Electrode for a Plasma Torch

Information

  • Patent Application
  • 20110240609
  • Publication Number
    20110240609
  • Date Filed
    November 27, 2009
    15 years ago
  • Date Published
    October 06, 2011
    13 years ago
Abstract
An electrode for a plasma torch and a plasma torch head comprise an elongated electrode holder with a front surface on the electrode tip and a hole arranged in the electrode tip along a central axis through the electrode holder, and an emission insert arranged iii the hole such that an emission surface of the emission insert is exposed. The emission surface is set back relative to the front surface of the electrode holder. An electrode for a plasma torch and a plasma torch head also comprise an electrode socket and an electrode holder, the electrode socket having an internal thread, and the electrode holder having an external thread and an O-ring in a groove in the cylindrical outer surface. The electrode holder is screwed together with the electrode socket via the external thread and the internal thread and sealed by means of the O-ring.
Description

The present invention relates to an electrode for a plasma torch and a plasma torch head with said plasma torch.


A plasma is the term used for an electrically conductive gas consisting of positive and negative ions, electrons and excited and neutral atoms and molecules, which is heated thermally to a high temperature.


Various gases are used as plasma gases, such as mono-atomic argon and/or the diatomic gases hydrogen, nitrogen, oxygen or air. These gases are ionised and dissociated by the energy of an electric arc. The electric arc is constricted by a nozzle and is then referred to as a plasma jet.


The parameters of the plasma jet can be heavily influenced by the design of the nozzle and the electrode. These parameters of the plasma jet are, for example, the diameter of the jet, the temperature, the energy density and the flow rate of the gas.


In plasma cutting, for example, the plasma is constricted by a nozzle, which can be cooled by gas or water. In this way, energy densities of up to 2×106 W/cm2 can be achieved. Temperatures of up to 30,000° C. arise in the plasma jet, which, in combination with the high flow rate of the gas, make it possible to achieve very high cutting speeds on materials.


Because of the high thermal stress on the nozzle, it is usually made from a metallic material, preferably copper, because of its high electrical conductivity and thermal conductivity. The same is true of the electrode holder, though it may also be made of silver. The nozzle is then inserted into a plasma torch, the main elements of which are a plasma torch head, a nozzle cap, a plasma gas conducting member, a nozzle, a nozzle holder, an electrode quill, an electrode holder with an electrode insert and, in modern plasma burners, a holder for a nozzle protection cap and a nozzle protection cap. The electrode holder fixes a pointed electrode insert, known as an emission insert, made from tungsten, which is suitable when non-oxidising gases are used as the plasma gas, such as a mixture of argon and hydrogen. A flat-tip electrode, the electrode insert of which is made of hafnium, is also suitable when oxidising gases are used as the plasma gas, such as air or oxygen.


In order to achieve a long service life for the nozzle and the electrode, it is often cooled with a liquid, such as water, though it may also be cooled with a gas.


For this reason, a distinction is made between liquid-cooled and gas-cooled plasma torches.


In the state of the art, the electrode consists of its electrode holder, which is made from a material with good electric and thermal conductivity, e.g. copper and silver or their alloys, and an emission insert consisting of a temperature-resistant material, e.g. tungsten, zirconium or hafnium. For plasma gases containing oxygen, zirconium can be used, though hafnium is better suited because of its better thermal properties, since its oxide is more temperature-resistant.


In order to achieve a long service life for the electrode, the temperature-resistant material is introduced into the holder as an emission insert, which is then cooled. The most effective form of cooling is liquid cooling.


DD 87361 B1 describes an electrode (cathode) of this kind for oxidising gas. The cathode (emission insert) consists of a material, e.g. zirconium, the oxide of which is temperature-resistant and which is inserted into a cathode holder made of copper. The cathode holder is cooled from the inside by a cooling water channel. It also describes the problem of the limited endurance (short service life) of the cathode, which is caused by the rotation of the plasma gas, which is needed for a good cut quality. The cathode holder has a collar with a gas conducting ring arranged around it, which has gas channels incorporated in it to divide the plasma gas into a partial stream and a main stream, which form the main stream on the side facing the nozzle and cause it to rotate and the partial stream on the side facing the cathode holder, rotating in the opposite direction, or else the collar of the cathode holder has recesses which serve to form and deflect a partial gas stream. The intention is in this way to create a calmed gas zone upstream of the emission insert in order to reduce its wear. With this method, however, the cut qualities obtained are not so good as with powerfully rotating plasma gas.


