The present invention relates to electrode configurations useful for coating interior and exterior surfaces of conductive substrates in an electrodeposition coating process.
The fundamental physical principle of electrocoat is that materials with opposite electrical charges attract each other. An electrocoat system applies a DC charge to a conductive substrate immersed in a bath of oppositely charged paint particles. In theory, the paint particles are drawn to the conductive substrate and paint is deposited on the conductive substrate, forming an even, continuous film over every surface, in every crevice and corner, until the electrocoat reaches the desired thickness. At that thickness, the film insulates the conductive substrate, so attraction stops and the electrocoat process is complete. The desired thickness can be controlled by manipulating the temperature of the bath, the amount of voltage applied, and/or by the coating deposition time. Depending on the polarity of the charge, electrocoat is classified as either anodic or cathodic.
While the theory of electrocoat suggests that each and every surface of a conductive substrate immersed in the bath reaches the same film thickness, this is not always the case. In fact, it is ordinarily very difficult to electrocoat recessed areas of conductive substrates, especially interior regions of hollowed out conductive substrates.
For example, it is very difficult to coat the internal surfaces of hand grenade bodies. Grenade bodies have a nearly spherical shape with only a small hole to access its internal surfaces. Thus, these interior surfaces typically have limited internal paint coverage due to their part geometry.
It would thus be highly desirable to provide a mechanism to attain greater internal paint coverage for grenade bodies. This in turn can be translated to other conductive substrates having similarly difficult to paint internal geometries.
Another related issue with electrocoated films in general relates to the issue of electrode contact points on the surface of the coated conductive substrate and their effect on film quality and corrosion protection. Generally speaking, the coated films in the areas of the contact points may have varying film thicknesses, and thus may be more prone to corrosion and/or provide an unpleasing appearance.
Thus, it would be highly desirable to locate these electrode contact points in recessed or hidden areas that are less likely to be exposed to the environment and to provide a pleasing outer appearance. In the context of a hand grenade, such an area would be along an internal surface that is not exposed to the environment during subsequent use.
The present invention discloses an electrode assembly comprising: (a) a current source; (b) a first counter electrode, and (c) an electrode assembly comprising (1) a second counter electrode and (2) a deployable primary electrode insulatingly coupled to the second counter electrode and movable between a non-deployed position and a deployed position, the deployable primary electrode comprising a first contact portion and a second contact portion; wherein the first contact portion and the second contact portion are separated by a first distance in the non-deployed position and wherein the first contact portion and the second contact portion are separated by a second distance in the deployed position, the first distance is different than the second distance.
An associated method for applying an electrodeposited coating to the outer surface and inner surface of the conductive substrate using the electrode assembly is also provided.
For purposes of the following detailed description, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. Moreover, other than in any operating examples, or where otherwise indicated, all numbers expressing, for example, quantities of ingredients used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard variation found in their respective testing measurements.
Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
In this application, the use of the singular includes the plural and plural encompasses singular, unless specifically stated otherwise. In addition, in this application, the use of “or” means “and/or” unless specifically stated otherwise, even though “and/or” may be explicitly used in certain instances.
As noted above, the present invention discloses an electrode assembly that is used for coating inner and outer surfaces of conductive substrates in an electrodeposition coating line. Notably, the present invention provides an electrode assembly, and associated method of use, that may be utilized to coat conductive substrates having inner surface that are relatively difficult to coat due to their part geometry. For example, the present invention finds use in coating metal parts having a hollowed out interior region. One exemplary part that may be coated is a hand grenade, which is generally spherical in shape and includes a small hole to access its interior surfaces.
The electrode assembly, in certain embodiments and as discussed in more detail below with respect to the more specific exemplary embodiments, includes a first counter electrode (in some cases referred to as an external counter electrode) and an electrode assembly comprising a second counter electrode (in some cases also known as a internal counter electrode) and a primary electrode, in which the primary electrode is a deployable electrode (“a deployable primary electrode”) that has at least a pair of contact portions. The electrode assembly is inserted with the hollowed out interior region of the conductive substrate in a non-deployed position (also known as an insertion position), wherein the deployable primary electrode is deployed (i.e. moved from a non-deployed position to a deployed position—otherwise known as an operational position) and the respective contact portions are placed into contact (i.e. electrical contact) with the inner surface of the conductive substrate. The conductive substrate is submerged in an electrodeposition bath that includes an electrodepositable coating composition. The bath includes colloidal particles suspended in a liquid medium. The colloidal particles migrate under the influence of an electric field (electrophoresis) and are deposited onto the inner and outer surfaces of the conductive substrate to a desired thickness. The desired thickness of the deposited coating onto the inner surface and the outer surface of the conductive substrate can be controlled by manipulating the temperature of the electrodeposition bath, the amount of voltage applied from a current source, and/or by the coating deposition time.
