This application relates to and incorporates by reference U.S. patent application Ser. No. 09/978,134, entitled “Systems and Methods for Automatically Optimizing Stimulus Parameters and Electrode Configurations for Neuro-Stimulators,” filed on Oct. 15, 2001.
The present invention relates generally to electrodes suitable for neural stimulation. More particularly, the present invention includes a variety of electrode geometries or designs directed toward enhancing the efficiency of neural stimulation, and/or increasing electrode reliability.
A variety of medical procedures involve electrically monitoring and/or stimulating neural tissue, such as regions of the cortex or spinal cord. For example, epileptogenic foci localization may be accomplished through cortical monitoring procedures; and various neurologically based pain conditions may be treated with cortical or spinal stimulation. Electrical signals may be exchanged with neural tissue through an electrode that includes a set of electrically conductive contacts.
The effectiveness of a neural stimulation procedure may be related to the electric field distribution produced by or associated with an electrode employed in the procedure. In general, the electric or stimulation field distribution depends upon a) electrode design; b) the particular electrode contacts to which electrical stimulation signals are applied; and c) the magnitudes and polarities of applied stimulation signals. An electrode's design encompasses the structure and spatial organization of its contacts, and/or the as-manufactured electrical couplings thereto. In order to maximize the likelihood that neural stimulation will be effective, an electrode design should be capable of producing an intended or desired type of stimulation field distribution. Depending upon stimulation requirements, an electrode design capable of providing flexibility with respect to manners in which stimulation field distributions may be established, configured, or tailored may be advantageous.
Neural microelectrodes are designed for micro-scale neural monitoring and/or stimulation, that is, highly localized signal exchange with very small neural populations or single neurons. Neural microelectrode types may include patch clamp or pipette microelectrodes; etched and/or micromachined needle electrodes or probes; and annular microelectrodes. An annular microelectrode capable of preferentially stimulating a single neuron soma is described in U.S. Pat. No. 5,411,540. Unlike the procedures disclosed in U.S. Pat. No. 5,411,540, many neural monitoring and/or stimulation procedures involve signal exchange with sizeable neural populations, i.e., hundreds, thousands, many thousands, or even millions of neurons. The microelectrodes disclosed in U.S. Pat. No. 5,411,540 accordingly have very limited applicability to such procedures.
Neural microelectrode arrays include multiple neural microelectrodes organized in a regular pattern and formed or mounted upon a substrate. Although a neural microelectrode array may be capable of monitoring and/or stimulating a larger neural population than an individual neural microelectrode, such an array may be undesirably complex and/or expensive from a manufacturing standpoint.
Grid electrodes may facilitate macro-scale neural monitoring and/or stimulation, that is, neural tissue monitoring and/or stimulation involving hundreds, thousands, hundreds of thousands, or perhaps millions of neurons.
Conventional grid electrodes 100 may include a significant number of contacts 110. Such grid electrodes 100 maintain a one-to-one ratio between the number of contacts 110 and the number of lead wires 120. Thus, a conventional eight-by-eight grid electrode 100 having sixty-four contacts 110 includes sixty-four lead wires 120. Any given lead wire 120 may be coupled to a desired stimulation signal via an external signal routing interface that is connected to a stimulation signal source in a manner readily understood by those skilled in the art. Conventional grid electrodes 100 may facilitate a limited degree of simulation field configurability through selective coupling between specific contacts 110 and particular stimulation signals.
An electrode implant procedure may be highly invasive from a surgical standpoint, possibly requiring, for example, a craniotomy. Electrode reliability is therefore of paramount importance. Unfortunately, the large number of lead wires 120 resulting from a grid electrode's one-to-one contact to lead wire ratio increases the complexity and decreases the reliability of an electrode lead 130. Thus, conventional grid electrode arrays may not be suitable for use in procedures that require implanted electrodes.
