Electrode comprising structured silicon-based material

Information

  • Patent Grant
  • 9012079
  • Patent Number
    9,012,079
  • Date Filed
    Thursday, July 17, 2008
    17 years ago
  • Date Issued
    Tuesday, April 21, 2015
    10 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Cano; Milton I
    • Vo; Jimmy K
    Agents
    • McDonnell Boehnen Hulbert & Berghoff LLP
Abstract
A composite electrode includes an active component directly bonded to a current collector. The direct bonding provides a low resistance contact between the current collector and the active material. The active component can be provided as fibers of silicon. The fibers can be free or attached to a support.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This applications claims priority from United Kingdom Application Serial No. 0713896.9, filed Jul. 17, 2007, the entire content of which is hereby incorporated by reference, and is a U.S. national stage application under 35 U.S.C. §371 of PCT/GB08/02453, filed Jul. 17, 2008, the entire content of which is hereby incorporated by reference.


BACKGROUND

The invention relates to a method of fabricating a composite electrode comprising an active component directly bonded to a current collector and its use as the active anode material in rechargeable lithium battery cells.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a lithium battery cell; and



FIG. 2 is a cycle number plot for an electrode produced according to the present disclosure.





DETAILED DESCRIPTION

Lithium battery cells, as illustrated in FIG. 1, are well known in the art. A battery cell generally comprises a copper current collector for the anode 10 and an aluminium current collector for the cathode 12 which are externally connectable to a load or to a recharging source as appropriate. A graphite-based composite anode layer 14 overlays the current collector 10 and a lithium containing metal oxide-based composite cathode layer 16 overlays the current collector 12. A porous plastic spacer or separator 20 is provided between the graphite-based composite anode layer 14 and the lithium containing metal oxide-based composite cathode layer 16 and a liquid electrolyte material is dispersed within the porous plastic spacer or separator 20, the composite anode layer 14 and the composite cathode layer 16. In some cases, the porous plastic spacer or separator 20 may be replaced by a polymer electrolyte material and in such cases the polymer electrolyte material is present within both the composite anode layer 14 and the composite cathode layer 16.


A number of investigations have been carried out using silicon as the active anode material of a rechargeable lithium-ion electrochemical cell (see, for example, Insertion Electrode Materials for Rechargeable Lithium Batteries, M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak in Adv. Mater. 1998, 10, No. 10). The silicon anode would replace the graphite-based anode electrode in the conventional lithium-ion rechargeable battery cell illustrated in FIG. 1 The battery cell includes a single cell but may also include more than one cell. The silicon electrode structure generally utilises powdered silicon, evaporated silicon or fibres of silicon which are attached onto a current collector with a polymer binder and an electronic additive by a solvent casting process to form a composite electrode structure.


It will be appreciated that the formation of a conventional composite electrode requires multiple components hence increasing the cost and complexity of the production of the electrode. Furthermore, the use of a solvent casting process results in the formation of waste solvent, which requires costly disposal. It will be further appreciated that, in order to allow the battery to deliver high levels of power, it is very important to create a low resistance contact between the active material and the current collector and this can be hard to achieve in a composite film electrode structure. In addition, the low resistance contacts will be preserved during the volume changes induced by charging and discharging the electrode in an electrochemical cell.


The present invention provides an improved method of composite electrode production. In particular, the first aspect of the invention provides a composite electrode comprising an active component directly bonded to a current collector. The direct bonding provides a low resistance contact between the current collector and the active material.


It will be appreciated that the electrode of the first aspect does not require the use of a polymer binder and an electronic additive. Instead the active component is directly bonded to the current collector by the formation of a compound between the active component and the current collector. Furthermore, the production of the composite electrode is not carried out using a solvent casting process thus avoiding the use of solvent and the need to dispose of waste solvent.


For the purposes of the present invention, the active component and the current collector are directly bonded such that a physical and/or chemical interaction occurs between the active component and the current collector. In particular, the physical and/or chemical interaction occurs at the interface between the active component and the current collector (i.e. at the contacting surfaces of the active component and the current collector). The direct bonding of the active component and the current collector results in a permanent or temporary attachment. The bonding can therefore be irreversible or reversible. The bonding can result in an interaction at an atomic or molecular level between the active component and the current collector. In particular, the interaction may result in chemical bonding between the active component and the current collector such as covalent, ionic, van der Waals bonding or the formation of an alloy, such as a metal alloy. The direct bonding causes the active component and the current collector to adhere to each other. It will be appreciated that the direct bonding causes a physical and/or chemical change in the contacting surfaces of the active component and/or the current collector.


The direct bonding of the active component and the current collector can result in the formation of a compound between the active component and the current collector. In this case, the direct bonding of the active component and the current collector is via the compound formed between the active component and the current collector. The compound therefore has two functions. It causes the adherence of the active component to the current collector and allows electrons to be conducted therethrough. The compound therefore provides a high conductivity and low resistance binding between the current collector and the active component.


The active component of the electrode preferably comprises one or more of silicon, aluminium, tin, lead, bismuth, antimony or silver. The current collector of the electrode preferably comprises one or more of copper, nickel, aluminium, iron, iridium, gold, silver or titanium. The electrode of the first aspect can therefore comprise for example, an active component comprising silicon directly bonded via a silicon-copper compound to a copper current collector.


In a preferred feature of the invention, the active component comprises silicon, more preferably silicon-comprising fibres. In a particular feature of the invention, the silicon-comprising fibres are single crystal fibres.


The silicon comprising fibres may have transverse dimensions in the range 0.08 to 0.5 microns, preferably 0.2 microns and a length in the range 12 to 300 microns preferably 100 microns. The fibres may have an aspect ratio of about 250:1. The fibres may have a substantially circular cross-section or a substantially non-circular cross-section.


