This application relates to the battery field, and specifically, to an electrode plate, an electrochemical apparatus, a battery module, a battery pack, and a device.
Lithium-ion batteries have advantages such as high energy density, high output power, long cycle life, and low environmental pollution, and therefore are extensively applied in electric vehicles and consumer electronic products. As the application scope of the lithium-ion batteries is continuously expanded, people have higher requirements on mass energy density and volume energy density of the lithium-ion batteries.
To obtain a lithium-ion battery with high mass energy density and volume energy density, the following improvements are generally made to the lithium-ion battery: (1) selecting a positive electrode material or a negative electrode material with a high specific discharge capacity; (2) optimizing a mechanical design of the lithium-ion battery to minimize a volume of the lithium-ion battery; (3) selecting a positive electrode plate or a negative electrode plate with high compacted density; and (4) reducing weights of components of the lithium-ion battery.
Improvements to a current collector are generally selecting a current collector with a light weight or small thickness. For example, a punched current collector or a plastic current collector plated with a metal layer may be used.
For an electrode plate and a battery that use a plastic current collector plated with a metal layer, although energy density is increased, some performance degradations may be caused in terms of machinability, safety performance, electrical performance, and the like. To obtain an electrode plate and a current collector with good electrochemical performance, a plurality of improvements are still needed.
In view of this, this application provides an electrode plate, an electrochemical apparatus, a battery module, a battery pack, and a device
According to a first aspect, this application provides an electrode plate, including a current collector and an electrode active material layer disposed on at least one surface of the current collector, where the current collector includes a support layer and a conductive layer disposed on at least one surface of the support layer, a single-side thickness D2 of the conductive layer satisfies 30 nm≤D2≤3 μm, and a conductive primer layer including a conductive material and a bonding agent is further disposed between the current collector and the electrode active material layer.
According to a second aspect, this application relates to an electrochemical apparatus, including a positive electrode plate, a negative electrode plate, a separator, and an electrolyte, wherein the positive electrode plate and/or the negative electrode plate are/or the electrode plate in the first aspect of this application.
According to a third aspect, this application relates to a battery module, including the electrochemical apparatus in the second aspect of this application.
According to a fourth aspect, this application relates to a battery pack, including the battery module in the third aspect of this application.
According to a fifth aspect, this application relates to a device, including the electrochemical apparatus in the second aspect of this application, where the electrochemical apparatus is used as a power supply for the device; and the device includes a mobile device, an electric vehicle, an electric train, a satellite, a ship, and an energy storage system.
The conductive primer layer can improve a composite current collector interface, increase a bonding force between the current collector and an active substance, and ensure that the electrode active material layer is more firmly disposed on the surface of the composite current collector. In addition, this can properly overcome disadvantages such as poor conductivity of the composite current collector and vulnerability to damage of the conductive layer of the composite current collector. Because a conductive network between the current collector, the conductive primer layer, and the active substance is effectively repaired and established, electronic transmission efficiency is improved, and resistance between the current collector and the electrode active material layer is reduced. Therefore, direct current resistance in a cell can be effectively reduced, power performance of the cell is improved, and it is ensured that phenomena such as great polarization and lithium precipitation do not easily occur in a long cycling process of the cell, that is, long-term reliability of the cell is effectively improved. Therefore, the electrode plate and electrochemical apparatus in this application have good balanced electrical performance, safety performance, and machinability.
Because the electrochemical apparatus is included, the battery module, battery pack, and device in this application have at least the same advantages as the electrochemical apparatus.
The following describes a positive electrode plate, an electrochemical apparatus, and beneficial effects thereof in this application in detail with reference to the accompanying drawings and specific embodiments.
In the drawings:
The following further describes this application with reference to specific embodiments. It should be understood that these specific embodiments are merely intended to describe this application but not to limit the scope of this application.
A first aspect of this application relates to an electrode plate, including a current collector and an electrode active material layer disposed on at least one surface of the current collector, where the current collector includes a support layer and a conductive layer disposed on at least one surface of the support layer, a single-side thickness D2 of the conductive layer satisfies 30 nm≤D2≤3 μm, and a conductive primer layer including a conductive material and a bonding agent is further disposed between the current collector and the electrode active material layer.
