This disclosure relates to an electrode having a selectively loaded matrix and methods of manufacturing the selectively loaded matrix and electrode.
Hybrid vehicles (HEV) and electric vehicles (EV) use chargeable-dischargeable power sources. Secondary batteries such as lithium-ion batteries are typical power sources for HEV and EV vehicles. Lithium-ion secondary batteries typically use carbon, such as graphite, as the anode electrode. Graphite materials are very stable and exhibit good cycle-life and durability. However, graphite material suffers from a low theoretical lithium storage capacity of only about 372 mAh/g. This low storage capacity results in poor energy density of the lithium-ion battery and low electric mileage per charge.
To increase the theoretical lithium storage capacity, silicon has been added to active materials. However, silicon active materials suffer from rapid capacity fade, poor cycle life and poor durability. One primary cause of this rapid capacity fade is the massive volume expansion of silicon (typically up to 300%) upon lithium insertion. Volume expansion of silicon causes particle cracking and pulverization. This deteriorative phenomenon escalates to the electrode level, leading to electrode delamination, loss of porosity, electrical isolation of the active material, increase in electrode thickness, rapid capacity fade and ultimate cell failure.
Disclosed herein are electrodes having a matrix selectively loaded with particular active particles. One embodiment of an electrode disclosed herein has a current collector, a separator and a matrix having first pores having a first size and second pores having a second size, the first size being larger than the second size, the second pores being uniformly distributed throughout the matrix; first active particles deposited in the first pores, the first active particles having a first particle size smaller than the first pores and larger than the second pores; and second active particles deposited in the second pores, the second active particles having a second particle size smaller than the second pores.
Also disclosed are methods of making the electrodes having selectively loaded matrices. One method of preparing an electrode having selectively loaded active materials as disclosed herein comprises preparing a first slurry of first active particles having a first particle size and a second slurry of second active particles having a second particle size; selectively depositing the first active particles in a matrix by pulling the matrix through the first slurry, the matrix including first pores having a first size and second pores having a second size, the first size being larger than the second size, the second pores being uniformly distributed throughout the matrix, wherein the first particle size of the first active particles is smaller than the first pores and larger than the second pores; drying the matrix deposited with the first active particles; selectively depositing the second active particles in the matrix by pulling the matrix through the second slurry; and drying the matrix deposited with the first active particles and the second active particles.
These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.
The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
Because the carbon material used in electrodes of conventional batteries, such as lithium ion batteries or sodium ion batteries, suffers from a low specific capacity, the conventional battery has poor energy density even though there is small polarization and good stability. Furthermore, batteries having electrodes of graphite or other carbon materials develop increased internal resistance over time, which decreases their ability to deliver current.
To address the poor energy density of carbon based electrodes, alternative active materials with higher energy densities are desired. Silicon, tin, germanium and their oxides and alloys are non-limiting examples of materials that may be added to an electrode active material layer to improve its energy density, among other benefits. One particular example is the use of silicon in lithium-ion batteries. Silicon based anode active materials have potential as a replacement for the carbon material of conventional lithium-ion battery anodes due to silicon's high theoretical lithium storage capacity of 3500 to 4400 mAh/g. Such a high theoretical storage capacity could significantly enhance the energy density of the lithium-ion batteries. However, silicon active materials suffer from rapid capacity fade, poor cycle life and poor durability. One primary cause of this rapid capacity fade is the massive volume expansion of silicon (typically up to 300%) upon lithium insertion. Volume expansion of silicon can cause particle cracking and pulverization when the silicon has no room to expand. This expansion can lead to electrode delamination, electrical isolation of the active material, capacity fade due to collapsed conductive pathways, and, like carbon based electrodes, increased internal resistance over time, which decreases their ability to deliver current.
Disclosed herein are electrodes formed with matrices that can be selectively loaded to uniformly distribute different active catalyst particles across the active material layer. This uniform distribution assists in countering the effects of the volume expansion of active particles with high lithium storage capacity, including agglomeration of the active particles upon expansion and contraction. The matrix in which the active particles are loaded reduces delamination, retains conductive pathways and assists in overall extending the life of a battery incorporating the electrodes disclosed herein.