The composite electrode of the first aspect is preferably provided as an anode.


The second aspect of the invention provides a method of fabricating a composite electrode according to the first aspect of the invention comprising contacting an active component with a current collector and heating to the reaction temperature of the active component and current collector. Alternatively, the active component and the current collector are heated to above their reaction temperature.


For the purposes of this invention, the reaction temperature is the temperature required to form a direct bond between the active component and the current collector, in particular to form to a compound between the active component and the current collector. It will be appreciated that the required temperature will vary depending on the identity (i.e. the chemical composition) of the active component and the current collector.


The method of the second aspect requires that the active component and the current collector are brought into contact. Preferably the active component and the current collector are contacted under an excess pressure of 5 pounds per square inch or above, more preferably 5 atmospheres or above.


It will be appreciated that it is advisable to avoid the formation of excess metal oxides at the contacting surfaces of the active component and/or the current collector. The method of the second aspect is therefore preferably carried out in an inert atmosphere, such as nitrogen, argon etc or in vacuo.


In a preferred feature of the second aspect there is provided a method of fabricating an electrode comprising contacting a silicon comprising active component with a copper current collector and heating to or above the silicon-copper alloy temperature.


As discussed in relation to the first aspect of the invention, the silicon comprising active component can be provided as fibres of silicon, said fibres being free or attached to a support. The fibres of the present invention can be created from a substrate (e.g. a chip or a wafer) comprising silicon by reactive ion etching, chemical reaction etching or galvanic exchange etching and, where applicable, detached by one or more of scraping, agitating or chemical etching.


The silicon-comprising active component can comprise undoped silicon, doped silicon or a silicon germanium mixture. The fibre can be single crystal silicon or single crystal silicon germanium. The fibres may extend from silicon-comprising particles.


The fibres of silicon can be contacted on the current collector in a composite or felt or a felt-like structure, that is a plurality of elongate or long thin fibres which crossover to provide multiple intersections, for example by being laid down in a random or disordered or indeed ordered manner. The arrangement of the active component in this fashion, reduces the problem of charge/discharge capacity loss. Typically the fibres will have a length to diameter ratio of approximately 100:1 and hence in an anode layer such as a composite anode layer, each fibre will contact other fibres many times along their length giving rise to a configuration where the chance of mechanical isolation arising from broken silicon contacts is negligible. The insertion and removal of lithium into the fibres, although causing volume expansion and volume contraction, does not cause the fibres to be destroyed and hence the intra-fibre electronic conductivity is preserved.


The active component and the current collector are brought into contact and form an interaction at the contacting surfaces. The interaction results in a change in the structure and/or composition of the active component and/or the current collector at the contacting surfaces, such that the active component and the current collector are bonded together. This bonding can be irreversible or reversible. Preferably, the active component and the current collector form a metal alloy at the contacting surfaces. The invention does not encompass merely contacting the active component and the current collector (i.e. by plating or depositing the active component on the current collector) and hence creates a very low electrical resistance pathway between the current collector and the active material.


The third aspect of the invention provides a method of fabricating a lithium rechargeable cell comprising the steps of creating an anode according to the second aspect of the invention and adding a cathode and an electrolyte. The method of the third aspect may further comprise adding a separator between cathode and the anode, and additionally further providing a casing around the cell.


The fourth aspect of the invention provides an electrochemical cell containing an anode according to the present invention. The fourth aspect in particular provides an electrochemical cell in which the cathode comprises a lithium-containing compound capable of releasing and reabsorbing lithium ions as its active material. More particularly, there is provided an electrochemical cell in which the cathode comprises lithium-based metal oxide or phosphate as its active material preferably LiCoO2 or LiMnxNixCo1-2xO2 or LiFePO4.


The fifth aspect of the invention provides a lithium rechargeable cell anode comprising an active component directly bonded to a current collector.


The sixth aspect of the invention provides a cell comprising an anode as described in the fifth aspect of the invention and a cathode. In particular, the cathode comprises lithium-based material, preferably the cathode comprises lithium cobalt dioxide.


The seventh aspect of the invention provides a device powered by a cell as described above.


The present invention is illustrated with reference to one or more of the following non-limiting examples:


The silicon fibres may be manufactured by detaching pillars from a substrate such as a chip or a wafer. In addition the manner of fabrication of the pillars may be provided by a simple repeatable chemical process.


One manner in which the pillars can be made is by dry etching, for example deep reactive ion etching of the type, for example, described in U.S. application Ser. No. 10/049,736 which is commonly assigned herewith and incorporated herein by reference. The skilled person will be familiar with the process such that detailed description is not required here. Briefly, however, a silicon substrate coated in native oxide is etched and washed so as to give a hydrophilic surface. Caesium chloride (CsCl) is evaporated on the surface and the coated substrate is transferred under dry conditions to a chamber of fixed water vapour pressure. A thin film of CsCl develops into an island array of hemispheres whose dimensional characteristics depend on initial thickness, water vapour pressure and time of development. The island array provides an effective mask after which etching is carried out for example by reactive ion etching leaving an array of pillars corresponding to the hemispherical islands. The CsCl resist layer is highly soluble in water and can be readily washed away.


Alternatively the pillars can be made by wet etching/using a chemical galvanic exchange method for example as described in our co-pending application GB 0601318.9 with common assignees and entitled “Method of etching a silicon-based material”, incorporated herewith by reference. A related method which may also be used has been disclosed in Peng K-Q, Yan, Y-J Gao, S-P, Zhu J., Adv. Materials, 14 (2004), 1164-1167 (“Peng”); K. Peng et al, Angew. Chem. Int. Ed., 44 2737-2742; and K. Peng et al., Adv. Funct. Mater., 16 (2006), 387-394.


