Embodiments of the present invention generally relate to the implantation of an electrode into a pelvic floor muscular structure of a patient.
Implantable electronic stimulator devices, such as neuromuscular stimulation devices, have been disclosed for use in the treatment of various pelvic conditions, such as urinary incontinence, fecal incontinence and sexual dysfunction. Such devices generally include one or more electrodes that are coupled to a control unit by leads. Electrical signals are applied to the desired pelvic muscle of the patient through electrodes in order to treat the condition. Exemplary implantable electronic stimulator devices and uses of the devices are disclosed in U.S. Pat. Nos. 6,354,991, 6,652,449, 6,712,772 and 6,862,480, each of which is hereby incorporated by reference in its entirety.
Embodiments of the present invention are generally directed to a method of implanting an electrode of an electronic stimulator device into a pelvic floor muscular structure of a male or female patient. In one embodiment of the method, a stimulation lead having a proximal end and a distal end comprising an electrode is provided. The distal end of the stimulation lead is fed along a path, which is adjacent the pubic symphysis of a patient, toward a pelvic floor muscular structure of the patient. The distal end of the stimulation lead is then fed into the pelvic floor muscular structure of the patient. In one embodiment, the pelvic floor muscular structure comprises the external urinary sphincter of the patient. In accordance with other embodiments, the pelvic floor muscular structure comprises one of the external anal sphincter, the levator ani muscle, the puborectalis sling muscle and prostate tissue.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not indented to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the Background.
Embodiments of the present invention are directed to a method of implanting an electrode of an electronic stimulator device into a pelvic floor muscular structure of a male or female patient. In one embodiment, the patient is a male patient. Before discussing various embodiments of the method of implanting the electrode, exemplary implantable electronic stimulator devices will be described with reference to
In one embodiment, the control unit 102 comprises circuitry for senses electrical signals received by the electrodes 104, such as electromyogram (EMG) signals, along with circuitry for processing the signals from the sensor 108. In one embodiment, the control unit 104 comprises circuitry for applying electrical stimulation waveforms (i.e., electrical signals) to one or more of the electrodes 104. The electrical stimulation waveforms are designed to control and/or treat the desired condition of the pelvic region.
In one embodiment, the control unit 102 and the electrodes 104 are as described in the above-referenced patents, in PCT Patent Publication WO 00-19940, entitled “Incontinence Treatment Device,” and/or in PCT Patent Publication WO 00-19939, entitled “Control of Urge Incontinence,” with appropriate changes as are otherwise indicated by clinical and engineering considerations that are clear to those skilled in the art.
In one embodiment, the electrodes 104 are flexible intramuscular-type wire electrodes, approximately 1-35 millimeters long and 50-100 microns in diameter, in order to minimize patient discomfort. In one embodiment, the electrodes 104 comprise a spiral hook, as known in the art, so that they can be easily and permanently anchored in a pelvic muscle of a patient. The wire, from which the electrodes 104 are made, comprises a suitable conductive material, such as a biocompatible metal such as silver, a platinum/iridium alloy (90-10) or a nickel-chromium alloy. The leads 106 have a length that is suitable for the application, such as 5-10 centimeters long, and are surrounded by an insolating jacket 110 typically comprising silicone, polyurethane or and other flexible, biocompatible insolating material. An optional additional wire (not shown) inside the jacket 110 can serve as an antenna for the purpose of wireless communications with the device 100, in accordance with known methods.
In one embodiment, the control unit 102 comprises a circuitry for processing electrical signals received from the electrodes 104 and/or for applying an electrical waveform to one or both of the electrodes 104. In one embodiment, the circuitry is contained in a case 112 made of titanium or other suitable biocompatible metal. Typically, the case 112 is about 20 millimeters in diameter and 4 millimeters thick. For some applications, the case 112 serves as a ground electrode for the electrodes 104 when they are sensing or stimulating in a monopolar mode. Alternatively, the case 112 may comprise metal coated with a layer of biocompatible plastic, such as polymethyl methacrylate (PMMA) or silicon.