The following discussion is presented to enable a person skilled in the art to make and use the invention. The general principles described herein may be applied to embodiments and applications other than those detailed below without departing from the spirit and scope of the present invention as defined by the appended claims. The present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
The present invention comprises a variety of electrode designs or geometries that may provide enhanced neural stimulation efficiency. Enhanced neural stimulation efficiency may be particularly valuable or important when stimulation is directed toward inducing and/or enhancing neuroplasticity for neural function rehabilitation and/or other purposes. The present invention additionally comprises electrode designs that may decrease electrode complexity and thus increase electrode reliability. Increased electrode reliability may be particularly important in neural stimulation situations because electrodes may be implanted on a permanent or long term basis, possibly through a significantly invasive surgical implant procedure. The use of electrodes for intracranial neural stimulation is described in U.S. patent application Ser. No. 09/978,134, entitled “Systems and Methods for Automatically Optimizing Stimulus Parameters and Electrode Configurations for Neuro-Stimulators,” filed on Oct. 15, 2001.
Depending upon neural stimulation requirements and/or electrode embodiment details, electrodes constructed in accordance with the present invention may selectively employ concentric contacts; arc and/or generally arc shaped contacts; variations in contact number, positioning, spacing, and/or distribution; variations in contact shape, area, and/or periphery; and/or conductive on-electrode links or interconnections between particular contacts to provide an intended type of stimulation field distribution, as described in detail hereafter.
The substrate 240 of the annular electrode may be soft and/or flexible, such that it may readily conform to a wide variety of neural tissue surfaces. Each contact 210, 212a, 212b is sufficiently large that the annular electrode 200 may deliver stimulation to a macro-scale neural tissue region, which may include a large number of neural cell bodies. In one embodiment, a surface area enclosed by an outermost annular contact 212b is many times larger than the surface area associated with a single neural cell body, even when considering large types of neurons such as pyramidal neurons. The annular electrode 200 may be suitable for delivering stimulation to a region of the cerebral cortex; for example, the electrode 200 may be implanted proximate to a cortical region associated with controlling a particular type of mental or physical function.
The central and each arc contact 310, 312 may comprise a compositionally stable, biologically compatible, electrically conductive material such as Stainless Steel, Platinum, Platinum-Iridium, Iridium Oxide, Gold, and/or other materials and/or coatings. The arc electrode 300 may be manufactured using conventional electrode manufacturing processes or techniques.
An arc contact 312 may exhibit a curved, bent, or arc-like shape, and may be characterized by a radius of curvature and an arc length. Depending upon the requirements of the stimulation field, the number, curvature, length, and/or position of the arcs may vary. In alternate embodiments, one or more arc contacts 312 may exhibit v-like or other types of curved or angled shapes.
Arc contacts 312 may be grouped or organized into particular patterns, which may be generally circular, elliptical, or otherwise shaped. Any given arc contact pattern may be positioned or oriented in a predetermined manner with respect to the central contact 310 and/or other contact patterns. In the embodiment shown in
The central contact 310 and each arc contact 312 may be coupled to corresponding lead wires 320. Any given lead wire 320 may be coupled to a particular stimulation signal at a stimulation signal source. Thus, within the first and/or second circular patterns 314, 316, successively positioned arc contacts 312 may be coupled to stimulation signals having identical or different magnitudes, biases, and/or temporal characteristics. In an analogous manner, arc contacts 312 that exhibit a given positional correspondence from one circular pattern 314, 316 to another may be coupled to stimulation signals having identical or different magnitudes, biases, and/or temporal characteristics. Hence, an arc electrode 300 constructed in accordance with the present invention may be configured to provide a wide variety of stimulation field distributions.
The present invention encompasses arc electrode embodiments beyond those described above. For example, an arc electrode 300 may omit the central contact 310, include additional or fewer arc contacts 312, and/or include one or more conventional annular contacts 112. As another example, an arc electrode 300 may include a centrally positioned contact grid in place of the central contact 310, in which case individual contacts within the contact grid may be coupled to one or more particular stimulation signals provided by a stimulation signal source. As yet another example, an arc electrode 300 may comprise one or more arc contacts 312 positioned in one or more non-concentric manners. Any given embodiment may be selected in accordance with stimulation field distribution requirements associated with a given neural stimulation situation.