Apparently, the electrode plate may be a positive electrode plate or a negative electrode plate. When the electrode plate is a positive electrode plate, correspondingly, the current collector and the electrode active material layer are respectively a positive electrode current collector and a positive electrode active material layer. When the electrode plate is a negative electrode plate, correspondingly, the current collector and the electrode active material layer are respectively a negative electrode current collector and a negative electrode active material layer.
The current collector used for the electrode plate in the first aspect of this application is a composite current collector, and the composite current collector is formed by at least two materials. Structurally, the current collector includes the support layer and the conductive layer disposed on the at least one surface of the support layer, and the single-side thickness D2 of the conductive layer satisfies 30 nm≤D2≤3 μm. Therefore, the conductive layer in the current collector has a conductive function. The thickness D2 of the conductive layer is far less than a thickness of a common metal current collector such as an Al foil or a Cu foil in the prior art (thicknesses of common Al foil and Cu foil metal current collectors are generally 12 μm and 8 μm). Therefore, mass energy density and volume energy density of an electrochemical apparatus (for example, a lithium battery) using the electrode plate can be increased. In addition, when the composite current collector is used as a positive electrode current collector, safety performance of the positive electrode plate in nail penetration can also be greatly improved.
However, because the conductive layer of the composite current collector is thin, conductivity of the composite current collector is poorer than conductivity of a conventional metal current collector (Al foil or Cu foil), and the conductive layer may be easily damaged in an electrode plate machining process, which further affects electrical performance of the electrochemical apparatus. In addition, in an electrode plate rolling process or the like, the support layer (polymeric material or polymeric composite material) of the composite current collector has greater bounce than a conventional metal current collector. Therefore, a bonding force between the support layer and the conductive layer and a bonding force between the composite current collector and the electrode active material layer both need to be enhanced preferably through interface improvement. In the electrode plate according to this application, the conductive primer layer is additionally disposed between the current collector and the electrode active material layer. Specifically, the conductive primer layer is disposed between a conductive layer of the current collector and the electrode active material layer. Therefore, the conductive primer layer can improve an interface between a composite current collector and the electrode active material layer, increase a bonding force between the current collector and the electrode active material layer, and ensure that the electrode active material layer is more firmly disposed on the surface of the composite current collector. In addition, this can properly overcome disadvantages such as poor conductivity of the composite current collector and vulnerability to damage of the conductive layer of the composite current collector. The conductive primer layer effectively repairs and establishes a conductive network between the current collector, the conductive primer layer, and an active substance to improve electronic transmission efficiency and reduce resistance of the electrode plate including the composite current collector. Therefore, direct current resistance (DCR) in a cell can be effectively reduced, power performance of the cell is improved, and it is ensured that phenomena such as great polarization and lithium precipitation do not easily occur in a long cycling process of the cell, that is, long-term reliability of the cell is effectively improved.
The following describes in detail a structure, material, performance, and the like of the electrode plate (and the current collector in the electrode plate) in an implementation of this application.
[Conductive Layer of the Current Collector]
In comparison with a conventional metal current collector, in the current collector in an implementation of this application, the conductive layer has a conductive function and a current collection function, and is configured to provide electrons for the electrode active material layer.
A material of the conductive layer is selected from at least one of a metal conductive material and a carbon-based conductive material.
The metal conductive material is one selected from at least one of aluminum, copper, nickel, titanium, silver, a nickel-copper alloy, and an aluminum-zirconium alloy.
The carbon-based conductive material is one selected from at least one of graphite, acetylene black, graphene, a carbon nano-tube.
The material of the conductive layer is preferably the metal conductive material, that is, the conductive layer is preferably a metal conductive layer. When the current collector is a positive electrode current collector, aluminum is generally used as the material of the conductive layer. When the current collector is a negative electrode current collector, copper is generally used as the material of the conductive layer.
When conductivity of the conductive layer is poor or the thickness of the conductive layer is excessively small, great resistance and great polarization are caused in the battery. When the thickness of the conductive layer is excessively great, the conductive layer cannot improve mass energy density and volume energy density of the battery.