In addition, in DE 690 14 289 T3 and in DE 699 37 323 T2, electrode arrangements are described in which a sleeve (separator) is attached around the emission insert, which separates the emission insert from the electrode holder. The separator here consists mainly of silver and the electrode holder mainly of copper. The silver ensures a long service life, especially when cutting with pure oxygen, because silver reacts more inertly with oxygen than copper does. It is, however, complex to manufacture these electrode arrangements.


It is known from DE 695 12 247 T2 that the emission surface of the emission insert is initially shaped such that it determines a recess in the emission insert, which has an initial depth in the central axis that is proportional to the cutting stream and the diameter of the emission insert. This recess causes the deposits of emission material on the inside surface of the nozzle resulting from the ignition and operation of the plasma arc to be reduced. Studies have shown, however, that the service life cannot be extended in this way.


The invention is based on the problem of increasing the service life of an electrode, especially the emission insert, for a plasma torch and, in the process, of reducing the production effort at the same time.


This problem is solved in accordance with the invention by an electrode for a plasma torch, comprising: an elongate electrode holder with a front surface on the electrode tip and a drilled hole arranged in the electrode tip along a central axis through the electrode holder, and an emission insert arranged in the hole in such a way that an emission surface of the emission insert is exposed, characterised in that the emission surface is set back relative to the front surface of the electrode holder.


According to a second aspect, this problem is solved by an electrode for a plasma torch, comprising: an electrode socket and an electrode holder, the electrode socket having an internal thread, and the electrode holder having an external thread and a groove in the cylindrical outer surface, and the electrode holder is screwed into the electrode socket via the external thread and the internal thread and sealed by means of an O-ring. The O-ring may be disposed in the groove for sealing purposes.


The various dependent claims define advantageous further embodiments of the invention.


The invention is based on the surprising finding that by setting back the emission surface relative to the front surface of the electrode holder, the service life of the electrode is increased.





Further features and advantages of the invention will become clear from the attached claims and the following description, in which a number of sample embodiments of the invention are illustrated in detail with reference to the schematic drawings, in which



FIG. 1 shows a longitudinal section through a plasma torch head in accordance with a first particular embodiment of the invention, in which both better centring and/or sealing of the electrode and also a special emission insert are provided in order to extend the service life and improve the operating safety of the plasma torch;



FIG. 2 shows details of the improved centring and sealing of the electrode shown in FIG. 1;



FIG. 3 shows an electrode holder before the introduction of an emission insert;



FIGS. 4 to 10 show special embodiments of the electrode of the invention in a longitudinal section and details of the emission inserts in a longitudinal section and in a view from the front; and



FIG. 11 shows surface shapes of particular embodiments of the emission insert from the front.






FIG. 1 shows a plasma torch head 1 in accordance with a particular embodiment of the invention, the main components of which are at least a nozzle 4, an electrode 7, or, to be precise, a flat-tip electrode, which has an electrode holder 7.5 with an external thread 7.4 and an emission insert 7.1, and a gas conductor 3.


In the case described here, the nozzle 4 is fixed in position by a nozzle holder 5 and a nozzle cap 2. An electrode socket 6 receives the electrode holder 7.5 via an internal thread 6.4. The gas conductor 3 is located between the electrode 7 and the nozzle 4 and causes a plasma gas PG to rotate. The plasma torch head 1 has water cooling, which flows through the electrode interior by means of a cooling tube 10 from the coolant supply (WV1) to the coolant return (WR1) and the nozzle 4 in the space between the nozzle 4 and the nozzle cap 2 from the coolant supply WV2 to the coolant return WR2. In addition, the plasma torch head 1 has a nozzle protection cap 9, which in this embodiment is screwed onto a nozzle protection cap holder 8. The secondary gas, which protects the nozzle, especially the nozzle tip, flows between the nozzle protection cap 9 and the nozzle cap 2.