The present invention may be utilized in conventional cationic or anionic electrodeposition systems. In anodic deposition systems, the first counter electrode and the second counter electrode are electrically coupled together and are the cathode, and the conductive substrate (here, the deployable internal electrode) is an anode, and the electrodepositable coating composition will have negatively charged anions that react with the positively charged hydrogen ions (protons) which are being produced at the anode. Conversely, in a cationic deposition process, the first counter electrode and the second counter electrode are electrically coupled together and are the anode (and the deployable internal electrode is the cathode), and the electrodeposition bath to be deposited will have salts of a base as the charge bearing group. The composition of the electrodeposition bath is conventional in nature and does not form a part of the inventive aspect of the present invention as described herein.
The present invention may also be used to coat the inner and outer surfaces of conductive substrates having on various internal hollowed out configurations. In general, as will be utilized in each the embodiments described below for the present invention, the conductive substrate 50 includes an outer surface 52 and an inner surface 54. The inner surface 54 is accessible through an internal opening 56 having a width w1. The inner surface 54 defines a hollowed out region, or interior 62, having at least one width w2 that is greater than the internal opening width w1 of the opening 56. The conductive substrate 50 may be made of any variety of conductive materials, and may have other shapes and wall thicknesses as shown in the drawings described herein, and is thus not meant to be limited as illustrated in the accompanying figures.
In one exemplary embodiment, as shown in
The first counter electrode 99 may be of any shape or size, here shown generally as a rod. A portion of the first counter electrode 99 may be insulated (not shown), but at least a portion is not covered with insulation and is immersed within the electrodeposition bath during the coating process.
The second counter electrode 120 may be of any shape or size, here shown generally as a rod, as long as its greatest length and/or width is less than the maximum width w1 of the internal opening 56 of the conductive substrate 50. A substantial portion of the second counter electrode 120 may be insulated with an insulator 122 to prevent incidental contact with the deployable primary electrode 140. At least a portion, here shown as the bottommost portion 124, of the second counter electrode 120 is not covered with insulation and is immersed within the electrodeposition bath 80 during the electrodeposition process (i.e. the bottommost portion 124 acts as the anode when the deployable primary electrode 140 is the cathode, and vice versa). In certain embodiments, the tip 124A of the bottommost portion 124, as shown in
The deployable primary electrode 140 includes a first electrode portion 141 comprising a first bar portion 142 extending from a first gear portion 143. The first bar portion 142 also includes a first contact portion 144 opposite the first gear portion 143. The first gear portion 143 is rotatably coupled to an insulator 161 and includes a plurality of teeth 145.
The deployable primary electrode 140 includes also includes a second electrode portion 151 comprising a second bar portion 152 extending from a second gear portion 153. The second bar portion 152 also includes a second contact portion 154 opposite the second gear portion 153. The second gear portion 153 is rotatably coupled to the insulator 161 and includes a plurality of teeth 155.
The deployable primary electrode 140 also includes a rod 160 having a first end 162 and a second end 164. The second end 164 includes a plurality of teeth 166 that separately engage the corresponding plurality of teeth 145 of the first internal electrode portion 141 and the plurality of teeth 155 of the second internal electrode portion 151. A portion 168 of the rod 160 may be encased within an insulating layer 170; however, the portion of the rod 160 that is contacting the first internal electrode portion 141 and second internal electrode portion 151 is exposed (i.e. not covered with an insulating layer 170). As shown in
To utilize the geared insertion electrode assembly 100 to coat the conductive substrate 50, it must first be inserted within an internal opening 56 of a conductive substrate 50 in its non-deployed position, as shown in
After insertion, the deployable primary electrode 140 is deployed (i.e. moved from its non-deployed position or insertion position, as shown in
The conductive substrate 50, the counter electrode 99, and the geared insertion electrode assembly 100 may then be immersed in an electrodeposition bath 80 having an electrodepositable coating composition 82 at a predetermined bath temperature. Alternatively, as shown in
To remove the geared insertion electrode assembly 100 after the electrodeposition process, the primary electrode 140 is moved such that the first contact portion 144 and the second contact portion 154 are no longer contact the respective portion 55A, 55B of the inner surface 54 of the conductive substrate 50 (i.e., the electrode assembly 100 is moved from its deployed position, as shown in
The coated substrate may then be rinsed and baked in an oven, by means well known to those of ordinary skill in the coatings art, to form a cured coating layer on the inner surface 54 and outer surface 52 of the conductive substrate 50. Alternatively, the coated substrate could be rinsed prior to removal of the geared insertion electrode assembly 100.