In the preferred embodiment pillars of for example 100 microns in length and 0.2 microns in diameter are fabricated on and from a silicon substrate. More generally pillars of length in the range of 12 to 300 microns and diameter or largest transverse dimension in the range of 0.08 to 0.5 microns may be used to provide the fibres. According to the process the silicon substrate may be n- or p-type and, according to the chemical approach, and may be etched on any exposed (100) or (110) crystal face. Since the etching proceeds along crystal planes, the resulting fibres are single crystals. Because of this structural feature, the fibres will be substantially straight facilitating length to diameter ratio of approximately 100:1 and, when in a composite anode layer, allowing each fibre to contact other fibres many times along their length. The etching process can also be carried out either on very large scale integration (VLSI) electronic grade wafers or rejected samples of the same (single crystal wafers). As a cheaper alternative, photovoltaic grade polycrystalline material, as used for solar panels, may also be used.


In order to detach the pillars to obtain the fibres, the substrate, with pillars attached, is placed in a beaker or any appropriate container, covered in an inert liquid such as ethanol and subjected to ultra-sonic agitation. It is found that within several minutes the liquid is seen to be turbid and it can be seen by electron microscope examination that at this stage the pillars have been removed from their silicon base.


It will be appreciated that alternative methods for “harvesting” the pillars include scraping the substrate surface to detach them or detaching them chemically. One chemical approach appropriate to n-type silicon material comprises etching the substrate in an HF solution in the presence of backside illumination of the silicon wafer.


Once harvested, silicon fibres were washed in a dilute HF (1%) solution for several minutes. Water was removed by filtration, but sufficient water was retained to keep the silicon fibres wet. The fibres were dispersed on the copper foil (current collector). The silicon fibres coated copper substrate was then transferred into a Silicon Bonder chamber. At the vacuum of ca 2×10−6 mbar, a temperature of 400° C. and a pressure of 5 atmospheres, the silicon fibres annealed with copper for about 1 hour.


Alternatively dry and clean silicon fibres were placed on a copper substrate. The sample was transferred into a Rapid Thermal Annealing chamber and annealed in air or low flowing Argon ambient for 10 s at 800° C. After cooling, the sample was annealed in H2/N2 (10% H2) for 10 s at 800° C. to reduce the oxide.


Alternatively silicon fibres were coated onto a copper current collector to create a felt or felt-like structure and the sample passed through heated rollers to provide the required temperature and pressure to create the silicon-copper compound.



FIG. 2 illustrates a cycle number plot for an electrode produced using a Silicon Bonder chamber as described above. The plot shows the capacity of the electrode with repeated cycles of lithiation and delithiation.


A particular advantage of the approach described herein is that large sheets of silicon-based anode can be fabricated, rolled if necessary, and then slit or stamped out subsequently as is currently the case in graphite-based anodes for lithium-ion battery cells meaning that the approach described herein can be retrofitted with the existing manufacturing capability.


Fabrication of the lithium-ion battery cell can be carried out in any appropriate manner, for example following the general structure shown in FIG. 1 but with for example, a silicon or silicon-based active anode material rather than a graphite active anode material. For example, the silicon fibres-based composite anode layer is covered by the porous spacer 18, the electrolyte added to the final structure saturating all the available pore volume. The electrolyte addition is done after placing the electrodes in an appropriate casing and may include vacuum filling of the anode to ensure the pore volume is filled with the liquid electrolyte.


It will be appreciated, of course, that any appropriate approach can be adopted in order to arrive at the approaches and apparatus described above. For example the pillar detaching operation can comprise any of a shaking, scraping, chemical or other operation as long as pillars are removed from the substrate to create fibres. Reference to silicon-based material includes silicon where appropriate. The fibres can have any appropriate dimension and can for example be pure silicon or doped silicon or other silicon-based material such as a silicon-germanium mixture or any other appropriate mixture. The substrate from which pillars are created may be n- or p-type, ranging from 100 to 0.001 Ohm cm, or it may be a suitable alloy of silicon, for example SixGe1-x. The fibres may be grown on particles of silicon such that they do not have to be detached. The fibres can be used for any appropriate purpose such as fabrication of electrodes generally including cathodes. The cathode material can be of any appropriate material, typically a lithium-based metal oxide or phosphate material such as LiCoO2, LiMnxNixCo1-2xO2 or LiFePO4. The features of different embodiments can be interchanged or juxtaposed as appropriate and the method steps performed in any appropriate order.