The single-side thickness of the conductive layer is D2, and D2 preferably satisfies 30 nm≤D2≤3 μm, more preferably, 300 nm≤D2≤2 μm, and most preferably, 500 nm≤D2≤1.5 μm, to better ensure both a light weight and good conductivity of the current collector.
In a preferred implementation of this application, an upper limit of the single-side thickness D2 of the conductive layer may be 3 μm, 2.5 μm, 2 μm, 1.8 μm, 1.5 μm, 1.2 μm, 1 μm, or 900 nm; a lower limit of the single-side thickness D2 of the conductive layer may be 800 nm, 700 nm, 600 nm, 500 nm, 450 nm, 400 nm, 350 nm, 300 nm, 100 nm, 50 nm, or 30 nm. A range of the single-side thickness D2 of the conductive layer may include any numeric value of the upper limit or the lower limit. Preferably, 300 nm≤D2≤2 μm. More preferably, 500 nm≤D2≤1.5 μm.
Because the thickness of the conductive layer in this application is small, damage such as a crack may be easily generated in an electrode plate preparation process or the like. In this case, the conductive primer layer introduced in the electrode plate may buffer and protect the conductive layer, and may form “a repair layer” on a surface of the conductive layer, to improve the bonding force and contact resistance between the current collector and the active material layer.
Generally, a crack exists in the conductive layer of the electrode plate in this application. The crack in the conductive layer generally exists in the conductive layer irregularly. It may be a long strip-shaped crack, or may be a cross-shaped crack, or may be a scattering crack, or may be a crack that penetrates the entire conductive layer, or may be a crack formed on the surface of the conductive layer. The crack in the conductive layer is generally caused by rolling, an excessively great amplitude of a tab during welding, an excessively great tension in substrate wrapping, or the like in the electrode plate machining process.
The conductive layer may be formed on the support layer by using at least one of mechanical rolling, bonding, vapor deposition, and electroless plating. The vapor deposition method is a physical vapor deposition (Physical Vapor Deposition, PVD) method. The vapor deposition method is preferably at least one of an evaporation method and a sputtering method. The evaporation method is one selected from at least one of a vacuum evaporating method, a thermal evaporation method, and an electron beam evaporation method. The sputtering method is preferably a magnetron sputtering method.
At least one of the vapor deposition method or the electroless plating method is preferred, so that binding between the support layer and the conductive layer is firmer.
[Support Layer of the Current Collector]
In the current collector in an implementation of this application, the support layer has functions of supporting and protecting the conductive layer. Because the support layer generally uses an organic polymeric material, density of the support layer is generally less than density of the conductive layer. Therefore, mass energy density of the battery can be significantly increased in comparison with a conventional metal current collector.
Moreover, a metal layer having a small thickness can further increase the mass energy density of the battery. In addition, because the support layer can properly carry and protect the conductive layer located on the surface of the support layer, a common phenomenon of electrode break for conventional current collectors is unlikely to occur.
A material of the support layer is selected from at least one of an insulating polymeric material, an insulating polymeric composite material, a conductive polymeric material, and a conductive polymeric composite material.
For example, the insulating polymeric material is selected from at least one of polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid fiber, polydiformylphenylenediamine, acrylonitrile-butadiene-styrene copolymer, polybutylene terephthalate, poly-p-phenylene terephthamide, poly(p-phenylene ether), polyoxymethylene, epoxy resin, phenolic resin, polytetrafluoroethylene, p-phenylene sulfide, polyvinylidene fluoride, silicon rubber, polycarbonate, cellulose and a derivative thereof, amylum and a derivative thereof, protein and a derivative thereof, polyvinyl alcohol and a crosslinking agent thereof, and polyethylene glycol and a crosslinking agent thereof.
For example, the insulating polymeric composite material is selected from a composite material formed by an insulating polymeric material and an inorganic material, where the inorganic material is one selected from at least one of a ceramic material, a glass material, and a ceramic composite material.
For example, the conductive polymeric material is selected from a polymeric polysulfur nitride material, or a doped conjugated polymeric material, for example, at least one of polypyrrole, polyacetylene, polyaniline, and polythiophene.