Although two electrodes 104A and 104B and one sensor 108 are shown attached to the control unit 102 in
One embodiment of the device 100 shown in
The electrode 104 can be anchored to a pelvic floor muscle of the patient (e.g., the external urinary or anal sphincter), by means of a fixation element 120, such as a helix, spiral hook, polypropylene mesh, or other anchor known in the art, as shown in the magnified schematic illustration of the distal end 116 of the lead 106 provided in
In one embodiment, the electrodes, generally referred to as 104, are approximately 3 millimeters in length, but can be much longer, such as less than about 80 millimeters in length, for example. The electrodes 104 are typically separated by approximately 3 millimeters along the length of the lead 106. In the same between the electrodes 104A and 104B a tip 124 of an EMG wire 126 may protrude approximately 100 microns through the casing 124, for those applications in which EMG sensing is desirable. Typically, the diameter of the wire 126 is approximately 50 microns, and the diameter of the casing 124 is approximately 1.5 millimeters.
As with the device 100 illustrated in
Embodiments of the invention are directed to a method of installing the distal end 116 of the stimulation lead 106 into a pelvic floor muscular structure of a patient that is deep to, or below the pubic symphysis. in one embodiment, the pelvic floor muscular structure being targeted by the distal end 116 of the stimulation lead 106 is the external urinary sphincter of the patient, as described in detail below. Other exemplary pelvic floor muscular structures that may be implanted with the distal end of the stimulation lead using embodiments of the method include Puborectalis, Pubococcygeus, and Iliococcygeus (individual elements of the Lavator ani muscular complex). It is understood that while embodiments of the method will be described with regard to the implantation of the distal end 116 of the stimulation lead 106 into the external urinary sphincter of the patient, many of the embodiments are applicable to methods of implanting the distal end 116 in one or more of the other exemplary pelvic floor muscular structures mentioned above.
At step 180 of the method, a stimulation lead, such as the lead 106 (
At step 182, after the patient has been properly prepared for surgery, the distal end 116 of the stimulation lead 106 is fed along a path 184, which is adjacent the pubic symphysis 170, toward the pelvic floor muscular structure of the patient, such as the depicted external urinary sphincter 160, as illustrated in
In one embodiment, an incision 190 is initially made in the patient adjacent the notch in the posterior edge of the pubic symphysis 170 through which the distal end 116 of the stimulation lead 106 is fed into the patient along the path 184 in step 182, as illustrated in the frontal view of the patient provided in
At step 192 of the method, the distal end 116 of the stimulation lead 106 is fed along the path 184 and into the desired pelvic floor muscular structure of the patient, such as the depicted external urinary sphincter 160, at an insertion point 194 to place the one or more electrodes 104 in contact with the external urinary sphincter 160 or another desired pelvic floor muscular structure, as illustrated in
Many techniques can be used to approximate the location of the external urinary sphincter 160 and the urethra 154 of the patient to assist in the feeding step 192. In one embodiment, a catheter or probe 196 is fed into the urethra 154 of the patient and positioned approximate the desired insertion point 194 of the external urinary sphincter 160, as illustrated in
In accordance with another embodiment, the surgeon palpates for the probe 196 through the rectum 200 (
In yet another embodiment, the surgeon may palpate for the prostate 158 of the patient, from which the location of the external urinary sphincter 160 can be approximated.
In one embodiment, the path 184 passes through the perineal membrane 162 of the patient. Thus, during the feeding step 192, the distal end 116 of the stimulation lead 106, or an introducer used to feed the stimulation lead 106, encounters the perineal membrane 162 and an increase in resistance to the feeding of the distal end 116 can be sensed by the surgeon. This increase in resistance is followed by a decrease in resistance upon piercing the perineal membrane 162. Accordingly, the sensed decrease in resistance indicates that the distal end 116 of the stimulation lead 106 is positioned slightly beyond the perineal membrane 162. In one embodiment, upon sensing the piercing of the perennial membrane 162, the surgeon feeds the distal end 116 of the stimulation lead 106 approximately 1 cm to place the distal end 116 and the one or more electrodes 104 within the external urinary sphincter 160.