Claims
  • 1. An electrode comprising an active component directly bonded to a current collector, wherein the active component comprises silicon-comprising fibres arranged in a felt-like structure in which the fibres cross over to provide multiple intersections, such that the fibres contact others of the fibres a plurality of times along their lengths and the direct bonding is via a compound formed from the active component and the current collector at contacting surfaces of the active component and the current collector.
  • 2. The electrode as claimed in claim 1 wherein the active component comprises one or more of silicon, aluminium, tin, lead, bismuth, antimony and silver.
  • 3. The electrode as claimed in claim 1 wherein the current collector comprises one or more of copper, nickel, aluminium, iron, iridium, gold, silver or titanium.
  • 4. The electrode as claimed in claim 1 in which the fibres are single crystal fibres.
  • 5. The electrode as claimed in claim 1 in which the fibres are deposited in a composite.
  • 6. The electrode as claimed in claim 1 wherein at least some of the fibres extend from silicon-comprising particles.
  • 7. The electrode as claimed in a claim 1 in which the electrode is an anode.
  • 8. An electrochemical cell containing an anode as claimed in claim 1.
  • 9. The electrochemical cell as claimed in claim 8 in which the cathode comprises a lithium-containing compound capable of releasing and readsorbing lithium ions as its active material.
  • 10. The electrochemical cell as claimed in claim 8 in which the cathode comprises lithium-based metal oxide or phosphate as its active material preferably LiCoO2 or LiMnxNixCo1-2xO2 or LiFePO4.
  • 11. A cell comprising an anode as claimed in claim 1 and a cathode.
  • 12. A cell as claimed in claim 11 in which the cathode comprises lithium-based material.
  • 13. A cell as claimed in claim 12 in which the cathode comprises lithium cobalt dioxide-based material.
  • 14. A device powered by a cell as claimed in claim 11.
  • 15. The electrode as claimed in claim 1 wherein the fibres comprise n-type or p-type doped silicon.
  • 16. The electrode as claimed in claim 1 wherein the electrode is a composite anode.
  • 17. A lithium-ion battery comprising the electrode as claimed in claim 1 and further comprising a cathode and electrolyte.
  • 18. An electrode comprising an active component directly bonded to a current collector, wherein the active component comprises a plurality of silicon-comprising particles, each particle having a plurality of silicon-comprising fibres extending therefrom, the plurality of silicon-comprising particles being disposed on the current collector such that fibres crossover to provide multiple intersections, such that the fibres contact others of the fibres a plurality of times along their lengths, and the direct bonding is via a compound formed from the active component and current collector at the contacting surfaces of the active component and current collector.
  • 19. The electrode of claim 18 wherein the fibres comprise n-type or p-type doped silicon.
  • 20. The electrode of claim 18 wherein the electrode is a composite anode.
  • 21. A lithium-ion battery comprising the electrode as claimed in claim 18 and further comprising a cathode an electrolyte.
Priority Claims (1)
Number Date Country Kind
0713896.9 Jul 2007 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2008/002453 7/17/2008 WO 00 2/26/2010
Publishing Document Publishing Date Country Kind
WO2009/010759 1/22/2009 WO A
US Referenced Citations (156)
Number Name Date Kind
3351445 Fielder et al. Nov 1967 A
4002541 Streander Jan 1977 A
4436796 Huggins et al. Mar 1984 A
4950566 Huggins et al. Aug 1990 A
5260148 Idota Nov 1993 A
5262021 Lehmann et al. Nov 1993 A
5660948 Barker Aug 1997 A
5907899 Dahn et al. Jun 1999 A
5980722 Kuroda et al. Nov 1999 A
6022640 Takada et al. Feb 2000 A
6042969 Yamada et al. Mar 2000 A
6063995 Bohland et al. May 2000 A
6235427 Idota et al. May 2001 B1
6296969 Yano et al. Oct 2001 B1
6334939 Zhou et al. Jan 2002 B1
6337156 Narang et al. Jan 2002 B1
6353317 Green et al. Mar 2002 B1
6399177 Fonash et al. Jun 2002 B1
6399246 Vandayburg et al. Jun 2002 B1
6589696 Matsubara et al. Jul 2003 B2
6605386 Kasamatsu et al. Aug 2003 B1
6620547 Sung et al. Sep 2003 B1
6887511 Shima et al. May 2005 B1
6916679 Snyder et al. Jul 2005 B2
7033936 Green Apr 2006 B1
7051945 Empedocles et al. May 2006 B2
7070632 Visco et al. Jul 2006 B1
7094499 Hung Aug 2006 B1
7147894 Zhou et al. Dec 2006 B2
7192673 Ikeda et al. Mar 2007 B1
7311999 Kawase et al. Dec 2007 B2
7318982 Gozdz et al. Jan 2008 B2
7348102 Li et al. Mar 2008 B2
7358011 Fukuoka et al. Apr 2008 B2
7378041 Asao et al. May 2008 B2
7425285 Asao et al. Sep 2008 B2
7476469 Ota et al. Jan 2009 B2
7569202 Farrell et al. Aug 2009 B2
7659034 Minami et al. Feb 2010 B2
7674552 Nakai et al. Mar 2010 B2
7767346 Kim et al. Aug 2010 B2
7862933 Okumura et al. Jan 2011 B2
8034485 Dahn et al. Oct 2011 B2
20010023986 Mancevski Sep 2001 A1