In addition to arc electrode embodiments 300 such as those described above, the present invention also encompasses a variety of grid-like and/or other types of multi-contact electrode embodiments. In accordance with the present invention, one manner of affecting an electrical or stimulation field distribution is through nonuniform contact distribution, separation, or pitch. The description hereafter details various multi-contact electrode embodiments that may selectively exploit nonuniform contact separation to provide or approximate a desired or intended type of stimulation field distribution. Relative to various electrode embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers to aid understanding.
Relative to any given electrode embodiment, one or more contact organizational patterns may be defined. Depending upon embodiment details, the spacing between the contacts 410a–c within a subset of contacts may be nonuniform, and/or the spacing or separation between sets of contacts may be nonuniform. As such, the spacing between contacts in a pattern may be nonuniform, and/or the spacing between patterns of contacts may be nonuniform. In
Other types of contact organizations or patterns may be defined with respect to any given embodiment and/or alternate embodiments. Moreover, any given contact organizational pattern may appear multiple times in the context of a single embodiment. The spatial distribution or density of contacts 410a–c within a contact organizational pattern may be nonuniform, and/or the spatial separation between particular contact organizational patterns may vary across an electrode's surface. Furthermore, a contact distribution pattern may be defined and/or employed based upon particular types of stimulation signals that may be applied to some or all contacts 410a–c within the pattern.
As shown in
In various embodiments, the separation distance between or spatial distribution of the particular contacts 410a–c and/or contact organizational patterns may be a function of distance from a set of the reference contacts 410a–c and/or reference contact organizational patterns. Thus, in one embodiment, the contacts 410a–c organized within any given organizational pattern may exhibit a uniform contact to contact separation distance, whereas separation distances between radially successive contact organizational patterns may increase or decrease with distance from a centrally-positioned contact organizational pattern.
With respect to electrodes 400, 450, 460 exhibiting nonuniform contact distribution, the particular contacts 410a–c may be coupled to particular stimulation signals at a stimulation signal source. In contrast to neural simulation delivered through a conventional grid electrode 100 such as that shown in
In accordance with the present invention, one manner of providing an electrode having desired or intended neural stimulation characteristics involves the use of contacts of different peripheries or areas. The description hereafter details various multi-contact electrode embodiments having nonuniform contact periphery or area, possibly in conjunction with nonuniform contact separation. Relative to various embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers for ease of understanding.
A contact 510 characterized by the first size or area may be larger than a contact 512 characterized by the second size or area. In the embodiment shown in
Relative to a smaller-area contact 512, a larger-area contact 510 exhibits a larger signal transfer area. A larger-area contact 510 may therefore facilitate more efficient delivery of larger magnitude stimulation signals than a smaller-area contact 512. An electrode characterized by nonuniform contact area may advantageously exhibit a lower effective impedance than, for example, a conventional grid electrode 100, and may provide enhanced efficiency neural stimulation.
Another manner of providing or approximating an intended electric or stimulation field distribution is through the selective use of electrode-based or on-electrode couplings, links, connections, and/or shunts between contacts. In the context of the present invention, an electrode-based or on-electrode contact coupling may comprise a contact-to-contact coupling and/or connection that originates at one contact and terminates at one or more other contacts. On-electrode contact couplings may include one or more portions that reside within, upon, above and/or beneath a substrate, and/or proximate to the substrate's spatial bounds. The description hereafter details various multi-contact electrode embodiments that may selectively exploit on-electrode contact couplings or interconnections, possibly in conjunction with nonuniform contact separation and/or nonuniform contact area. Relative to various embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers for ease of understanding.
In one embodiment, an isoelectric contact group 616 comprises two or more contacts 610 having on-electrode couplings, links, connections, interconnections and/or shunts 618 therebetween. A contact interconnection 618 within an isoelectric contact group 616 may reside in a particular plane relative to contact, contact group, and/or electrode surfaces intended to impinge or impress upon a patient's neural tissue. Contacts 610 and/or contact groups 616 may be implemented using one or more biologically compatible, electrically conductive materials, such as Stainless Steel, Platinum, Platinum-Iridium, and/or other materials. Contact groups 616 and/or contact interconnections 618 may be formed using highly conductive materials, materials having variable and/or adjustable conductive properties, and/or materials exhibiting particular impedance characteristics.