In one embodiment, the feeding step 192 comprises feeding the distal end 116 of the stimulation lead 106 into the external urinary sphincter 160 at the insertion point 194 at an angle 202 that is oblique to a plane 204 extending perpendicular to a central axis 206 of the urethra 154 and through the insertion point 194, as illustrated in
In accordance with another embodiment, the feeding step 192 comprises feeding the distal end 116 of the stimulation lead 106 into the external urinary sphincter 160 along a path 208 that does not intersect the urethra 154, as illustrated in
In one embodiment, a helical coil, a suture, or other conventional anchor or fixation element 120 (
After the feeding step 192 is completed, the one or more electrodes 104 at the distal end 116 of the lead 106 can be used to sense signals conducted through the pelvic floor muscular structure and/or apply electrical signals to the pelvic floor muscular structure when the proximal end 114 of the stimulation lead 106 is connected to the control unit 102. In one embodiment, after the feeding step 192 is completed, the one or more electrodes 104 can be used to sense signals conducted through the external urinary sphincter 130 and/or apply electrical signals to the external urinary sphincter 130, when the proximal end 114 of the stimulation lead 106 is connected to the control unit 102.
Additional embodiments of the invention are directed to connecting the control unit 102 to the lead 106 and implanting the control unit 102 in the patient. In one embodiment, the proximal end 114 of the stimulation lead 106 is connected to the control unit 102. In one embodiment, the control unit 102 generates electrical signals that are applied to the external urinary sphincter 160 through the one or more electrodes 104 at the distal end 116 of the stimulation lead 106 that are embedded in the pelvic floor muscular structure to treat pelvic pain, urinary incontinence and/or another pelvic condition of the patient. In one embodiment, the control unit 102 receives signals from the one ore more electrodes 104 embedded in the pelvic floor muscular structure, such as the external urinary sphincter 160, or from a sensor 108 (
Additional embodiments of the method will be discussed with reference to
In one embodiment, a subcutaneous tunnel 224 is formed between the incision 190 and the incision 220 using, for example, a suitable introducer, such as those described in U.S. patent application Ser. No. 11/961,615 filed Dec. 20, 2007, which is incorporated herein by reference in its entirety. In one embodiment, the proximal end 114 of the stimulation lead 106 is then fed through the tunnel 224 and out the incision 220, as illustrated in
In one embodiment, with the stimulation lead 106 extending from the external urinary sphincter 160 of the patient, through the tunnel 224 and out the incision 220, the connecting portion 115 at the proximal end 114 is installed in a corresponding socket 226 of the control unit 102 (
The device 100 is preferably tested to ensure that it is working properly including, for example, generating the desired electrical waveforms and applying the electrical waveforms or signals to the external urinary sphincter 160 through the one or more electrodes 104. If the device 100 is operating properly, the lead 106 can be tucked into the abdominal pocket 222 and sutures 228 are looped through suture holes 230 (
It may be desirable to test the device 100 for several days to three weeks to determine whether the device 100 is working as desired and/or whether the patient is a suitable candidate for the device 100. In accordance with one embodiment of the method, the control unit 102 is not connected to the connector 115 of the lead 106 following the feeding of the proximal end 114 through the tunnel 224 and out the incision 220, and the control unit is not initially installed in the abdominal pocket 222.
In one embodiment, an incision 240, such as a horizontal incision approximately 1 centimeter long, is made on the contralateral side of the patient's abdomen, as shown in
A connector 248 at the proximal end 250 of the extension lead 242 is then installed in the socket 226 of the control unit 102 or other testing unit that is external to the patient. The connection of the control unit 102 to the extension lead 242 via connector 248, and the extension lead 242 to the lead 106 via the installation of the connector 115 in the socket 246, allows the control unit 102 or testing device to send electrical signals to, and/or receive electrical signals from, the one or more electrodes 104 embedded in the pelvic floor muscular structure of the patient. Testing of the device 100 can then commence. The control unit can be worn on a belt outside of the body of the patient, if desired.