20030135989 Huggins et al. Jul 2003 A1
20040072067 Minami et al. Apr 2004 A1
20040126659 Graetz et al. Jul 2004 A1
20040151987 Kawase et al. Aug 2004 A1
20040166319 Li et al. Aug 2004 A1
20040185346 Takeuchi et al. Sep 2004 A1
20040197660 Sheem et al. Oct 2004 A1
20040214085 Sheem et al. Oct 2004 A1
20040224231 Fujimoto et al. Nov 2004 A1
20040241548 Nakamoto et al. Dec 2004 A1
20050042515 Hwang et al. Feb 2005 A1
20050079414 Yamamoto et al. Apr 2005 A1
20050079420 Cho et al. Apr 2005 A1
20050118503 Honda et al. Jun 2005 A1
20050191550 Satoh et al. Sep 2005 A1
20050193800 DeBoer et al. Sep 2005 A1
20050214644 Aramata et al. Sep 2005 A1
20060003226 Sawa et al. Jan 2006 A1
20060004226 Machhammer et al. Jan 2006 A1
20060019115 Wang et al. Jan 2006 A1
20060019168 Li et al. Jan 2006 A1
20060024582 Li et al. Feb 2006 A1
20060051670 Aramata et al. Mar 2006 A1
20060057463 Gao et al. Mar 2006 A1
20060088767 Li et al. Apr 2006 A1
20060097691 Green May 2006 A1
20060134516 Im et al. Jun 2006 A1
20060134518 Kogetsu et al. Jun 2006 A1
20060147800 Sato et al. Jul 2006 A1
20060154071 Homma et al. Jul 2006 A1
20060166093 Zaghib et al. Jul 2006 A1
20060175704 Shimizu et al. Aug 2006 A1
20060257307 Yang Nov 2006 A1
20060263687 Leitner et al. Nov 2006 A1
20060275663 Matsuno et al. Dec 2006 A1
20060275668 Peres et al. Dec 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070026313 Sano Feb 2007 A1
20070031733 Kogetsu et al. Feb 2007 A1
20070037063 Choi et al. Feb 2007 A1
20070048609 Yeda et al. Mar 2007 A1
20070059598 Yang Mar 2007 A1
20070065720 Hasegawa et al. Mar 2007 A1
20070072074 Yamamoto et al. Mar 2007 A1
20070087268 Kim et al. Apr 2007 A1
20070099084 Huang et al. May 2007 A1
20070099085 Choi et al. May 2007 A1
20070105017 Kawase et al. May 2007 A1
20070117018 Huggins May 2007 A1
20070122702 Sung et al. May 2007 A1
20070148544 Le Jun 2007 A1
20070172732 Jung et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070190413 Lee et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070202402 Asahina et al. Aug 2007 A1
20070207080 Yang Sep 2007 A1
20070207385 Liu et al. Sep 2007 A1
20070209584 Kalynushkin et al. Sep 2007 A1
20070212538 Niu Sep 2007 A1
20070218366 Kalynushkin et al. Sep 2007 A1
20070224508 Aramata et al. Sep 2007 A1
20070224513 Kalynushkin et al. Sep 2007 A1
20070238021 Liu et al. Oct 2007 A1
20070243469 Kim et al. Oct 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070264574 Kim et al. Nov 2007 A1
20070269718 Krause et al. Nov 2007 A1
20070277370 Kalynushkin et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080003503 Kawakami et al. Jan 2008 A1
20080020281 Kogetsu et al. Jan 2008 A1
20080038638 Zhang et al. Feb 2008 A1
20080090149 Sano et al. Apr 2008 A1
20080096110 Bito et al. Apr 2008 A1
20080107967 Liu et al. May 2008 A1
20080113271 Ueda et al. May 2008 A1
20080118834 Yew et al. May 2008 A1
20080124631 Fukui et al. May 2008 A1
20080131782 Hagiwara et al. Jun 2008 A1
20080138710 Liaw et al. Jun 2008 A1
20080138716 Iwama et al. Jun 2008 A1
20080145752 Hirose et al. Jun 2008 A1
20080145759 Sung et al. Jun 2008 A1
20080160415 Wakita et al. Jul 2008 A1
20080176139 White et al. Jul 2008 A1
20080206631 Christensen et al. Aug 2008 A1
20080206641 Christensen et al. Aug 2008 A1
20080233479 Sung et al. Sep 2008 A1
20080233480 Sung et al. Sep 2008 A1
20080241647 Fukui et al. Oct 2008 A1
20080241703 Yamamoto et al. Oct 2008 A1
20080248250 Flemming et al. Oct 2008 A1
20080261112 Nagata et al. Oct 2008 A1
20080305391 Hirose et al. Dec 2008 A1
20090053589 Obrovac et al. Feb 2009 A1
20090078982 Rachmady et al. Mar 2009 A1
20090087731 Fukui et al. Apr 2009 A1
20090101865 Matsubara et al. Apr 2009 A1
20090117466 Zhamu et al. May 2009 A1
20090186267 Tiegs Jul 2009 A1
20090239151 Nakanishi et al. Sep 2009 A1
20090253033 Hirose et al. Oct 2009 A1
20090269677 Hirose et al. Oct 2009 A1
20090305129 Fukui et al. Dec 2009 A1
20100085685 Pinwill Apr 2010 A1
20100092868 Kim et al. Apr 2010 A1
20100124707 Hirose et al. May 2010 A1
20100136437 Nishida et al. Jun 2010 A1
20100285358 Cui et al. Nov 2010 A1
20100297502 Zhu et al. Nov 2010 A1
20100330419 Cui et al. Dec 2010 A1
Foreign Referenced Citations (104)
Number Date Country
101442124 May 2009 CN
199 22 257 Nov 2000 DE
103 47 570 May 2005 DE
0 281 115 Sep 1988 EP
0 553 465 Aug 1993 EP
0 820 110 Jan 1998 EP
1 011 160 Jun 2000 EP
0 936 687 Dec 2001 EP
1 231 653 Aug 2002 EP
1 231 654 Aug 2002 EP
1 258 937 Nov 2002 EP
1 083 614 May 2003 EP
1 313 158 May 2003 EP
1 335 438 Aug 2003 EP
1 289 045 Mar 2006 EP
1 657 769 May 2006 EP
1 850 409 Oct 2007 EP
1 771 899 Feb 2008 EP
1 657 768 May 2008 EP
2 058 882 May 2009 EP
2 204 868 Jul 2010 EP
2 885 913 Aug 2007 FR
980513 Jan 1965 GB
1 014 706 Dec 1965 GB
2 395 059 May 2004 GB
2 464 157 Jan 2010 GB
2 464 158 Apr 2010 GB
02-209492 Aug 1990 JP
6-283156 Oct 1994 JP
10-046366 Feb 1998 JP
10-83817 Mar 1998 JP
10-199524 Jul 1998 JP
2000-3727 Jan 2000 JP
2000003731 Jan 2000 JP
2000-173594 Jun 2000 JP
2000-348730 Dec 2000 JP
2001-291514 Oct 2001 JP
2002-279974 Sep 2002 JP