For example, the conductive polymeric composite material is selected from a composite material formed by an insulating polymeric material and a conductive material, where the conductive material is selected from at least one of a conductive carbon material, a metal material, and a composite conductive material, the conductive carbon material is selected from at least one of carbon black, a carbon nano-tube, graphite, acetylene black, and graphene, the metal material is selected from at least one of nickel, iron, copper, aluminum, or an alloy thereof, and the composite conductive material is selected from at least one of nickel-coated graphite powder and nickel-coated carbon fiber.
A person skilled in the art may properly select and determine the material of the support layer based on factors such as actual requirements in an application environment and costs. In this application, the material of the support layer is an insulating polymeric material or an insulating polymeric composite material, especially when the current collector is a positive electrode current collector.
When the current collector is a positive electrode current collector, a special current collector that is supported by an insulating layer and has a specific thickness may be used to apparently improve safety performance of the battery. Because the insulating layer is non-conductive, its resistance is great. Therefore, when a short circuit occurs in the battery in an abnormal case, short circuit resistance can be increased, and a short circuit current can be greatly reduced. Therefore, heat generated in the short circuit can be greatly reduced, and safety performance of the battery can be improved. In addition, because the conductive layer is thin, the conductive network is locally cut off in an abnormal case such as nail penetration, to avoid a short circuit in a large area of the electrochemical apparatus or even in the entire electrochemical apparatus. Therefore, damage caused by nail penetration or the like to the electrochemical apparatus can be limited to a penetration point, and only “a point circuit break” is formed, without affecting normal working of the electrochemical apparatus in a period of time.
A thickness of the support layer is D1, and D1 preferably satisfies 1 μm≤D1≤30 μm, and more preferably, 1 μm≤D1≤15 μm.
If the support layer is excessively thin, mechanical strength of the support layer is insufficient, and the support layer may easily break in the electrode plate machining process or the like. If the support layer is excessively thick, volume energy density of the battery using the current collector is reduced.
An upper limit of the thickness D1 of the support layer may be 30 μm, 25 μm, 20 μm, 15 μm, 12 μm, 10 μm, or 8 μm. A lower limit of the thickness D1 may be 1 μm, 1.5 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, or 7 μm. A range of the thickness D1 of the support layer may include any numeric value of the upper limit or the lower limit. Preferably, 1 μm≤D1≤15 μm; more preferably, 2 μm≤D1≤10 μm; and most preferably, 3 μm≤D1≤8 μm.
In addition, the specific thickness in this application can further ensure that the current collector has great resistance, and significantly reduce a battery temperature increase when a short circuit occurs in the battery. When the conductive layer is made of aluminum, this can further significantly reduce or prevent a thermite reaction of the positive electrode current collector, and ensure good safety performance of the battery.
In addition, when the conductive layer is a metal conductive layer, a room-temperature Young's modulus of the support layer preferably satisfies 20 Gpa≥E≥4 Gpa.
In this application, a method for testing the room-temperature Young's modulus of the support layer is as follows:
taking a support layer sample, and cutting the sample to 15 mm×200 mm; using a ten-thousandth micrometer to measure a thickness h (μm) of the sample; using a high-speed rail tensile machine to perform a tensile test at a room temperature, setting an initial position, and fixing a length of the sample between jigs to 50 mm; performing stretching at a speed of 50 mm/min, and recording a load L (N) and a device displacement y (mm) when stretching to break, where stress ε=L/(15*h)*1000, and strain η=y/50*100; and drawing a stress-strain curve, and taking a curve in an initial linear area, where a slope of the curve is a Young's modulus E.
Metal is more rigid, that is, less deformed in the electrode plate machining process such as rolling, than a polymeric material or polymeric composite material. Therefore, to ensure that a deformation difference between the support layer and the conductive layer is not excessively great, which may otherwise cause the conductive layer to break, the room-temperature Young's modulus of the support layer preferably satisfies 20 Gpa≥E≥4 Gpa, so that the support layer can have certain rigidity and that matching of rigidity between the support layer and the conductive layer can be further improved. In this way, it is ensured that the deformation difference between the support layer and the conductive layer is not excessively great in a machining process of the current collector and the electrode plate.