If the testing of the device 100 and the installed lead 106 is successful, the incision 220 can be reopened to expose the socket 246 and the connector 115. The connector 115 is disconnected from the socket 246 and the extension lead 242 is pulled through the incision 240. The connector 115 can then be installed directly in the socket 226 of the control unit and installed in the abdominal pocket of the patient as described above to complete the implantation of the device 100 in the patient.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3628538 | Vincent et al. | Dec 1971 | A |
3640284 | De Langis | Feb 1972 | A |
3646940 | Timm et al. | Mar 1972 | A |
3650276 | Burghele et al. | Mar 1972 | A |
3662758 | Glover | May 1972 | A |
3667477 | Susset et al. | Jun 1972 | A |
3866613 | Kenny et al. | Feb 1975 | A |
3870051 | Brindley | Mar 1975 | A |
3926178 | Feldzamen | Dec 1975 | A |
3941136 | Bucalo | Mar 1976 | A |
3983865 | Shepard | Oct 1976 | A |
3983881 | Wickham | Oct 1976 | A |
4010758 | Rockland et al. | Mar 1977 | A |
4023574 | Nemec | May 1977 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4044774 | Corbin et al. | Aug 1977 | A |
4106511 | Erlandsson | Aug 1978 | A |
4136684 | Scattergood et al. | Jan 1979 | A |
4139006 | Corey | Feb 1979 | A |
4153059 | Fravel et al. | May 1979 | A |
4157087 | Miller et al. | Jun 1979 | A |
4165750 | Aleev et al. | Aug 1979 | A |
4177819 | Kofsky et al. | Dec 1979 | A |
4222377 | Burton | Sep 1980 | A |
4290420 | Manetta | Sep 1981 | A |
4387719 | Plevnik et al. | Jun 1983 | A |
4402328 | Doring | Sep 1983 | A |
4406288 | Horwinski et al. | Sep 1983 | A |
4414986 | Dickhudt et al. | Nov 1983 | A |
4431001 | Hakansson et al. | Feb 1984 | A |
4457299 | Cornwell | Jul 1984 | A |
4492233 | Petrofsky et al. | Jan 1985 | A |
4515167 | Hochman | May 1985 | A |
4542753 | Brenman et al. | Sep 1985 | A |
4568339 | Steer | Feb 1986 | A |
4569351 | Tang | Feb 1986 | A |
4571749 | Fischell | Feb 1986 | A |
4580578 | Barsom | Apr 1986 | A |
4585005 | Lue et al. | Apr 1986 | A |
4602624 | Naples et al. | Jul 1986 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4628942 | Sweeney et al. | Dec 1986 | A |
4688575 | DuVall | Aug 1987 | A |
4703755 | Tanagho et al. | Nov 1987 | A |
4731083 | Fischell | Mar 1988 | A |
4735205 | Chachques et al. | Apr 1988 | A |
4739764 | Lue et al. | Apr 1988 | A |
4750494 | King | Jun 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4785828 | Maurer | Nov 1988 | A |
4881526 | Johnson et al. | Nov 1989 | A |
4913164 | Greene et al. | Apr 1990 | A |
4941874 | Sandow et al. | Jul 1990 | A |
5013292 | Lemay | May 1991 | A |
5019032 | Robertson | May 1991 | A |
5082006 | Jonasson | Jan 1992 | A |
5094242 | Gleason et al. | Mar 1992 | A |
5103835 | Yamada et al. | Apr 1992 | A |
5112344 | Petros | May 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5199430 | Fang et al. | Apr 1993 | A |
5285781 | Brodard | Feb 1994 | A |
5291902 | Carman | Mar 1994 | A |
5312439 | Loeb | May 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5324323 | Bui | Jun 1994 | A |
5324324 | Vachon et al. | Jun 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5366493 | Scheiner et al. | Nov 1994 | A |
5370670 | Chancellor | Dec 1994 | A |
5385577 | Maurer et al. | Jan 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411548 | Carman | May 1995 | A |
5417226 | Juma | May 1995 | A |
5423329 | Ergas | Jun 1995 | A |
5425751 | Baeten et al. | Jun 1995 | A |
5452719 | Eisman et al. | Sep 1995 | A |
5484445 | Knuth | Jan 1996 | A |
5518504 | Polyak | May 1996 | A |
5520606 | Schoolman et al. | May 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5569351 | Menta et al. | Oct 1996 | A |
