The invention relates to carbon or graphite electrode columns with a threaded joint that is combining the advantages of traditional electrode-nipple joints as well as of male/female electrode joints. In particular, the invention relates to carbon or graphite electrode columns comprising nipples having at their equator 80 to 110% the diameter of the connected electrodes.
The technique of manufacturing carbonized or graphitized carbon, also including carbon electrodes and connecting pins therefor, has been known in the art for over a hundred years and it is applied on a large industrial scale. Accordingly, it has been refined in many respects and optimized in terms of costs. One description of this technology may be found in ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY, Vol. A5, VCH Verlagsgesellschaft mbH, Weinheim, 1986, pp. 103-113.
An arc furnace contains at least one column of carbon electrodes. The upper end of such a column is retained by a bracket, through which the electrical current for the electrode column is also supplied. When the furnace is in use, the electric arc passes from the bottom tip or lower end of the column into the metal for melting that is located in the furnace. The electric arc and the high temperatures in the furnace cause the bottom end of the electrode column to burn away slowly. Eventually, as the electrode column is consumed, a new electrode section is added by joining it to the upper end of the upper electrode section of the electrode column. Thus, adequate electrode column length is assured by adding new electrode sections to the top of the electrode column, which protrudes through the furnace roof.
A common method of joining the two electrode sections together is by use of a threaded nipple (connecting pin). The nipple is screwed into correspondingly threaded sockets provided in the end faces of the two electrode sections. The threaded portions may be cylindrical. In most applications a tapered, threaded nipple is used for its superior strength. Such prior art nipples have at their equator 40 to 70% of the diameter of the connected electrodes.
The electrodes are screwed to a column either by hand or with a machine. Particularly in the case of electrodes having a large diameter of 600 mm or more, significant forces and turning moments or screwing effort must be applied in order to ensure that an electrode column will not come apart. Secure attachment of a column is vitally important for the functioning of an arc furnace.
When an arc furnace is in use, considerable flexing moments are exerted repeatedly on the electrode column due to the oscillation of the furnace casing including the column, or the column is subjected to constant vibration; the column is exposed to impacts from the charge material, which also places stresses on the secure attachment of the column. All such stresses—repeated flexing moments, vibrations and impacts—are capable of causing the threaded connection of electrodes to loosen. Loosening must be considered to be the result of unavoidable and/or undesirable processes.
When a screw connection becomes loose, the nipple is usually exposed to a high thermal and mechanical load. Ultimately, mechanical failure of the nipple due to overheating and mechanical loading is to be expected. As a result, the lower end of the electrode column breaks off and falls into the molten steel, the electric arc is interrupted and the smelting process is terminated.
Further, the nipple has to exhibit considerably higher mechanical strength than the electrodes since it has to hold the entire weight of the lower part of the adjacent electrode column. As a consequence, the nipple has material properties different from those of the connected electrodes. For example, the nipple material is denser and has a different CTE (coefficient of thermal expansion).
Along with advancement of high-load operation of arc furnaces, the electrodes and nipples are exposed, in addition to mechanical load, to high electric load. Rupturing of the electrode occurs frequently and mostly in the joint area. It is known, that the temperature of the central portion of an electrode becomes higher in recent direct-current electric arc furnaces than in conventional alternating-current electric arc furnaces. The nipple, which is located in the central portion of an electrode, is therefore exposed to a high temperature, with the result of high thermal stresses that cause ruptures in the joint area especially since the nipple has a CTE different from the electrodes.
The consequences of electrode rupturing while the furnace is in operation are already described above.
In order to counter the problems of inadequate attachment, poor current transfer from one part of the electrode column to the next, and rupturing, a number of very different approaches have been instituted and implemented in the steelworks.
In another electrode joint design, no separate nipple is required. It comprises a machined threaded male surface at one end of the electrode (also referred to as “integrated nipple”) and a threaded female surface at the opposite end of the electrode to receive a corresponding male end from the adjacent electrode. This so-called male/female electrode joint is well documented and has historically been the first electrode joint design. As an example, it has been subject to U.S. Pat. No. 863,674 granted in 1907.
There are several technical advantages of the male/female joint design over a conventional nipple design:
However, there are also disadvantages associated with the male/female design:
For those disadvantages, the male/female joint has been substituted in most arc furnace application by the nipple design several decades ago.
It is an object of the invention to provide carbon and/or graphite electrode columns which overcome the above-mentioned most critical disadvantages, and yet maintain the most important advantages of the male/female electrode joint design, while overcoming the essential disadvantages of the conventional nipple joint design. It is a specific object of the invention to provide for a “hybrid” design, incorporating both conventional nipple and male/female joint design features.
The assembly according to the invention incorporates the concept of joining a plurality of electrodes, each having a socket on either end, with separate nipples—as in a conventional electrode joint—with several important differences:
Such a hybrid joint configuration has the following important advantages:
Efficiencies of the hybrid joint may be further improved by optimizing the depth of the sockets, i.e., shallower sockets cause lower material losses, and by using the same raw electrode stock to machine the nipples.
Further performance improvements can be realized by adding a conductive material between the non-contacting electrode endfaces. Preferably this material comprises flexible graphite in the shape of a thick foil or a coil.
Furthermore, it is an also object of this invention to provide an improved male/female joint. The proposed design, incorporates the concept of joining a plurality of electrodes, each having a socket on one end, with an integrated nipple at the other end—as in a conventional male/female electrode joint—with the important difference that the equator of the integrated pin protrudes beyond the end faces of both connected electrodes, such that facial electrode contact is not possible.