Because the support layer has certain rigidity (20 Gpa≥E≥4 Gpa), the current collector is unlikely to deform or extend excessively in the machining process of the current collector and the electrode plate. Therefore, the conductive layer can be firmly bound to the support layer and is unlikely to fall off, and damage of the conductive layer caused by “passive” extension of the conductive layer can be prevented. In addition, the current collector according to this application has certain tenacity, so that the current collector and the electrode plate have certain capabilities to withstand deformation and do not easily break apart.
However, the Young's modulus of the support layer cannot be excessively great; otherwise, there is difficulty in winding, and machinability becomes poor. When 20 Gpa≥E, it can be ensured that the support layer has certain flexibility, and the electrode plate can also have a certain capability to withstand deformation.
In addition, a thermal shrinkage rate of the support layer at 90° C. is preferably not higher than 1.5%. Therefore, thermal stability of the current collector in the electrode plate machining process can be better ensured.
[Protection Layer of the Current Collector]
In some preferred implementations of this application, the current collector is further provided with a protection layer. The protection layer is disposed on one surface of the conductive layer of the current collector or disposed on two surfaces of the conductive layer of the current collector, that is, a surface of the conductive layer away from the support layer and a surface facing the support layer.
The protection layer may be a metal protection layer or a metal oxide protection layer. The protection layer can prevent the conductive layer of the current collector from being broken by chemical corrosion or mechanical damage. In addition, the protection layer can further enhance mechanical strength of the current collector.
Preferably, protection layers are disposed on the two surfaces of the conductive layer of the current collector. A lower protection layer of the conductive layer (that is, a protection layer disposed on the surface of the conductive layer that faces the support layer) can not only prevent the conductive layer from being damaged and enhance mechanical strength of the current collector, but also enhance the bonding force between the support layer and the conductive layer and prevent film detachment (that is, the conductive layer is detached from the support layer).
A technical effect of an upper protection layer of the conductive layer (that is, a protection layer disposed on the surface of the conductive layer away from the support layer) is mainly to prevent the conductive layer from being destructed or corroded or the like in the machining process (for example, the surface of the conductive layer may be affected by immersion in an electrolyte or rolling). In the electrode plate in this application, the conductive primer layer is used to repair a possible crack generated in a process of rolling, winding, or the like, enhance conductivity, and compensate for disadvantages of the composite current collector used as a current collector. Therefore, the upper protection layer of the conductive layer and the conductive primer layer can cooperate to further protect the conductive layer, and jointly improve conducting performance of the composite current collector used as a current collector.
Thanks to good conductivity, the metal protection layer can not only further improve mechanical strength and corrosion resistance of the conductive layer, but also reduce polarization of the electrode plate. For example, a material of the metal protection layer is selected from at least one of nickel, chromium, a nickel-based alloy, and a cooper-based alloy, and is nickel or a nickel-based alloy.
The nickel-based alloy is an alloy formed by adding one or more other elements to a pure nickel matrix, and is preferably a nickel-chromium alloy. The nickel-chromium alloy is an alloy formed by metal nickel and metal chromium. Optionally, a molar ratio of a nickel element to a chromium element is 1:99 to 99:1.
The cooper-based alloy is an alloy formed by adding one or more other elements to a pure cooper matrix, and is preferably a copper-nickel alloy. Optionally, in the copper-nickel alloy, a molar ratio of a nickel element to a copper element is 1:99 to 99:1.
When metal oxide is used for the protection layer, because the metal oxide has low ductility, a large specific surface area, and great hardness, the protection layer can also provide effective support and protection for the conductive layer, and have a good technical effect for improving the bonding force between the support layer and the conductive layer. For example, a material of the metal oxide protection layer is selected from at least one of aluminum oxide, cobalt oxide, chromium oxide, and nickel oxide.
When used as a positive electrode current collector, the composite current collector according to this application preferably uses metal oxide as its protection layer to further improve safety performance of the positive electrode plate and battery while achieving a good technical effect of support and protection. When used as a negative electrode current collector, the composite current collector according to this application preferably uses metal as its protection layer to further improve conductivity of the electrode plate and kinetic performance of the battery to further reduce polarization of the battery, while achieving a good technical effect of support and protection.