As illustrated in
Another embodiment of an electrode 40 is illustrated in
Another embodiment of an electrode 50 is illustrated in
Another embodiment of an electrode 60 is illustrated in
Each of the electrode embodiments described can further include carbon black deposited in voids in the matrix 20 after deposition of the first active particles 26 and the second active particles 28, along with a binder material. This ensures conductive contact between the active particles 26, 28. Non-limiting examples of the binder material include polyamide, polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber and carboxymethyl cellulose.
The electrodes herein can be used in any battery desired. As a non-limiting example, the electrodes herein may be anodes in a lithium ion battery, with the first active particles 26 being graphite and the second active particles being silicon 28. Other battery types and active material particles are contemplated.
The matrix 20 can be a metal foam, such as a nickel foam or a copper foam. The matrix 20 can be selectively made to have a desired ratio of first pore size to second pore size as desired or required. The first pore size and/or the second pore size can be created uniformly throughout the matrix 20, and concentrated regions and/or less concentrated regions can also be formed if desired or required. The matrix 20 can be made to have a single pore size or can be made to have more than two different pore sizes depending on the active particle loading desired or required.
Also disclosed herein are methods of preparing the electrodes having selectively loaded active materials as illustrated in
The first particle size of the first active particles 26 in the first slurry is smaller than the first pores 22 and larger than the second pores 24 in the matrix 20. When the matrix 20 is drawn through the first slurry, the first active particles 26 get captured in the first pores 22. The matrix 20 deposited with the first active particles 26 is then dried in step S24.
In step S26, the second active particles 28 are selectively deposited in the matrix 20 by pulling the matrix 20 through the second slurry. The second particle size of the second active particles 28 in the second slurry is smaller than the second pore size of the matrix 20. Accordingly, as the matrix 20 is pulled through the second slurry, the second active particles 28 are caught in the second pores 24. The matrix 20 deposited with the first active particles 26 and the second active particles 28 is then dried in step S28.
In addition to the steps discusses with reference to
After drying the matrix 20 deposited with the first active particles 26 in step S24, a loading of the first active particles 26 in the first pores 22 can be determined in step S30. As a non-limiting example, with a known ratio of first pores 22 to second pores 24 and the weight of the matrix 20 without any particle loading, the desired loading of the first pores 22 with the first active particles 26 can be estimated by calculating the weight that the matrix 20 would be if a selected percent of the first pores 22 were loaded with the material of the first active particles 26. After steps S22 and S24, the loaded matrix 20 can be weighed. If the weight of the matrix 20 is less than a predetermined weight that equates to a predetermined loading, not enough of the first pores 22 are filled with first active particles 26. For example, if the predetermined acceptable loading is ninety-six percent, and the weight of the matrix 20 indicated that greater than ninety-six percent of the first pores 22 were filled, the method would move to step S26. If the weight of the matrix 20 indicated that less than ninety-six percent of the first pores 22 were filled, the method would repeat steps S22, S25 and S30 until the desired or required loading was obtained.
Similar to determining loading of the matrix 20 with the first active particles 26, after drying the matrix 20 deposited with the second active particles 28 in step S28, a loading of the second active particles 28 in the second pores 24 can be determined in step S32 as described above. When the loading is less than a predetermined second loading, selectively depositing of the second active particles 28 in step S26, drying of the matrix in step S28 and weighing of the matrix in step S32 are repeated.
As shown in the flow diagram of
As described herein, the methods and systems include a series of steps. Unless otherwise indicated, the steps described may be processed in different orders, including in parallel. Moreover, steps other than those described may be included in certain implementations, or described steps may be omitted or combined, and not depart from the teachings herein. The use of the term “collecting” is not meant to be limiting and encompasses both actively collecting and receiving data.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.