In another exemplary embodiment, as shown in
Similar to the geared insertion electrode assembly 100 of
To utilize the bar insertion electrode assembly 200, it must first be inserted within an internal opening 56 of a conductive substrate 50 while the assembly 200 is in its non-deployed position, as shown in
After insertion, as shown in
Of course, alternatively, as opposed to moving the second counter electrode 204 downward and away from the primary electrode 208 to pivot the metal bar 202, the same result can be achieved by moving the primary electrode 208 upward and away from the second counter electrode 204. Still further, the pivoting of the metal bar 202 to and from the horizontal position may also be achieved by moving both the primary electrode 208 and the second counter electrode 204 at the same time in opposite directions and away or towards one another and still fall within the spirit of the present invention. For ease of description and depiction, the movement of the counter electrode 204 is shown in
The conductive substrate 50, the first counter electrode 99, and the bar insertion electrode assembly 200 may then be immersed in an electrodeposition bath 80 having an electrodepositable coating composition 82 at a predetermined bath temperature. A direct current is then applied from the current source 190 to a predetermined voltage for a predetermined amount of time to apply a coating layer (not shown) to the inner surface 54 and outer surface 52 at a predetermined thickness in a conventional manner well known to those of ordinary skill in the art in the electrodeposition process.
To remove the bar insertion electrode assembly 200, the first contact portion 210 and second contact portion 212 are first moved out of contact with respective portions 55A, 55B of the inner surface 54 of the conductive substrate 50. Next, the bar insertion electrode assembly 200 is moved from the deployed position to the non-deployed position by moving the second counter electrode 204 in a second direction opposite the first direction (upward as shown in FIG. 5—opposite arrow 222) and also in a direction towards the primary electrode 208 (right as shown in FIG. 5—opposite arrow 224). The relative movement of the second counter electrode 204 upward and towards the primary electrode 208 causes the metal bar 202 to pivot relative to the second counter electrode 204 and to the primary electrode 208 and into the non-deployed position. In the non-deployed position, the relative distance d6 between the primary electrode 208 and second counter electrode 204 is minimized, and corresponds to a position wherein the length I1 of the metal bar 212 is close to vertical with respect to both the primary electrode 208 and second counter electrode 204 (shown as substantially vertical in
The coated substrate may then be rinsed and baked in an oven, by means well known to those of ordinary skill in the coatings art, to form a cured coating layer on the inner surface 54 and outer surface 52 of the conductive substrate 50. Alternatively, the coated substrate could be rinsed prior to removal of the electrode assembly 200.
In still another exemplary embodiment, as shown in
The second counter electrode 310 may be of any shape or size, here shown generally as a rod, as long as its greatest length and/or width is less than the maximum width w10 of the internal opening 56 of the conductive substrate 50. A substantial portion of the second counter electrode 310 may be insulated with an insulator 312 to prevent incidental contact with the deployable primary electrode 320. At least a portion, here shown as the bottommost portion 314, of the second counter electrode 310 is not covered with insulation and is immersed within the electrodeposition bath 80 during the electrodeposition process (i.e. the bottommost portion 314 acts as the anode when the deployable primary electrode is the cathode, and vice versa). In certain embodiments, the tip portion 316 of the second counter electrode 310 is insulated with the insulator 312.
The deployable primary electrode 320 includes a first bar portion 322 coupled to a first wire 324 through a ring portion 326. The ring portion 326 is located between a first contact portion 328 and a pivot portion 330.
The deployable primary electrode 320 also has a second bar portion 340 coupled to a second wire 342 through a ring portion 344. The ring portion 344 is located between a second contact portion 346 and a pivot portion 350. The pivot portion 350 of the second bar portion 340 is also pivotally coupled to the pivot portion 330 of the first bar portion 322.
In addition, one or more insulators, here shown as two insulators 362, 364, are preferably used to support the first and second wires 324, 342 in close proximity to the second counter electrode 310. In addition, a third insulator portion 366 may be slidingly coupled to the second counter electrode 310 and first and second wires 324, 340 to maintain the positioning of the first and second wires 324, 340 relative to the second counter electrode 310.
To utilize the toggle-type electrode assembly 300, it must first be inserted within an internal opening 56 of a conductive substrate in its non-deployed position, as shown in
The non-deployed position, as shown best in
After insertion, as shown in
The conductive substrate 50, first counter electrode 99 and the toggle type electrode assembly 300 may then be immersed in an electrodeposition bath 80 having an electrodepositable coating composition 82 at a predetermined bath temperature. A direct current is then applied from the current source 190 to a predetermined voltage for a predetermined amount of time to apply a coating layer (not shown) to the inner surface 54 and outer surface 52 at a predetermined thickness in a conventional manner well known to those of ordinary skill in the art in the electrodeposition process.