A thickness of the protection layer is D3, and D3 preferably satisfies D3≤ 1/10 D2, and 1 nm≤D3≤200 nm. If the protection layer is excessively thin, the conductive layer cannot be protected sufficiently. If the protection layer is excessively thick, mass energy density and volume energy density of the battery may be reduced. Preferably, 5 nm≤D3≤500 nm; more preferably, 10 nm≤D3≤200 nm; and most preferably, 10 nm≤D3≤50 nm.
Materials of the protection layers located on the two surfaces of the conductive layer may be the same or different, and thicknesses thereof may be the same or different.
Preferably, a thickness of the lower protection layer is less than a thickness of the upper protection layer. This helps improve mass energy density of the battery.
Further optionally, a proportional relationship between a thickness D3″ of the lower protection layer and a thickness D3′ of the upper protection layer is: ½ D3′≤D3″≤⅘ D3′.
When the current collector is a positive electrode current collector, aluminum is generally used as the material of the conductive layer, and a metal oxide material is preferably used as a material of the lower protection layer. In comparison with metal used as the material of the lower protection layer, the metal oxide material has greater resistance. Therefore, this type of lower protection layer can further increase resistance of the positive electrode current collector to some extent, further increase short circuit resistance when a short circuit occurs in the battery in an abnormal case, and improve safety performance of the battery. In addition, because a specific surface area of the metal oxide is larger, a bonding force between the lower protection layer made of the metal oxide material and the support layer is enhanced. In addition, because the specific surface area of the metal oxide is larger, the lower protection layer can increase roughness of the surface of the support layer, enhance the bonding force between the conductive layer and the support layer, and increase overall strength of the current collector.
When the current collector is a negative electrode current collector, cooper is generally used as the material of the conductive layer, and a metal material is preferably used as the material of the protection layer. More preferably, on a basis of including at least one metal protection layer, at least one of the upper protection layer and the lower protection layer further includes a metal oxide protection layer, to improve both conductivity and an interface bonding force of the negative electrode composite current collector.
[Current Collector]
Schematic diagrams of positive electrode current collectors are shown in
In
In
In
In
Likewise, schematic diagrams of negative electrode current collectors are shown in
In
In
In
In
Materials of the protection layers located on the two opposite surfaces of the conductive layer may be the same or different, and thicknesses thereof may be the same or different.
For the current collector used for the electrode plate according to this application, conductive layers may be disposed on two opposite surfaces of the support layer, as shown in
In addition, although the composite current collector used for the electrode plate in this application preferably includes the protection layer of the current collector as shown in
[Conductive Primer Layer of the Electrode Plate]
The conductive primer layer includes the conductive material and the bonding agent.
Based on a total weight of the conductive primer layer, a weight percentage of the conductive material is 10% to 99%, preferably, 20% to 80%, and more preferably 50% to 80%; and a weight percentage of the bonding agent is 1% to 90%, preferably, 20% to 80%, and more preferably 20% to 50%. These percentages can help improve conductivity of the electrode plate and a bonding force between the current collector and the electrode active material layer.
The conductive material is at least one of a conductive carbon material and a metal material.
The conductive carbon material is selected from at least one of zero-dimensional conductive carbon (such as acetylene black or conductive carbon black), one-dimensional conductive carbon (such as a carbon nano-tube), two-dimensional conductive carbon (such as conductive graphite or graphene), and three-dimensional conductive carbon (such as reduced graphene oxide), and the metal material is selected from at least one of aluminum powder, iron powder, and silver powder.
The conductive material preferably includes a two-dimensional conductive carbon material. After the two-dimensional conductive carbon material is added, in a plate compaction process, the two-dimensional conductive carbon material in the conductive primer layer may implement a buffer function, reduce damage to the conductive layer of the current collector in a compaction process, and reduce a crack by generating “horizontal sliding”. A particle diameter D50 of the two-dimensional conductive carbon material is preferably 0.01 μm to 0.1 μm. The two-dimensional conductive carbon material preferably accounts for 1 wt % to 50 wt % of the conductive material.