5571148 | Loeb et al. | Nov 1996 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5611768 | Tutrone, Jr. | Mar 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5702428 | Tippey et al. | Dec 1997 | A |
5752978 | Chancellor | May 1998 | A |
5766229 | Bornzin | Jun 1998 | A |
5785666 | Costello et al. | Jul 1998 | A |
5807397 | Barreras | Sep 1998 | A |
5824027 | Hoffer et al. | Oct 1998 | A |
5833595 | Lin | Nov 1998 | A |
5836994 | Bourgeois | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5876353 | Riff | Mar 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5927282 | Lenker et al. | Jul 1999 | A |
5941903 | Zhu et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5957920 | Baker | Sep 1999 | A |
5957965 | Moumane et al. | Sep 1999 | A |
5963097 | Garachtchenko et al. | Oct 1999 | A |
5978712 | Suda et al. | Nov 1999 | A |
5984854 | Ishikawa et al. | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6026326 | Bardy | Feb 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6038463 | Laske et al. | Mar 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6055456 | Gerber | Apr 2000 | A |
6061596 | Richmond et al. | May 2000 | A |
6078840 | Stokes | Jun 2000 | A |
6104955 | Bourgeois | Aug 2000 | A |
6104960 | Duysens et al. | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6128536 | Noack et al. | Oct 2000 | A |
6131575 | Lenker et al. | Oct 2000 | A |
6135945 | Sultan | Oct 2000 | A |
6161029 | Spreigl et al. | Dec 2000 | A |
6178356 | Chastain et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6238423 | Bardy | May 2001 | B1 |
6240315 | Mo et al. | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6243607 | Mintchev et al. | Jun 2001 | B1 |
6266557 | Roe et al. | Jul 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6354991 | Gross et al. | Mar 2002 | B1 |
6360750 | Gerber et al. | Mar 2002 | B1 |
6366814 | Boveja et al. | Apr 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6397109 | Cammilli et al. | May 2002 | B1 |
6407308 | Roe et al. | Jun 2002 | B1 |
6418930 | Fowler | Jul 2002 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6641524 | Kovac | Nov 2003 | B2 |
6650943 | Whitehurst et al. | Nov 2003 | B1 |
6652449 | Gross et al. | Nov 2003 | B1 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6652499 | Edgren et al. | Nov 2003 | B1 |
6658297 | Loeb | Dec 2003 | B2 |
6659936 | Furness et al. | Dec 2003 | B1 |
6712772 | Cohen et al. | Mar 2004 | B2 |
6735474 | Loeb et al. | May 2004 | B1 |
6802807 | Anderson et al. | Oct 2004 | B2 |
6836684 | Rijkhoff et al. | Dec 2004 | B1 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6896651 | Gross et al. | May 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6941171 | Mann et al. | Sep 2005 | B2 |
6952613 | Swoyer et al. | Oct 2005 | B2 |
6964643 | Hovland et al. | Nov 2005 | B2 |
6964699 | Carns et al. | Nov 2005 | B1 |
6971393 | Mamo et al. | Dec 2005 | B1 |
7054689 | Whitehurst et al. | May 2006 | B1 |
7079882 | Schmidt | Jul 2006 | B1 |
7120499 | Thrope et al. | Oct 2006 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7330764 | Swoyer et al. | Feb 2008 | B2 |
7343202 | Mrva et al. | Mar 2008 | B2 |
7376467 | Thrope et al. | May 2008 | B2 |
7387603 | Gross et al. | Jun 2008 | B2 |
7582053 | Gross et al. | Sep 2009 | B2 |
7613516 | Cohen et al. | Nov 2009 | B2 |
7628795 | Karwoski et al. | Dec 2009 | B2 |
7647113 | Wirbisky et al. | Jan 2010 | B2 |
7771345 | O'Donnell | Aug 2010 | B1 |
7890176 | Jaax et al. | Feb 2011 | B2 |
8083663 | Gross et al. | Dec 2011 | B2 |
20010002441 | Boveja | May 2001 | A1 |
20010003799 | Boveja | Jun 2001 | A1 |
20010018549 | Scetbon | Aug 2001 | A1 |