To remove the toggle-type electrode assembly 300, the assembly is first moved from its deployed position to its non-deployed position by moving the first and second wires 324, 342 in a second direction opposite the first direction (upward as shown in
In still another embodiment, as shown in
The second counter electrode 410 may be of any shape or size, here shown generally as a rod, as long as its greatest length and/or width is less than the maximum width w12 of the internal opening 56 of the conductive substrate 50. A substantial portion of the second counter electrode 410 may be insulated with an insulator 412 to prevent incidental contact with the deployable primary electrode 420. At least a portion, here shown as the bottommost portion 414, of the second counter electrode 410 is not covered with insulation and is immersed within the electrodeposition bath 80 during the electrodeposition process (i.e. the bottommost portion 414 acts as the anode when the deployable primary electrode is the cathode, and vice versa). In certain embodiments, the tip portion 419 of the second counter electrode 410 is insulated with the insulator 412.
The primary electrode 420 includes having a length portion 422, here depicted as a rod, coupled to a disk portion 424. A first bar portion 426 is fixedly coupled to a first surface 428 of the disk portion 424 at a first end 430 using a pin 432. The first bar portion 426 also has a first contact portion 434 opposite the first end 430.
In addition, the primary electrode 420 has a second bar portion 440 that is also fixedly coupled to the first surface 428 of the disk portion 424 at a second end 442. The second bar portion 440 also has a second contact portion 444 opposite said second end 442.
The primary electrode 420 also has an insulating disk portion 450 coupled to the outer periphery 436 of the disk portion 424 and is fixedly coupled to the counter electrode 410. The insulating disk portion 450 is rotatable around the inner disk portion 424. The insulating disk portion 450 also includes a first stopper portion 452 associated with the first contact portion 434 and a second stopper portion 454 associated with the second contact portion 444.
To utilize the torsional insertion electrode assembly 400, it must first be inserted within an internal opening 56 of a conductive substrate 50 in its non-deployed position, as shown in
The non-deployed position, as shown best in
Once inserted within the interior 62 of the conductive substrate 50, as best shown in
The conductive substrate 50, first counter electrode 99 and the torsional insertion electrode assembly 400 may then be immersed in an electrodeposition bath 80 having an electrodepositable coating composition 82 at a predetermined bath temperature. A direct current is then applied from the current source 190 to a predetermined voltage for a predetermined amount of time to apply a coating layer (not shown) to the inner surface 54 and outer surface 52 at a predetermined thickness in a conventional manner well known to those of ordinary skill in the art in the electrodeposition process.
To remove the torsional insertion electrode assembly 400 after electrocoating, the primary electrode 420 is moved back from its deployed position to its non-deployed position. This is done by rotating the disk portion 424 in a second direction (counterclockwise as shown in
While each of the exemplary embodiments shows the insertion of a single electrode assembly within a single conductive substrate, it is specifically contemplated that this system can be scaled up to coat multiple conductive substrates, such as multiple hand grenades in a single application step that utilizes one deployable electrode assembly per hand grenade. Further, the exemplary embodiments may be modified as to size and shape to be utilized with various other conductive parts having different part geometries, and thus are not limited to the part geometries described herein. For example, the inner surface may have a different relative shape compared to the outer surface, or the inner surface and outer surface may have a different overall shape other than substantially spherical, as in the case of a hand grenade. Moreover, it is specifically contemplated wherein the second counter electrode, the first counter electrode and the primary electrode themselves may have different shapes, with the caveat that the electrode assembly can easily be inserted within the hollowed out interior region of the conductive substrate in a non-deployed position and thereafter be placed into contact with the inner surface of the conductive substrate in the deployed position. Again, as noted above, it is also contemplated that the primary electrode may act as the anode and the counter electrodes act as cathodes in certain systems, or the primary electrode may act as the cathode and the counter electrodes may act as the anodes in certain systems, with substantially the same configuration of assembly parts. Further, in other exemplary embodiments, multiple first counter electrodes may be utilized in conjunction with a single deployable internal electrode assembly to coat individual conductive substrates. Also, in still other exemplary embodiments not shown, multiple deployable electrode assemblies may be inserted into a single hollow interior region of a conductive substrate. In still other exemplary embodiments, the number of second counter electrodes may be different in number from the number of primary electrodes and still fall within the spirit of the present invention. In any of the exemplary embodiments illustrated or contemplated, the coatings coverage on the entirety of the surfaces of the conductive substrate, whether external or internal, can be greatly enhanced.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.
This invention was made with Government support under Contract No. W15QKN-07-C-0048 awarded by the Armament Research Development and Engineering Center (ARDEC). The United States Government may have certain rights in this invention.