The bonding agent is selected from at least one of styrene butadiene rubber, oil-based polyvinylidene fluoride (PVDF), polyvinylidene fluoride copolymer (for example, PVDF-HFP copolymer or PVDF-TFE copolymer), sodium carboxymethyl cellulose, polystyrene, polyacrylic acid, polytetrafluoroethylene, polyacrylonitrile, polyimide, water-based PVDF, polyurethane, polyvinyl alcohol, polyacrylate, polyacrylic-acid-polyacrylonitrile copolymer, and polyacrylate-polyacrylonitrile copolymer.
The bonding agent is preferably a water-based bonding agent, for example, at least one of water-based PVDF, polyacrylic acid, polyurethane, polyvinyl alcohol, polyacrylate, polyacrylic-acid-polyacrylonitrile copolymer, and polyacrylate-polyacrylonitrile copolymer. Therefore, DCR of the electrochemical apparatus does not increase significantly. In this application, a “water-based” polymeric material means that a molecular chain of a polymer completely extends and dissolves in water; and an “oil-based” polymeric material means that a molecular chain of a polymer completely extends and dissolves in an oil-based solvent. A person skilled in the art understands that an appropriate surfactant may be used to dissolve a same type of polymeric material into water and oil separately, that is, a same type of polymeric material may be made into a water-based polymeric material and an oil-based polymeric material separately by using an appropriate surfactant. For example, a person skilled in the art may change PVDF into water-based PVDF or oil-based PVDF based on a requirement.
A single-side thickness H of the conductive primer layer is 0.1 μm to 5 μm; and preferably, a ratio of H to D2 is 0.5:1 to 5:1. If the ratio of H/D2 is excessively low, the crack of the conductive layer cannot be effectively improved, and conductivity of the electrode plate cannot be effectively improved. If the ratio is excessively high, not only mass energy density of the battery is reduced, but also DCR of the battery is increased, and this is disadvantageous for improving kinetic performance of the battery.
[Electrode Active Material Layer of the Electrode Plate]
The electrode active material layer used for the electrode plate in this application may be various conventional common electrode active material layers in the art, and its composition and preparation method are commonly known in the art. The electrode active material layer generally includes an electrode active material, a bonding agent, and a conductive agent. Based on a requirement, the electrode active material layer may further include other optional additives or auxiliaries.
For the electrode plate in this application, an average particle diameter D50 of the active material in the electrode active material layer is preferably 5 μm to 15 μm. If D50 is excessively small, after compaction, a porosity of the electrode plate is small and disadvantageous for infiltration of an electrolyte, and a large specific surface area of the electrode plate is likely to produce a plurality of side reactions with the electrolyte, hence reducing reliability of the cell. If D50 is excessively large, great damage may be easily caused to the conductive primer layer and the composite current collector in an electrode plate compaction process. D50 is a corresponding particle diameter when a cumulative volume percentage of the active material reaches 50%, that is, a median particle diameter in volume distribution. For example, D50 may be measured by using a laser diffraction particle diameter distribution measuring instrument (for example, Malvern Mastersizer 3000).
Moreover, for the electrode plate in this application, when content of the bonding agent in the electrode active material layer is generally high, there is a strong bonding force between the active material layer and the conductive primer layer, so that there is also a strong bonding force between an entire membrane layer (that is, a collective term of the active material layer and the conductive primer layer) and the composite current collector, and in an abnormal case such as nail penetration, the active material layer (or the membrane layer) can effectively wrap metal burrs generated in the conductive layer, to improve safety performance of the battery in nail penetration. Therefore, for further safety improvement of the battery, preferably, based on a total weight of the electrode active material layer, the content of the bonding agent in the positive electrode active material layer is not less than 1 wt %, and preferably, not less than 1.5 wt %. When the content of the bonding agent is kept at a specific value, there is a strong bonding force between the active material layer and the conductive primer layer, so that in an abnormal case such as nail penetration, the active material layer can effectively wrap metal burrs generated in the conductive layer, to improve safety performance of the battery in nail penetration.