2002-313319 Oct 2002 JP
2003-017040 Jan 2003 JP
2003-168426 Jun 2003 JP
04-607488 Feb 2004 JP
2004-71305 Mar 2004 JP
2004-095264 Mar 2004 JP
2004-214054 Jul 2004 JP
2004-281317 Oct 2004 JP
2004-296386 Oct 2004 JP
2004-533699 Nov 2004 JP
2005-310759 Nov 2005 JP
2006-505901 Feb 2006 JP
2006-276214 Oct 2006 JP
2006-290938 Oct 2006 JP
2006-335410 Dec 2006 JP
2007-165079 Jun 2007 JP
2008-034266 Feb 2008 JP
2008-186732 Aug 2008 JP
2008-234988 Oct 2008 JP
2009-252348 Oct 2009 JP
2007-023141 Feb 2007 KR
2007-0110569 Nov 2007 KR
2008-038806 May 2008 KR
1015956 Aug 2000 NL
471402 May 1975 SU
544019 Jan 1977 SU
WO 9933129 Jul 1999 WO
WO 0113414 Feb 2001 WO
WO 0135473 May 2001 WO
WO 0196847 Dec 2001 WO
WO 0225356 Mar 2002 WO
WO 0247185 Jun 2002 WO
WO 03063271 Jul 2003 WO
WO 03075372 Sep 2003 WO
WO 2004042851 May 2004 WO
WO 2004052489 Jun 2004 WO
WO 2004083490 Sep 2004 WO
WO 2005011030 Feb 2005 WO
WO 2005113467 Dec 2005 WO
WO 2005119753 Dec 2005 WO
WO 2006067891 Jun 2006 WO
WO 2006073427 Jul 2006 WO
WO 2006070158 Jul 2006 WO
WO 2006120332 Nov 2006 WO
WO 2007044315 Apr 2007 WO
WO 2007083152 Jul 2007 WO
WO 2007083155 Jul 2007 WO
WO 2007083155 Jul 2007 WO
WO 2007114168 Oct 2007 WO
WO 2007136164 Nov 2007 WO
WO 2008029888 Mar 2008 WO
WO 2008044683 Apr 2008 WO
WO 2008072460 Jun 2008 WO
WO 2008097723 Aug 2008 WO
WO 2008139157 Nov 2008 WO
WO 2009010757 Jan 2009 WO
WO 2009010758 Jan 2009 WO
WO 2009010759 Jan 2009 WO
WO 2009026466 Feb 2009 WO
WO 2009120404 Oct 2009 WO
WO 2009128800 Oct 2009 WO
WO 2010040985 Apr 2010 WO
WO 2010040986 Apr 2010 WO
WO 2010060348 Jun 2010 WO
WO 2010130975 Nov 2010 WO
WO 2010130976 Nov 2010 WO
Non-Patent Literature Citations (95)
Entry
Chan et al., “High-performance lithium battery anodes using silicon nanowires”, Dec. 16, 2007, Nature Nanotechnology, vol. 3, Jan. 2008, pp. 31-32.
WO 2006070158 A1, English Translation obtained from Google Translate on Nov. 14, 2013.
Lee et al., “Effect of Poly (Acrylic Acid) on Adhesion Strength and Electrochemical Performance of Natural Graphite Negative Electrode for Lithium-Ion Batteries”, Journal of Power Sources, 161(1), (2006), 612-616.
Key to Metal Aluminum-Silicon Alloys, www.keytometals.com/Article80.
Winter, et al., “Insertion Electrode Materials for Rechargeable Lithium Batteries”, Advanced Materials, 1998, 10, No. 10.
Kasavajjula et al., “Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells”, Journal of Power Sources, 163 (2007) 1003-1039.
Peng, et al., “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Adv. Funct. Mater., 16 (2006), 387-394.
Barraclough et al., “Cold Compaction of Silicon Powders Without a Binding Agent”, Materials Letters 61 (2007) 485-487.
International Search Report for PCT/GB2008/002453 dated Oct. 9, 2008.
Written Opinion of the International Searching Authority dated Oct. 9, 2008.
Badel et al., “Formation of Ordered Pore Arrays at the Nanoscale by Electrochemical Etching of N-Type Silicon”, Superlattices and Microstructures, 36 (2004) 245-253.
Beaulieu et al., “Colossal Reversible Volume Changes in Lithium Alloys”, Electrochemical and Solid-State Letters, 4 (9) (2001) A137-A140.
Beaulieu et al., “Reaction of Li with Grain-Boundary Atoms in Nanostructured Compounds”, Journal of the Electrochemical Society, 147 (9) (2000) 3206-3212.
Besenhard et al., “Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?”, Journal of Power Sources, 68 (1997) 87-90.
Boukamp et al., “All-Solid Lithium Electrodes with Mixed-Conductor Matrix”, J. Electrochem. Soc.: Electrochemical Science and Technology, vol. 128, No. 4, (1981) 725-729.
Bourderau, et al., “Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries”, Journal of Power Sources, 81-82 (1999) 233-236.
Colinge, Jean-Pierre, “Silicon-on-Insulator Technology: Materials to VLSI”, Chapter 2, SOI Materials, (1991), Cover page and p. 38.
Deal et al., “General Relationship for the Thermal Oxidation of Silicon”, Journal of Applied Physics, vol. 36, No. 12, (Dec. 1965) 3770-3778.
Feng et al., “Lithography-Free Silicon Micro-Pillars as Catalyst Supports for Microfabricated Fuel Cell Applications”, Electrochemistry Communications, 8 (2006).
Green et al., “Quantum Pillar Structures on n+ Gallium Arsenide Fabricated Using “Natural” Lithography”, Appl. Phys. Lett., 62 (3) (1993) 264-266.
Green et al., “Structured Silicon Anodes for Lithium Battery Applications”, Electrochemical and Solid-State Letters, 6 (5) (2003) A75-A79.
Green et al., “Mesoscopic Hemisphere Arrays for use as Resist in Solid State Structure Fabrication”, J. Vac. Sci. Technol. B 17(5) (1999) 2074-2083.
Yan et al., “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chemical Physics Letters, 323 (2000) 224-228.
Shin et al., “Porous Silicon Negative Electrodes for Rechargeable Lithium Batteries”, Journal of Power Sources, 139 (2005) 314-320.
Li et al., “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”, Electrochemical and Solid-State Letters, 2 (11) (1999) 547-549.
Li et al., “The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature”, Solid State Ionics, 135 (2000) 181-191.