Because there is no facial electrode contact, all of the electrical current is carried through the integrated nipple, as opposed to a conventional male/female design, where most of the electrical current is carried through the electrode end-faces, which must be in tight contact with each other—the area of surface contact is larger for the improved male/female joint design, and therefore the electrical resistance across the joint is lower than for a conventional male/female joint design.
With the foregoing and other objects in view there is provided, in accordance with the invention, an assembly with a threaded connection, comprising:
an outer part made from ceramic and having an axial tapered internal thread;
an inner part made from ceramic and having an axial tapered external thread;
the inner part having at its equator 80 to 110% of the diameter of the outer part.
In other words, the threaded connection parts are made from ceramic, preferably from synthetically produced carbon or graphite, and the threads follow a conical shape. When the parts of a threaded connection are engaged, all nipple thread flanks are in full contact with all electrode socket thread flanks such that there is no inter-flank spacing in a properly tightened joint. The equator of the connecting pin protrudes beyond the end-faces of both connected electrodes, such that facial contact is not possible, thereby allowing full thread engagement in both sockets as described, and ensuring that all electrical current is carried through the connecting pin rather than through a combination of the electrode end-faces and connecting pin.
With the above and other objects in view there is also provided, in accordance with the invention, an electrode column with the above-summarized assembly and with a plurality of the outer parts formed as carbon electrodes and the inner parts formed as connecting pins screwing the electrodes together in an electrode column, and with the assembly forming load-bearing connection that is not susceptible to unscrewing or cracking.
For the purposes of the invention, the columns of carbon electrodes should not be loosened or separated from one another by the flexing moments, vibrations or impacts prevalent in steelworks operation, that the elements remained locked in contact with one another and that the threaded connection bears the load of the lower part of the column in each case, while the nipples hold the electrodes together. Further, the columns of carbon electrodes are not prone to cracking caused by thermal stress because the both, electrodes and nipples, are made from the same material.
It is also provided, in accordance with the invention, an assembly with a threaded (male/female) connection, comprising carbon electrodes having a machined threaded male surface at one end and a threaded female surface at the opposite end to receive a corresponding male end from the adjacent electrode, where geometrical design parameters preclude end-face contact of the electrodes and the threads of the male and female surfaces are fully engaged and all electrical current must pass through them and not through the end-faces of the electrodes.
In accordance with an added feature of the invention, the inner part and the outer part are made from synthetically produced carbon or graphite.
In accordance with an additional feature of the invention, the outer part is a carbon electrode with a socket and the internal thread formed therein, and the inner part is a carbon nipple with the external thread formed to mesh with the internal thread for connecting two the electrodes.
In accordance with another feature of the invention, the internal and external threads enclose a taper angle E with a centerline of the inner and outer parts, respectively, of 18 to 35 degrees.
In accordance with a preferred embodiment of the invention, the internal and external threads have a lead D of 2 to 4 threads per inch, and a ratio between an axial length C of the inner part and the diameter B is from 0.5 to 2.0.
In accordance with a further feature of the invention, the assembly configured and dimensioned to preclude end-face contact between the outer parts, wherein the interal threads and the external threads are fully engaged and conduct electrical current flowing between the outer parts to pass through the inner part but not through the end faces of the outer parts.
The following definitions are used herein:
The ends of an electrode are also referred to as the end-faces.
A socket is a coaxial conical depression in the end face of an electrode. (Socket with internal thread=threaded socket).
A nipple is a bi-conical screw having an external thread and one end face arranged perpendicularly to the axis of the nipple on either side thereof. A nipple is screwed about halfway into each socket of adjacent electrodes in order to connect the two electrodes.
An electrode or carbon electrode has a threaded socket on at least one end face. In this document, the connection of two electrodes by means of a separate or an integrated nipple always means a threaded electrode connection. For the sake of simplicity, however, the term electrode joint is used, in the claims also.
Although the invention is illustrated and described herein as embodied in a threaded connection for carbon and/or graphite electrode columns, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
In
Owning to that large nipple 5 diameter, the nipple 5 is made of the same material as the electrodes 1 and 2 because it does not require the increased mechanical strength over the electrodes to keep up with the mechanical stresses and the weight of the electrode column. This allows manufacturing of the nipples 5 from the same feedstock and with much of the same equipment as used for producing electrodes 1 and 2. Further, nipples 5 may be machined from scrapped electrode pieces.
Besides those considerable economic benefits, the utilization of the same material for both, nipple 5 as well as well as electrodes 1 and 2, paves the way to a threaded joint with fully engaged threads because little to no thermal stress in the joint area will occur since there the CTE of nipple 5 and electrodes 1 and 2 is the same.
In turn, this design feature provides a very tight locked connection, hence electrodes are not as easily loosened or separated from one another by mechanical forces as is possible in a conventional connecting pin design. Furthermore, this new design feature provides a much lower electrical and thermal resistance from nipple 5 to electrodes 1 and 2. This effect is a very considerable benefit over the conventional nipple joint design, where the nipple threads are only partially abutting the electrode socket threads and thus the contact between both electrode faces is essential for electrical and thermal conductivity throughout the electrode column. However, due to the extreme thermal load an electrode column is exposed in the arc furnace, the electrodes that would actually elongate in the heat start warping and cracking because free elongation is hindered by their facial contact.
In contrast, thanks to the much lower electrical and thermal resistance from nipple 5 to electrodes 1 and 2 in the joint design of this invention, a facial clearance between electrodes 1 and 2 can be incorporated. Hence, the electrodes 1 and 2 are more able to freely elongate and do not generate additional mechanical stress.
In
This application claims the priority, under 35 U.S.C. § 119(e), of provisional application No. 60/675,596, filed Apr. 28, 2005; the prior application is herewith incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 60675596 | Apr 2005 | US |