FIG. 2 shows the improved centring and sealing of the electrode 7 vis-à-vis the electrode holder 7.5. On the side facing electrode socket 6, the electrode 7 has the external thread 7.4, a groove 7.3 for receiving an O-ring 7.2 and a cylindrical outer surface 7.6 (centring surface). This cylindrical outer surface 7.6 has a narrow tolerance with the cylindrical internal surface 6.6 (centring surface) of the electrode socket 6. This is achieved, for example, by means of a loose fit H7/h6 in accordance with DIN ISO 286 of the type commonly used for centring. Thanks to the combination of these features, good centricity between the electrode 7 and the electrode socket 6, and hence the plasma torch, and reliable sealing are achieved.



FIG. 3 shows an electrode 7 before the introduction of the emission insert 7.1 into the electrode holder 7.5.



FIGS. 4 to 10 show special embodiments of the electrode 7 of the invention, which has an electrode holder 7.5 and an emission insert 7.1.


For the distance a between the surface 7.7 of the electrode holder 7.5 and the surface 7.11 of the emission insert 7.1 and the distance b between the surface 7.7 of the electrode holder 7.5 and the surface 7.12 of the emission insert 7.1, the following relationships apply:


a>b


a=0.15 mm to 0.5 mm


b=0.1 mm to 0.45 mm


a≧1.3×b to 3×b


The angle γ in the surface of the emission insert 7.1 is advantageously in the range from 0° to 120°.


The diameter c1 of the hole for the emission insert 7.1 in the electrode holder 7.5 is advantageously in the range from 0.5 mm to 2.9 mm. In addition, it is advantageous for the following to apply to the emission insert 7.1:


diameter c2: c2=0.5 mm to 2.9 mm


diameter d of the surface 7.11: c2=0.3 mm to 2.7 mm


As to the rest, the following applies to the width g of the annular surface A2: g≧0.1 mm=(c2−d)/2


The angle β of the emission insert 7.1 is advantageously in the range from 10° to 90°, while the angle α of the hole in the electrode holder 7.5 is advantageously in the range from 80° to 160°, where α>β.



FIG. 11 shows different surface shapes of the emission insert 7.1. The area A2 of the surface of the emission insert 7.1 adjacent to the electrode holder 7.5 is at least as big as the minimum possible area A2 of the circular ring which results in the case of a circular design, depending on the diameter c2. Between the peripheral surface 7.12 and the central surface 7.11, it is also possible to provide a transitional surface 7.13 (e.g. inclined) with an area A3. The outer contours of the surfaces 7.11 and 7.13 may, for example, be triangular, polygonal or star-shaped or the like.


The features of the invention disclosed in the above description, in the drawings and in the claims can be essential to implementing the invention in its various embodiments both individually and in any combinations.


LIST OF REFERENCE NUMERALS




  • 1 Plasma torch head


  • 2 Nozzle cap


  • 3 Gas conductor


  • 4 Nozzle


  • 5 Nozzle holder


  • 6 Electrode socket


  • 6.4 Internal thread


  • 6.6 Cylindrical internal surface


  • 7 Electrode


  • 7.1 Emission insert


  • 7.2 O-ring


  • 7.3 Groove


  • 7.4 External thread


  • 7.5 Electrode holder


  • 7.6 Cylindrical outer surface


  • 7.7 Surface of the electrode holder at the electrode tip


  • 7.11 Central surface of the emission insert


  • 7.12 Peripheral surface of the emission insert


  • 7.13 Transitional surface


  • 7.14 Hole in the electrode holder 7.5


  • 7.15 End of the emission insert 7.1


  • 7.16 Bottom of the hole 7.14


  • 8 Nozzle protection cap holder


  • 9 Nozzle protection cap

  • A1 Area of the surface 7.11:

  • A2 Area of the surface 7.12

  • a Space between the surface 7.7 of the electrode holder 7.5 and the central surface 7.11 of the emission insert 7.1

  • b Space between the surface 7.7 of the electrode holder 7.5 and the peripheral surface 7.12 of the emission insert 7.1

  • c1 Diameter of the hole for the emission insert 7.1 in the electrode holder 7.5

  • c2 Diameter of the emission insert 7.1

  • d Diameter of the surface 7.11 of the emission insert 7.1

  • e Length of the emission insert 7.1

  • f Length of the cylindrical part of the hole for the emission insert 7.1 in the electrode holder 7.5

  • g Width of the annular surface A2

  • α Angle of the hole in the electrode holder 7.5

  • β Angle of the emission insert 7.1

  • γ Angle in the surface of the emission insert 7

  • r Radius


Claims
  • 1. An electrode for a plasma torch, comprising: an elongated electrode holder, said electrode holder having an electrode tip, a front surface on said electrode tip, and a hole arranged in said electrode tip along a central axis through said electrode holder;an emission insert having an emission surface, said emission insert being arranged in said hole such that said emission surface is exposed; andsaid emission surface being set back relative to said front surface of said electrode holder, said emission surface having a central surface and a peripheral surface, a distance a between said central surface of said emission insert and said front surface of said electrode holder is greater than a distance b between said peripheral surface of said emission insert and said front surface of said electrode holder.
  • 2. The electrode of claim 1 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 3. The electrode of claim 1 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 4. The electrode of claim 1, said hole having a conical bottom.
  • 5. The electrode of claim 4, said conical bottom having an angle α in the range of about 80°to 160°.
  • 6. The electrode of claim 1, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder being screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 7. The electrode of claim 6 further comprising an O-ring disposed in said groove for sealing.
  • 8. An electrode for a plasma torch, comprising: an elongated electrode holder, said electrode holder having an electrode tip, a front surface on said electrode tip, and a hole arranged in said electrode tip along a central axis through said electrode holder;an emission insert having an emission surface, said emission insert being arranged in said hole such that said emission surface is exposed; andsaid emission surface being set back relative to said front surface of said electrode holder, said emission surface including a central surface and a peripheral surface, said peripheral surface being inclined.
  • 9. The electrode of claim 8 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 10. The electrode of claim 9 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 11. The electrode of claim 9, said hole having a conical bottom.
  • 12. The electrode of claim 11, said conical bottom having an angle α in the range of about 80° to 160°.
  • 13. The electrode of claim 8, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 14. The electrode of claim 13 further comprising an O-ring disposed in said groove for sealing.
  • 15. An electrode for a plasma torch, comprising: an electrode holder, said electrode holder having an end, said electrode socket being positioned to receive said end;said electrode holder having an external thread at said end and a groove running radially externally; anda cylindrical centring surface adjoining said groove on a side facing away from said end of said electrode holder for centring said electrode relative to said electrode socket.
  • 16. The electrode of claim 15 further comprising: said electrode holder being elongated and having an electrode tip, a front surface on said electrode tip, and a hole positioned at said electrode tip along a central axis through said electrode holder; andan emission insert positioned in said hole such that an emission surface of said emission insert is exposed, said emission surface being set back relative to said front surface of said electrode holder.
  • 17. The electrode of claim 16, said emission surface comprising a central surface and a peripheral surface.
  • 18. The electrode of claim 17, a distance a between said central surface of said emission insert and said front surface of said electrode holder is greater than a distance b between said peripheral surface of said emission insert and said front surface of said electrode holder.
  • 19. The electrode of claim 17, said peripheral surface being inclined.
  • 20. The electrode of claim 16 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 21. The electrode of claim 16 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 22. The electrode of claim 16, said hole having a conical bottom.
  • 23. The electrode of claim 22, said conical bottom having an angle α in the range of about 80° to 160°.
  • 24. The electrode of claim 15, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder being screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 25. The electrode of claim 24 further comprising an O-ring disposed in said groove for sealing.
