patent Literature Citations (32)
Entry
Stokes, U.S. Statutory Invention Registration H356, Nov. 3, 1987.
DP25B-S Strain Gage Pagel Meter: User's Guide, OMEGA Engineering, Inc., 2002 (accessed Jul. 9, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf/M3598.pdf.
DP41B Universal Input Meter: User's Guide, OMEGA Engineering, Inc., 2005 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf.M2544.pdf.
DPI 603 Portable Pressure Calibrator User Guide, OMEGA Engineering, Inc., 1996 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manual.pdf/M2913.pdf.
PX26 Series Pressure Transducers: Instruction Sheet, OMEGA Engineering, Inc., 2004 (accessed Jul. 9, 2007), Stamford, CT. Online at http//www.omega.com/Pressure/pdf/PX26.pdf.
PX26 Series Pressure Transducers: Instruction Sheet, OMEGA Engineering, Inc., 2004 (accessed Dec. 5, 2007), Stamford, CT. Online at http://www.omega.com/Manuals/manualpdf/M1608.pdf.
Arrow International Corporation, AN-05505 Epidural Needle, www.arrowintl.com/products/boms/AN05505.asp?cat=17&item=AN-05505&xsec= (accessed Feb. 13, 2007).
Beukema, “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Concommitant Cardiac Surgery. First Experience,” PACE, 1997, p. 1100, vol. 20 (Part II).
D'Avila, “Transthoracic Epicardial Catheter Ablation of Ventricular Tachycardia,” Heart Rhythmn, 2006, p. 1110-1111, vol. 3.
Derose, Jr., “Robotically Assisted Left Ventricular Epicardial Lead Implantation for Biventricular Pacing: the Posterior Approach,” The Annals of Thoracic Surgery, 2004, p. 1472-1474, vol. 77.
Frölich, “Pioneers in Epidural Needle Design,” Anesthesia & Analgesia, 2001, p. 215-220, vol. 93.
Hansky, “Lead Selection and Implantation Technique for Biventricular Pacing,” European Heart Journal Supplements, 2004, p. D112-D116, vol. 6, Supplement D.
Klein, “Radiofrequency Ablation of Cardiac Arrhythmias,” Scientific American Science & Medicine, 1994, p. 48-57.
Lin, “Catheter Microwave Ablation Therapy for Cardiac Arrhythmias,” Bioelectromagnetics, 1999, p. 120-132, vol. 20.
Mahapatra, “Access Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trials”, Jul. 2007, Technical Report No. UVA/640419/MAE08/101.
Mahapatra, “Access Device and Manometric Monitoring System for Epicardial Electrophysiology: Improved Porototype and Use in Human Trials”, Jan. 2008, Technical Report No. UVA/640419/MAE08/102.
Mahapatra, “Incidence and Predictors of Cardiac Perforation after permanent Pacemaker Placement,” Heart Rhythm, 2005, p. 907-911, vol. 2, No. 9.
Mair, “Epicardial Lead Implantation Techniques for Biventricular Pacing via Left Lateral Mini-Thoracotomy, Video-Assisted Thoracoscopy, and Robotic Approach,” The Heart Surgery Forum #2003-4883, 2003, p. 412-417, vol. 6 (5).
Moses, “Sirolimus-Eluting Stents Versus Standard Stents in Patients with Stenosis in a Native Coronary Artery”, New England Journal of Medicine, 2003, p. 1315-1323, vol. 349, No. 14.
Packer, “Multimodality 3-D Ultrasound and Computed Tomographic Image Fusion: A Novel Basis for Catheter Navigation and Electroanatomic Mapping,” 2005, Circulation, Clinical Science, Supplement II, vol. 112, No. 17, #2939.
Sarabanda, “Efficacy and Safety of Circumferential Pulmonary Vein Isolation Using a Novel Cryothermal Balloon Ablation System” Journal of the American College of Cardiology, 2005, p. 1902-1912, vol. 46, No. 10.
Sosa, “Epicardial Mapping and Ablation Techniques to Control Ventricular Tachycardia,” Journal of Cardiovascular Electrophysiology, 2005, p. 449-452, vol. 16, No. 4.
Sosa, “Nonsurgical Transthoracic Epicardial Approach in Patients with Ventricular Tachycardia and Previous Cardiac Surgery,” Journal of Interventional Cardiac Electrophysiology, 2004, p. 281-288, vol. 10.
Sosa, “Percutaneous Pericardial Access for Mapping and Ablation of Epicardial Ventricular Tachycardias,” Circulation, Journal of the American Heart Association, 2007, p. e542-e544, vol. 115.
Thomas, “Analysis of Human Epidural Pressures,” Regional Anesthesia, 1992, p. 212-215, vol. 17, No. 4.
Tomaske, “Do Daily Threshold Trend Fluctuations of Epicardial Leads Correlate with Pacing and Sensing Characteristics in Paediatric Patients,” Europace, 2007, p. 662-668, vol. 9.
U.S. Appl. No. 12/530,938 , “Final Office Action”, Nov. 21, 2013, 30 pages.
U.S. Appl. No. 12/530,938 , “Office Action”, Jun. 25, 2012, 48.
U.S. Appl. No. 12/530,938 , “Office Action”, Feb. 26, 2013, pp. 32.
U.S. Appl. No. 12/741,710 , “Final Office Action”, Apr. 22, 2014, 24 pages.
U.S. Appl. No. 12/741,710 , “Non Final Office Action”, Jul. 3, 2013, 14 pages.
U.S. Appl. No. 12/741,710 , “Office Action”, Nov. 8, 2012, 54 pages.
Related Publications (1)
Number Date Country
20100211064 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
60919351 Mar 2007 US