An electrode 600 having contact couplings and/or interconnections 618 in accordance with the present invention may be manufactured in a variety of manners. For example, various types of preformed isoelectric contact groups 616 may be cut, stamped, formed, molded, or otherwise manufactured in a manner analogous to that for contacts 610. One or more portions of a preformed contact group 616 may exhibit bar, barbell, rectangular, or other types of shapes. Preformed contact groups 616 may be positioned upon or within a substrate 640 and coupled or connected to lead wires 620 in a manner essentially identical to that for contacts 610. As another manufacturing example, contacts 610, lead wires 620, and/or an electrode lead 630 may be formed, placed, and/or organized using conventional techniques, after which desired contact interconnections 618 may be formed or fabricated using selective masking and material deposition techniques, thereby forming isoelectric contact groups 616. As yet another example, contacts 610 organized in accordance with a given pattern and exhibiting selective contact interconnections 618 may be formed using flex circuit and/or membrane circuit fabrication techniques. One or more portions of a flex or membrane circuit may be encased, encapsulated, covered, or surrounded by Silicone, Silastic® (Dow Corning Corporation, Midland, Mich.), and/or other materials to ensure appropriate biocompatibility.
An electrode having selectively positioned on-electrode contact groups 616, which may be formed from appropriate types of couplings or interconnections 618 between contacts 610, may produce a predetermined or preconfigured stimulation field distribution capable of providing an intended or desired type of neural stimulation. In addition, such an electrode may advantageously exhibit reduced complexity, and thus enhanced reliability, since any given isoelectric contact group 616 may be coupled to a single lead wire rather than coupling individual lead wires to each contact 610 within the contact group 616.
Electrodes may be designed in accordance with the present invention based upon stimulation signal characteristics and/or stimulation field distribution requirements associated with a given neural stimulation situation. Electrode embodiments described herein may be modified and/or generalized in a variety of manners. For example, an annular or arc electrode may include one or more on-electrode contact interconnections. As another example, one or more electrode embodiments described above may include fewer or additional contacts and/or contact groups. As yet another example, an electrode designed in accordance with the present invention may include one or more arc shaped, disk shaped, and/or otherwise shaped contacts, which may vary in spatial distribution and/or contact area or periphery. Such an electrode may further include on-electrode contact interconnections or couplings between identically, similarly, and/or differently shaped contacts. The present invention encompasses these and other variations, and is limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2721316 | Shaw | Oct 1955 | A |
3628193 | Collins | Dec 1971 | A |
3650276 | Burghele et al. | Mar 1972 | A |
3918461 | Cooper | Nov 1975 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4125116 | Fischell | Nov 1978 | A |
4140133 | Lastribom et al. | Feb 1979 | A |
4214804 | Little | Jul 1980 | A |