Huggins, Robert A., “Lithium Alloy Anodes” in Handbook of Battery aterials, J.O. Besenhard Ed., Wiley-VCH, Weinheim, 361-381 (1999).
Chang et al., “Ultrafast Growth of Single-Crystalline Si Nanowires”, Materials Letters, 60 (2006) 2125-2128.
Kim et al., “Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries”, Journal of Power Sources, 147 (2005) 227-233.
Jianfeng et al., “Large-Scale Array of Highly Oriented Silicon-Rich Micro/Nanowires Induced by Gas Flow Steering”, Solid State Communications, 133 (2005) 271-275.
Lu et al., “A Study of the Mechanisms of Erosion in Silicon Single Crystals Using Hertzian Fracture Tests”, Wear, 186-187 (1995) 105-116.
Kleimann et al., “Formation of Wide and Deep Pores in Silicon by Electrochemical Etching”, Materials Science and Engineering, B69-70 (2000) 29-33.
Kolasinski, Kurt W., “Silicon Nanostructures from Electroless Electrochemical Etching”, Current Opinion in Solid State and Materials Science, 9 (2005) 73-83.
Pei et al., “Silicon Nanowires Grown from Silicon Monoxide Under Hydrothermal Conditions”, Journal of Crystal Growth, 289 (2006) 423-427.
Chen et al., “Selective Etching of Silicon in Aqueous Ammonia Solution”, Sensors and Actuators, A 49 (1995) 115-121.
Maranchi et al., “Interfacial Properties of the a-Si/Cu:Active-Inactive Thin-Film Anode Systems for Lithium-Ion Batteries”, Journal of the Electrochemical Society: 153 (6) (2006) A1246-A1253.
Nakahata et al., “Fabrication of Lotus-Type Porous Silicon by Unidirectional Solidification in Hyrdogen”, Materials Science and Engineering A 384 (2004) 373-376.
Niparko, J.K. (Editor), “Cochlear Implant Technology”, Pub., Lippincott Williams and Wilkins, Philadelphia, (2000) 108-121.
Ohara et al., “A Thin Film Silicon Anode for Li-Ion Batteries Having a Very Large Specific Capacity and Long Cycle Life”, Journal of Power Sources, 136 (2004) 303-306.
Peng et al., “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater., 13, No. 2 (2003) 127-132.
Peng et al., “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Adv. Mater., 14, No. 16 (2002) 1164-1167.
Peng et al., “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays”, Angew. Chem. Ind. Ed., 44 (2005) 2737-2742.
Peng et al., “Simultaneous Gold Deposition and Formation of Silicon Nanowire Arrays”, Journal of Electroanalytical Chemistry, 558 (2003) 35-39.
Canham, L. T., “Diffusion of Li IN Si”, Properties of Silicon, EMIS Datareviews Series No. 4 (1987) 454-462.
Qiu et al., “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires”, Applied Physics Letters, vol. 84, No. 19, (2004) 3867-3869.
Kim et al., “(110) Silicon Etching for High Aspect Ratio Comb Structures”, 1997 6th International Conference on Emerging Technologies and Factory Automation Proceedings, (1997) 248-252.
Sharma et al., “Thermodynamic Properties of the Lithium-Silicon System”, J. Electrochem. Soc.: Electrochemical Science and Technology, vol. 123 (1976) 1763-1768.
Qiu et al., “From S1 Nanotubes to Nanowires: Synthesis, Characterization, and Self-Assembly”, Journal of Crystal Growth, 277 (2005) 143-148.
Tokoro et al., “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions”, Proceedings of the 1998 International Symposium on Micromechatronics and Human Science (1998) 65-70.
Tsuchiya et al., “Structural Fabrication Using Cesium Chloride Island Arrays as a Resist in a Fluorocarbon Reactive Ion Etching Plasma”, Electrochemical and Solid-State Letters, 3 (1) (2000) 44-46.
Wagner et al., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, vol. 4, No. 5 (1964) 89-90.
Lang, Walter, “Silicon Microstructuring Technology”, Materials Science and Engineering, R17 (1996) 1-55.
Liu et al., “Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive”, Journal of Power Source, 140 (2005) 139-144.
Yan et al., “H2-Assisted Control Growth of Si Nanowires”, Journal of Crystal Growth, 257 (2003) 69-74.
Liu et al., “A Novel Method of Fabricating Porous Silicon Material: Ultrasonically Enhanced Anodic Electrochemical Etching”, Solid State Communications, 127 (2003) 583-588.
Zhang et al., “Bulk-Quantity Si Nanowires Synthesized by SiO Sublimation”, Journal of Crystal Growth, 212 (2000) 115-118.
Wong et al., “Controlled Growth of Silicon Nanowires Synthesized Via Solid-Liquid-Solid Mechanism”, Science and Technology of Advanced Materials, 6 (2005) 330-334.
Zhang et al., “Synthesis of Thin Si Whiskers (Nanowires) Using SiCl4”, Journal of Crystal Growth, 2006 (2001) 185-191.
Yoshio et al., “Electrochemical Behaviors of Silicon Based Anode Material”, Journal of Power Sources, 153 (2006) 375-379.
Zhang et al., “Catalytic Growth of x-FiSi2 and Silicon Nanowires”, Journal of Crystal Growth, 280 (2005) 286-291.
Ivanovskaya et al., “The Effect of Treatment of Cation-Selective Glass Electrodes With AgNO3 Solution on Electrode Properties”, Sensors and Actuators B 24-25 (1995) 304-308.
Peng et al., “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays”, Adv. Mater. (2004), vol. 16, No. 1, 73-76.