  • 26. A plasma torch head comprising: an electrode and an elongated electrode holder, said electrode holder having an electrode tip, a front surface on said electrode tip, and a hole arranged in said electrode tip along a central axis through said electrode holder;an emission insert having an emission surface, said emission insert being arranged in said hole such that said emission surface is exposed; andsaid emission surface being set back relative to said front surface of said electrode holder, said emission surface having a central surface and a peripheral surface, a distance a between said central surface of said emission insert and said front surface of said electrode holder is greater than a distance b between said peripheral surface of said emission insert and said front surface of said electrode holder.
  • 27. The plasma torch head of claim 26 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 28. The plasma torch head of claim 26 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 29. The plasma torch head of claim 26, said hole having a conical bottom.
  • 30. The plasma torch head claim 29, said conical bottom having an angle α in the range of about 80° to 160°.
  • 31. The plasma torch head of claim 26, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder being screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 32. The plasma torch head of claim 31 further comprising an O-ring disposed in said groove for sealing.
  • 33. A plasma torch head, comprising: an electrode and an elongated electrode holder, said electrode holder having an electrode tip, a front surface on said electrode tip, and a hole arranged in said electrode tip along a central axis through said electrode holder;an emission insert having an emission surface, said emission insert being arranged in said hole such that said emission surface is exposed; andsaid emission surface being set back relative to said front surface of said electrode holder, said emission surface including a central surface and a peripheral surface, said peripheral surface being inclined.
  • 34. The plasma torch head of claim 33 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 35. The plasma torch head of claim 34 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 36. The plasma torch head of claim 34, said hole having a conical bottom.
  • 37. The plasma torch head of claim 36, said conical bottom having an angle α in the range of about 80° to 160°.
  • 38. The plasma torch head of claim 33, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder being screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 39. The plasma torch head of claim 33 further comprising an O-ring disposed in said groove for sealing.
  • 40. A plasma torch head comprising: an electrode and an electrode holder, said electrode holder having an end, said electrode socket being positioned to receive said end;said electrode holder having an external thread at said end and a groove running radially externally; anda cylindrical centring surface adjoining said groove on a side facing away from said end of said electrode holder for centring said electrode relative to said electrode socket.
  • 41. The plasma torch head of claim 40 further comprising: said electrode holder being elongated and having an electrode tip, a front surface on said electrode tip, and a hole positioned at said electrode tip along a central axis through said electrode holder; andan emission insert positioned in said hole such that an emission surface of said emission insert is exposed, said emission surface being set back relative to said front surface of said electrode holder.
  • 42. The plasma torch head of claim 41, said emission surface comprising a central surface and a peripheral surface.
  • 43. The plasma torch head of claim 42, a distance a between said central surface of said emission insert and said front surface of said electrode holder is greater than a distance b between said peripheral surface of said emission insert and said front surface of said electrode holder.
  • 44. The plasma torch head of claim 42, said peripheral surface being inclined.
  • 45. The plasma torch head of claim 41 further comprising an end of said emission insert facing away from said electrode tip, said end being frustoconical.
  • 46. The plasma torch head of claim 41 further comprising an end of said emission insert facing away from said electrode tip, said end running frustoconically at an angle β in the range of about 10° to 90°.
  • 47. The plasma torch head of claim 41, said hole having a conical bottom.
  • 48. The plasma torch head of claim 47, said conical bottom having an angle α in the range of about 80° to 160°.
  • 49. The plasma torch head of claim 40, further comprising: an electrode socket having an internal thread;said electrode holder having an external thread and a groove running radially externally; andsaid electrode holder being screwed together with said electrode socket via said external thread and said internal thread and sealed.
  • 50. The plasma torch head of claim 49 further comprising an O-ring disposed in said groove for sealing.
Priority Claims (1)
Number Date Country Kind
10-2008-062-731.1 Dec 2008 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE09/01692 11/27/2009 WO 00 6/16/2011