20020055761 | Mann et al. | May 2002 | A1 |
20020099259 | Anderson et al. | Jul 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020165566 | Ulmsten | Nov 2002 | A1 |
20030018365 | Loeb | Jan 2003 | A1 |
20030023296 | Osypka | Jan 2003 | A1 |
20030028232 | Camps et al. | Feb 2003 | A1 |
20030100930 | Cohen et al. | May 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030199961 | Bjorklund et al. | Oct 2003 | A1 |
20030212305 | Anderson et al. | Nov 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040015057 | Rocheleau et al. | Jan 2004 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040039453 | Anderson et al. | Feb 2004 | A1 |
20040059392 | Parramon et al. | Mar 2004 | A1 |
20040068203 | Gellman et al. | Apr 2004 | A1 |
20040093053 | Gerber et al. | May 2004 | A1 |
20040242956 | Scorvo | Dec 2004 | A1 |
20040248979 | Brettman et al. | Dec 2004 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050043580 | Watschke et al. | Feb 2005 | A1 |
20050049648 | Cohen et al. | Mar 2005 | A1 |
20050065395 | Mellier | Mar 2005 | A1 |
20050113877 | Spinelli et al. | May 2005 | A1 |
20050119710 | Furness et al. | Jun 2005 | A1 |
20050143618 | Anderson et al. | Jun 2005 | A1 |
20050149156 | Libbus et al. | Jul 2005 | A1 |
20050216069 | Cohen et al. | Sep 2005 | A1 |
20050228346 | Goode et al. | Oct 2005 | A1 |
20050245787 | Cox et al. | Nov 2005 | A1 |
20050245874 | Carrez et al. | Nov 2005 | A1 |
20050250977 | Montpetit et al. | Nov 2005 | A1 |
20050283235 | Kugler et al. | Dec 2005 | A1 |
20060004421 | Bennett et al. | Jan 2006 | A1 |
20060004429 | Mrva et al. | Jan 2006 | A1 |
20060149345 | Boggs, II et al. | Jul 2006 | A1 |
20060241733 | Zhang et al. | Oct 2006 | A1 |
20060287571 | Gozzi et al. | Dec 2006 | A1 |
20070021650 | Rocheleau et al. | Jan 2007 | A1 |
20070043416 | Callas et al. | Feb 2007 | A1 |
20070123952 | Strother et al. | May 2007 | A1 |
20070179559 | Giftakis et al. | Aug 2007 | A1 |
20070185541 | DiUbaldi et al. | Aug 2007 | A1 |
20070239224 | Bennett et al. | Oct 2007 | A1 |
20070253998 | Giftakis et al. | Nov 2007 | A1 |
20070255333 | Giftakis et al. | Nov 2007 | A1 |
20070260288 | Gross et al. | Nov 2007 | A1 |
20080009914 | Buysman et al. | Jan 2008 | A1 |
20080071321 | Boggs, II et al. | Mar 2008 | A1 |
20080132969 | Bennett et al. | Jun 2008 | A1 |
20080242918 | Gross et al. | Oct 2008 | A1 |
20090012592 | Buysman et al. | Jan 2009 | A1 |
20090036946 | Cohen et al. | Feb 2009 | A1 |
20090043356 | Longhini et al. | Feb 2009 | A1 |
20090157091 | Buysman | Jun 2009 | A1 |
20100049289 | Lund et al. | Feb 2010 | A1 |
20100076254 | Jimenez et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
8506522.6 | Jun 1985 | DE |
0245547 | May 1986 | EP |
1 119 314 | Oct 1999 | EP |
1 661 600 | May 2006 | EP |
2309388 | Jul 1997 | GB |
9012617 | Nov 1990 | WO |
9604955 | Feb 1996 | WO |
9632916 | Oct 1996 | WO |
9817190 | Apr 1998 | WO |
0000082 | Jan 2000 | WO |
0001320 | Jan 2000 | WO |
WO 0019940 | Apr 2000 | WO |
0239890 | May 2002 | WO |
02069781 | Sep 2002 | WO |
02078592 | Oct 2002 | WO |
03002192 | Jan 2003 | WO |
2005122954 | Dec 2005 | WO |
2006047833 | May 2006 | WO |
2007097994 | Aug 2007 | WO |
WO 2007126632 | Nov 2007 | WO |
2007145913 | Dec 2007 | WO |
2010107751 | Sep 2010 | WO |
Entry |
---|
http://www.obgyn.net/cpp/images/voiding—image2.gif. |
European Search Report and Written Opinion of 06011641.5 completed Aug. 21, 2006. |
International Search Report and Written Opinion of PCT/US2007/004474 filed Feb. 22, 2007. |
U.S. Appl. No. 60/779,219, filed Mar. 3, 2006. |
U.S. Appl. No. 12/558,143, filed Sep. 11, 2009. |
International Search Report and Written Opinion of PCT/US2007/000112 filed Jan. 3, 2007. |