4245645 | Picard et al. | Jan 1981 | A |
4328813 | Ray | May 1982 | A |
4340038 | McKean | Jul 1982 | A |
4431000 | Butler et al. | Feb 1984 | A |
4474186 | Ledley et al. | Oct 1984 | A |
4542752 | DeJaam et al. | Sep 1985 | A |
4590946 | Loeb | May 1986 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4646744 | Capel | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4844075 | Liss et al. | Jul 1989 | A |
4865048 | Eckerson | Sep 1989 | A |
4969468 | Byers et al. | Nov 1990 | A |
5002053 | Garcia-Rill et al. | Mar 1991 | A |
5024226 | Tan | Jun 1991 | A |
5031618 | Mullett | Jul 1991 | A |
5054906 | Lyons, Jr. | Oct 1991 | A |
5063932 | Dahl et al. | Nov 1991 | A |
5092835 | Schurig et al. | Mar 1992 | A |
5121754 | Mullett | Jun 1992 | A |
5143089 | Alt | Sep 1992 | A |
5169384 | Bosniak et al. | Dec 1992 | A |
5184620 | Cudahy et al. | Feb 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5224491 | Mehra | Jul 1993 | A |
5255678 | Deslauriers | Oct 1993 | A |
5263967 | Lyons, III et al. | Nov 1993 | A |
5271417 | Swanson et al. | Dec 1993 | A |
5282468 | Klepinski | Feb 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5314458 | Najafi et al. | May 1994 | A |
5358513 | Powell, III et al. | Oct 1994 | A |
5370672 | Fowler et al. | Dec 1994 | A |
5405375 | Ayers et al. | Apr 1995 | A |
5406957 | Tansey | Apr 1995 | A |
5411450 | Gratton et al. | May 1995 | A |
5411540 | Edell et al. | May 1995 | A |
5417719 | Hull et al. | May 1995 | A |
5423864 | Ljungstroem | Jun 1995 | A |
5464446 | Dreessen et al. | Nov 1995 | A |
5520190 | Benedict et al. | May 1996 | A |
5522864 | Wallace et al. | Jun 1996 | A |
5537512 | Hsia et al. | Jul 1996 | A |
5540736 | Haimovich et al. | Jul 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5562708 | Combs et al. | Oct 1996 | A |
5575813 | Edell et al. | Nov 1996 | A |
5591216 | Testerman et al. | Jan 1997 | A |
5593432 | Crowther et al. | Jan 1997 | A |
5601611 | Fayram et al. | Feb 1997 | A |
5611350 | John | Mar 1997 | A |
5628317 | Starkebaum et al. | May 1997 | A |
5674251 | Combs et al. | Oct 1997 | A |
5676655 | McCulloch et al. | Oct 1997 | A |
5683422 | Rise | Nov 1997 | A |
5702429 | King | Dec 1997 | A |
5707334 | Young | Jan 1998 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5713923 | Ward et al. | Feb 1998 | A |
5716377 | Rose et al. | Feb 1998 | A |
5722401 | Pietroski | Mar 1998 | A |
5735814 | Elsberry et al. | Apr 1998 | A |
5750376 | Weiss et al. | May 1998 | A |
5752979 | Benabid | May 1998 | A |
5769778 | Abrams et al. | Jun 1998 | A |
5772591 | Cram | Jun 1998 | A |
5782783 | Collins et al. | Jul 1998 | A |
5782798 | Rise | Jul 1998 | A |
5792186 | Rise | Aug 1998 | A |
5797970 | Pouvreau | Aug 1998 | A |
5814014 | Elsberry et al. | Sep 1998 | A |
5814092 | King | Sep 1998 | A |
5824021 | Rise | Oct 1998 | A |
5824030 | Yang et al. | Oct 1998 | A |
5832932 | Elsberry et al. | Nov 1998 | A |
5833709 | Rise et al. | Nov 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5843150 | Dreessen et al. | Dec 1998 | A |
5865842 | Knuth et al. | Feb 1999 | A |
5885976 | Sandyk | Mar 1999 | A |
5886769 | Zolten | Mar 1999 | A |
5893883 | Torgerson et al. | Apr 1999 | A |
5904916 | Hirsch | May 1999 | A |
5913882 | King | Jun 1999 | A |
5916171 | Mayevsky | Jun 1999 | A |
5925070 | King et al. | Jul 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5938689 | Fischell | Aug 1999 | A |