Peng et al., “Silicon Nanowires for Rechargeable Lithium-ion Battery Anodes”, Applied Physics Letters (2008) vol. 93, No. 3, pp. 33105-1 to 33105-3.
De Angelis et al., “Water Soluble Nanoporous Nanoparticles for In Vivo Targeted Drug Deliver and Controlled Release in B Cells Tumor Context”, Nanoscale, 1020, vol. 2, p. 2230-2236.
Sharma et al., Diameter control of Ti-catalyzed silicon nanowires, J. Crystal Growth, 267, 613-18 (2004).
Tang et al., “High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays,” Carbon, 42, 191-97 (2004).
De Angelis et al., “Water Soluble Nanoporous Nanoparticles for In Vivo Targeted Drug Deliver and Controlled Release in B Cells Tumor Context”, Nanoscale, 1020, vol. 2, p. 2230-2236, (Year 2010).
Garrido, et al., The Role of Chemical Species in the Passivation of <100> Silicon Surfaces by HF in Water-Ethanol Solutions, J. Electrochem Soc., vol. 143, No. 12, 1996, p. 4059-4066.
Russo, et al., “A Mechanical Approach to Porous Silicon Nanoparticles Fabrication”, Materials 2011, vol. 4, p. 1023-1033.
Takami et al., “Silicon Fiber Formed on Silicon Without Using a Gas Process”, Journal of Applied Physics, vol. 91, No. 12, 2-5 (2002).
Ye et al., Controllable Growth of Silver Nanostructures by a Simple Replacement Reaction and Their SERS Studies, Solid State Sciences 11 (2009), p. 1088-1093.
Chan et al., “Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-Ion Battery Anodes”, Journal of Power Sources, 189(2), 1132-1140, (2009).
Chen et al., Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries, 36 (2006) 1099-1104.
Chen et al., “Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium Ion Batteries”, Journal of Power Sources, 174(2), 538-543, (2007).
Chevrier et al., “Methods for Successful Cycling of Alloy Negative Electrodes in Li-Ion Cells”, 220th ECS Meeting, Abstract #1237 (2011).
Choi et al., “Effect of Fluoroethylene Carbonate Additive on Interfacial Properties of Silicon Thin-Film Electrode”, Journal of Power Sources, 161(2), 1254-1259 (2006).
El Ouatani et al., “The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries”, J. Electrochem. Soc., 156(2), A103-A113 (2009).
Han et al., “Neutralized Poly (Acrylic Acid) as Polymer Binder for High Capacity Silicon Negative Electrodes”, 220th ECS Meeting, Abstract #1250 (2011).
Heinze et al., “Viscosity Behaviour of Multivalent Metal Ion-Containing Carboxymethyl Cellulose Solutions”, Die Angewandte Makromolekulare Chamie 220, 123-132, (Nr. 3848), (1994).
Hochgatterer et al., “Silicon/Graphite Composite Electrodes for High Capacity Anodes: Influence of Binder Chemistry on Cycling Stability”, Electrochemical and Solid-State Letters, 11 (5) (2008) A76-A80.
Komba et al., “Functional Interface of Polymer Modified Graphite Anode”, Journal of Power Sources, 189, (2009), 197-203.
Komba et al., “Polyacrylate as Functional Binder for Silicon and Grapite Composite Electrode in Lithium-Ion Batteries”, Electrochemistry, 79(1), (2011), 6-9.
Komba et al., “Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries”, Electrochemical and Solid-State Letters, 12(5), (2009), A107-A110.
Komba et al., “Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries”, Journal of Physical Chemistry, 115, (2011), 13487-13495.
Lee et al., “Effect of Poly (Acrylic Acid) on Adhesion Strength and Electrochemical Performance of Natural Graphite Negative Electrode for Lithium-Ion Batteries”, Journal of Power Sources, 161(1) (2006), 612-616.
Li et al., “Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries”, Electrochemical and Solid-State Letters, 10(2) (2007), A17-A20.
Liu et al., “Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder”, Electrochemical and Solid-State Letters, 8(2) (2005), A100-A103.
Obrovac et al., “Structural Changes in Silicon Anodes During Lithium Insertion/Extraction”, Electrochemical and Solid-State Letters, 7(5), (2004), A96-A96.
Sugama, et al., “Nature of Interfacial Interaction Mechanisms Between Polyacrylic Acid Macromolecules and Oxide Metal Surfaces”, Journal of Materials Science, 19 (1984) 4045-4056.
Ui et al., “Improvement of Electrochemical Characteristics of Natural Graphite Negative Electrode Coated With Polyacrylic Acid in Pure Propylene Carbonate Electrolyte”, Journal of Power Sources, 173(1), (2007), 518-521.
Wen et al., “Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System”, Journal of Solid State Chemistry, 37 (1981) 271-278.
Weydanz et al., “A Room Temperature Study of the Binary Lithium-Silicon and the Ternary Lithium-Chromium-Silicon System for use in Rechargeable Lithium Batteries”, Journal of Power Sources, 81-82 (1999) 237-242.
Yabuuchi et al., “Graphite-Silicon-Polyacrylate Negative Electrodes inlonic Liquid Electrolyte for Safer Rechargeable Li-Ion Batteries”, Advanced Energy Materials, 1, (2011), 759-765.
Zhang et al., “A Review on Electrolyte Additives for Lithium-Ion Batteries”, Journal of Power Sources, 162(2), 1379-1394, (2006).
Key to Metal Aluminum-Silicon Alloys, www.keytometals.com/Article80, Oct. 26, 2011.
Related Publications (1)
Number Date Country
20100190057 A1 Jul 2010 US