U.S. Appl. No. 61/160,765, filed Mar. 17, 2009. |
Dietz et al., Mechanical Properties of Urogynecologic Implant Materials, Int. Urogynecol J. (2003) 14:239-243. |
Iglesia et al., “The Use of Mesh in Gynecologic Surgery”, Int. Urogynecol J. (1997) 8:105-115. |
Partial European Search Report from European Patent Application No. 10176162.5, mailed Jan. 21, 2011. |
Yamamoto et al., “Optimal parameters for effective electrical stimulation of the anal sphincters in a child with fecal incontinence: preliminary report,” Pediatr Surg Int (1993) 8:132-137. |
Yamanishi et al., “Electrical Stimulation for Stress Incontinence”, Int. Urogynecol J (1998) 9:281-290 Springer-Verlag London Ltd. |
Caldwell, K.P.S. “The Use of Electrical Stimulation in Urinary Retention and Incontinence [Abridged].” Section of Urology, vol. 61, pp. 35-39, Jul. 1968. |
Caldwell, K.P.S. et al. “Urethral Pressure Recordings in Male Incontinents Under Electrical Stimulation.” Investigative Urology vol. 5, No. 6, pp. 572-579, May 1968. |
Caldwell, K.P.S. et al. “Stress Incontinence in Females: Report on 31 Cases Treated by Electrical Implant.” J. Obstet. Gynaec. Brit. Cwlth vol. 75, pp. 777-780, Jul. 1968. |
Caldwell, K.P.S. “Electrical Stimulation.”, Sphincter Research Unit, Royal Devon and Exeter Hospital, Exeter (England), Urol. Int. 29: 225, 1974.(1 page). |
U.S. Appl. No. 60/578,742, filed Jun. 10, 2004. |
Extended European Search Report from European Patent Application No. 10176162.5, mailed Apr. 28, 2011. |
International Search Report and Written Opinion from PCT/US2011/023677 dated Apr. 21, 2011. |
U.S. Appl. No. 11/746,476, filed May 9, 2007. |
A first Communication issued by the European Patent Office for European Patent Application No. 07795734.8, dated Nov. 17, 2010. |
Notification of a First Office Action from Chinese Patent Application No. 200780021028.1, issued Jun. 1, 2010. |
International Preliminary Report on Patentability and Written Opinion of PCT/US2007/013190, filed Jun. 5, 2007. |
Merrill Daniel C. et al., “Treatment with Electrical Stimulation of the Pelvic Floor”, Urology, Jan. 1975, vol. V, No. 1, pp. 67-72. |
Chai et al., “Percutaneous Sacral Third Nerve Root Neurostimulation Improves Symptoms and Normalizes Urinary HB-EGF Levels and Antiproliferative Activity in Patients with Interstitial Cystitis”, Urology, 55(5), pp. 643-646, May 2000. |
Fall et al., “Electrical Stimulation in Interstitial Cystitis”, Journal of Urology, 123(2), pp. 192-195, Feb. 1980. |
Zermann et al., “Sacral Nerve Stimulation for Pain Relief in Interstitial Cystitis”, Urol. Int., 65(2), pp. 120-121, 2000. |
Caraballo et al., “Sacral Nerve Stimulation as a Treatment for Urge Incontinence and Associated Pelvic Floor Disorders at a Pelvic Floor Center: A Follow-up Study”, Urology, 57(6 Suppl 1), p. 121, Jun. 2001. |
P.D., O'Donnell ed., Urinary Incontinence, Chap. 26, 1997, Mosby Publishers, St. Louis, MI pp. 197-2002. |
Medtronic®'s “InterStim Therapy for Urinary Control-Patient Stories”, 1997, Medtronic, Inc., Spring Lake Park, MN 2 pages.(http://webprod1.medtronic.com/neuro/interstim/4Bsize.html). |
Summary of Safety and Effectiveness of Medtronic® InterStim® Sacral Nerve Stimulation(SNS)TM System, Sep. 1997, Medtronic, Inc., Spring Lake Park, MN, 2 pages. |
Medtronic®'s “InterStim Therapy for Urinary . . . for People with Bladder Control Problem”, 1997, Medtronic, Inc., Spring Lake Park, MN, 2 pages. (http://webprod1.medtronic.com/neuro/interstim/1types.html). |
A supplementary European Search Report for European Patent Application No. 02793278.9, dated Feb. 14, 2011. |
U.S. Appl. No. 60/805,036, filed Jun. 16, 2006. |
U.S. Appl. No. 60/803,954, filed Jun. 5, 2006. |