5941906 | Barreras, St. et al. | Aug 1999 | A |
5964794 | Bolz et al. | Oct 1999 | A |
5975085 | Rise | Nov 1999 | A |
5978702 | Ward et al. | Nov 1999 | A |
5983140 | Smith et al. | Nov 1999 | A |
6006124 | Fischell | Dec 1999 | A |
6011996 | Gielen et al. | Jan 2000 | A |
6016449 | Fischell | Jan 2000 | A |
6018682 | Rise | Jan 2000 | A |
6021352 | Christopherson et al. | Feb 2000 | A |
6026326 | Bardy | Feb 2000 | A |
6035236 | Jarding et al. | Mar 2000 | A |
6040180 | Johe | Mar 2000 | A |
6042579 | Elsberry et al. | Mar 2000 | A |
6052624 | Mann | Apr 2000 | A |
6055456 | Gerber | Apr 2000 | A |
6057846 | Sever, Jr. | May 2000 | A |
6057847 | Jenkins | May 2000 | A |
6058331 | King | May 2000 | A |
6060048 | Cherksey | May 2000 | A |
6061593 | Fischell et al. | May 2000 | A |
6066163 | Kpjm | May 2000 | A |
6095148 | Shastri et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6104960 | Duysens et al. | Aug 2000 | A |
6122548 | Starkebaum et al. | Sep 2000 | A |
6126657 | Edwards et al. | Oct 2000 | A |
6128537 | Rise | Oct 2000 | A |
6128538 | Fischell | Oct 2000 | A |
6134474 | Fischell | Oct 2000 | A |
6152143 | Edwards | Nov 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6161045 | Fischell | Dec 2000 | A |
6176242 | Rise | Jan 2001 | B1 |
6190893 | Shastri et al. | Feb 2001 | B1 |
6198958 | Ives et al. | Mar 2001 | B1 |
6205360 | Carter et al. | Mar 2001 | B1 |
6210417 | Baudino et al. | Apr 2001 | B1 |
6221908 | Kilgard et al. | Apr 2001 | B1 |
6230049 | Fischell et al. | May 2001 | B1 |
6236892 | Feler | May 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6280462 | Hauser et al. | Aug 2001 | B1 |
6301493 | Marro et al. | Oct 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6353754 | Fischell | Mar 2002 | B1 |
6354299 | Fischell | Mar 2002 | B1 |
6356792 | Errico | Mar 2002 | B1 |
6360122 | Fischell | Mar 2002 | B1 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6375666 | Mische | Apr 2002 | B1 |
6405079 | Ansarinia | Jun 2002 | B1 |
6418344 | Rezai | Jul 2002 | B1 |
6427086 | Fischell | Jul 2002 | B1 |
6456886 | Howard, III et al. | Sep 2002 | B1 |
6459936 | Fischell | Oct 2002 | B2 |
6463328 | John | Oct 2002 | B1 |
6464356 | Sabel | Oct 2002 | B1 |
6466822 | Pless | Oct 2002 | B1 |
6473568 | Kashiyama | Oct 2002 | B2 |
6473639 | Fischell | Oct 2002 | B1 |
6480743 | Kirkpatrick | Nov 2002 | B1 |
6484059 | Gielen | Nov 2002 | B2 |
6487450 | Chen | Nov 2002 | B1 |
6499488 | Hunter | Dec 2002 | B1 |
6505075 | Weiner | Jan 2003 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6529774 | Greene | Mar 2003 | B1 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6569654 | Shastri et al. | May 2003 | B2 |
6591138 | Fischell et al. | Jul 2003 | B1 |
6597954 | Pless et al. | Jul 2003 | B1 |
6615065 | Barrett et al. | Sep 2003 | B1 |
6622048 | Mann | Sep 2003 | B1 |
6633780 | Berger | Oct 2003 | B1 |
6665562 | Gluckman et al. | Dec 2003 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6687525 | Llinas | Feb 2004 | B2 |
6690974 | Archer | Feb 2004 | B2 |
6708064 | Rezai | Mar 2004 | B2 |
6725094 | Saberski | Apr 2004 | B2 |
6764498 | Mische | Jul 2004 | B2 |
6782292 | Whitehurst | Aug 2004 | B2 |
6788975 | Whitehurst et al. | Sep 2004 | B1 |
6795737 | Gielen et al. | Sep 2004 | B2 |
6810286 | Donovan et al. | Oct 2004 | B2 |
6839594 | Cohen et al. | Jan 2005 | B2 |
6873872 | Gluckman et al. | Mar 2005 | B2 |
6892097 | Holsheimer | May 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6907296 | Doan et al. | Jun 2005 | B1 |
6934580 | Osorio et al. | Aug 2005 | B1 |
6944497 | Stypulkowski | Sep 2005 | B2 |
6944501 | Pless | Sep 2005 | B1 |
6959215 | Gliner et al. | Oct 2005 | B2 |
6990377 | Gliner et al. | Jan 2006 | B2 |
7006859 | Osorio et al. | Feb 2006 | B1 |
7010351 | Firlik et al. | Mar 2006 | B2 |
7024247 | Gliner et al. | Apr 2006 | B2 |
7110820 | Tcheng et al. | Sep 2006 | B2 |
20020077670 | Archer | Jun 2002 | A1 |
20020087201 | Firlik et al. | Jul 2002 | A1 |
20020091419 | Firlik et al. | Jul 2002 | A1 |
20020099412 | Fischell | Jul 2002 | A1 |
20020169485 | Pless | Nov 2002 | A1 |
20030074032 | Gliner | Apr 2003 | A1 |
20030078633 | Firlik et al. | Apr 2003 | A1 |
20030088274 | Gliner et al. | May 2003 | A1 |
20030097161 | Firlik et al. | May 2003 | A1 |
20030114886 | Gluckman | Jun 2003 | A1 |
20030125772 | Olson et al. | Jul 2003 | A1 |
20030125786 | Gliner et al. | Jul 2003 | A1 |
20030130706 | Sheffield et al. | Jul 2003 | A1 |
20030149457 | Tcheng et al. | Aug 2003 | A1 |
20030176901 | May | Sep 2003 | A1 |
20030187490 | Gliner | Oct 2003 | A1 |
20030187491 | Greenberg et al. | Oct 2003 | A1 |
20040073270 | Firlik et al. | Apr 2004 | A1 |
20040082847 | McDermott | Apr 2004 | A1 |
20040088024 | Firlik et al. | May 2004 | A1 |
20040092809 | DeCharms | May 2004 | A1 |
20040102828 | Lowry et al. | May 2004 | A1 |
20040111127 | Gliner et al. | Jun 2004 | A1 |
20040131998 | Marom et al. | Jul 2004 | A1 |
20040138550 | Hartlep | Jul 2004 | A1 |
20040158298 | Gliner | Aug 2004 | A1 |
20040176831 | Gliner et al. | Sep 2004 | A1 |
20040181263 | Balzer et al. | Sep 2004 | A1 |
20040215287 | Swoyer et al. | Oct 2004 | A1 |
20040236388 | Gielen et al. | Nov 2004 | A1 |
20040243205 | Keravel et al. | Dec 2004 | A1 |
20040249422 | Gliner et al. | Dec 2004 | A1 |
20050004620 | Singhal et al. | Jan 2005 | A1 |
20050015129 | Mische | Jan 2005 | A1 |
20050021104 | Dilorenzo | Jan 2005 | A1 |
20050021105 | Firlik et al. | Jan 2005 | A1 |
20050021106 | Firlik et al. | Jan 2005 | A1 |
20050021107 | Firlik et al. | Jan 2005 | A1 |
20050021118 | Genau et al. | Jan 2005 | A1 |
20050033378 | Sheffield et al. | Feb 2005 | A1 |
20050070971 | Fowler et al. | Mar 2005 | A1 |
20050075679 | Gliner et al. | Apr 2005 | A1 |
20050075680 | Lowry et al. | Apr 2005 | A1 |
20050096701 | Donovan et al. | May 2005 | A1 |
20050113882 | Cameron et al. | May 2005 | A1 |
20050119712 | Shafer | Jun 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050182453 | Whitehurst | Aug 2005 | A1 |
20060015153 | Gliner et al. | Jan 2006 | A1 |
20060106430 | Fowler et al. | May 2006 | A1 |
20060106431 | Wyler et al. | May 2006 | A1 |
20060129205 | Boveja et al. | Jun 2006 | A1 |
20060173522 | Osorio | Aug 2006 | A1 |
20060217782 | Boveja et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
19750043 | May 1999 | DE |
0214527 | Mar 1987 | EP |
0319844 | Jun 1989 | EP |
0 998 958 | Oct 2000 | EP |
1 145 736 | Oct 2001 | EP |
1180056 | Nov 2003 | EP |
WO 8707511 | Dec 1987 | WO |
WO 9407564 | Apr 1994 | WO |
WO-9521591 | Aug 1995 | WO |
WO 9806342 | Feb 1998 | WO |
WO 0119977 | Mar 2001 | WO |
WO-0197906 | Dec 2001 | WO |
WO-0209811 | Feb 2002 | WO |
WO-0236003 | May 2002 | WO |
WO-0238031 | May 2002 | WO |
WO-0238217 | May 2002 | WO |
WO 03043690 | May 2003 | WO |
WO 03082402 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030187490 A1 | Oct 2003 | US |