For a positive electrode plate, various common electrode active materials in the art (that is, positive electrode active materials) may be used. For example, for the lithium battery, a positive electrode active material may be selected from lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, transition metal phosphate, lithium iron phosphate, and the like. However, this application is not limited to these materials, and may further use other conventional well-known materials that can be used as positive electrode substances of the lithium-ion battery. One of these positive electrode active materials may be used alone, or two or more may be used in combination. Preferably, the positive electrode active material may be selected from one or more of LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiNi⅓Co⅓Mn⅓O2 (NCM333), LiNi0.5Co0.2Mn0.3O2 (NCM523), LiNi0.6Co0.2Mn0.2O2 (NCM622), LiNi0.8Co0.1Mn0.1O2 (NCM811), LiNi0.85Co0.15Al0.05O2, LiFePO4, and LiMnPO4.
For a negative electrode plate, various common electrode active materials in the art (that is, negative electrode active materials) may be used. For example, for the lithium battery, a negative electrode active material may be selected from carbon materials such as graphite (artificial graphite or natural graphite), conductive carbon black, and carbon fiber, metal or semimetal materials or alloys thereof such as Si, Sn, Ge, Bi, Sn, and In, lithium nitride or lithium oxide, lithium metal or a lithium alloy, and the like.
It is well known to a person skilled in the art that the electrode active material layer can be obtained by performing post-processing such as drying on a slurry including the electrode active material, the conductive agent, the bonding agent, and the like that is coated onto the electrode current collector (or pre-coated onto the primer layer of the electrode current collector).
[Electrode Plate]
Schematic diagrams of positive electrode plates are shown in
In
In
Schematic diagrams of negative electrode plates are shown in
In
In
As shown in
A person skilled in the art may understand that when a current collector provided with conductive layers on both sides is used, both sides of an electrode plate may be coated (that is, electrode active material layers are disposed on two surfaces of the current collector), or a single side of the electrode plate may be coated (that is, an electrode active material layer is disposed on only one surface of the current collector); when a current collector provided with a conductive layer only on a single side is used, only a single side of an electrode plate can be coated, and only the side of the current collector on which the conductive layer is disposed can be coated with an electrode active material layer (and a conductive primer layer).
[Electrochemical Apparatus]
A second aspect of this application relates to an electrochemical apparatus, including a positive electrode plate, a negative electrode plate, a separator, and an electrolyte, where the positive electrode plate and/or the negative electrode plate are/or the electrode plate according to the first aspect of this application.
The electrochemical apparatus may be a capacitor, a primary battery, or a secondary battery. For example, the electrochemical apparatus may be a lithium-ion capacitor, a lithium-ion primary battery, or a lithium-ion secondary battery. A method for constructing and preparing the electrochemical apparatus is well known, except that a positive electrode plate and/or a negative electrode plate in this application are/is used. Because the electrode plate in this application is used, the electrochemical apparatus has improved safety (for example, safety in nail penetration) and electrical performance. In addition, because the electrode plate in this application can be easily machined, manufacturing costs of the electrochemical apparatus using the electrode plate in this application can be reduced.
In the electrochemical apparatus in this application, specific types and composition of the separator and the electrolyte are not specifically limited, and may be selected based on an actual requirement. Specifically, the separator may be selected from a polyethylene film, a polypropylene film, a polyvinylidene fluoride film, and a multi-layer composite film thereof. When the battery is a lithium-ion battery, a non-aqueous electrolyte is generally used as its electrolyte. As a non-aqueous electrolyte, a lithium salt solution dissolved in an organic solvent is generally used. For example, lithium salt is inorganic lithium salt such as LiClO4, LiPF6, LiBF4, LiAsF6, or LiSbF6, or organic lithium salt such as LiCF3SO3, LiCF3CO2, Li2C2F4 (SO3)2, LiN (CF3SO2)2, LiC (CF3SO2)3, or LiCnF2n+1SO3 (n≥2). For example, the organic solvent used for the non-aqueous electrolyte is cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, or vinylene carbonate, or chain carbonate such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, or chain ester such as methyl propionate, or cyclic ester such as γ-butyrolactone, or chain ether such as dimethoxyethane, diethyl ether, diethylene glycol dimethyl ether, or triethylene glycol dimethyl ether, or cyclic ether such as tetrahydrofuran or 2-methyltetrahydrofuran, or nitrile such as acetonitrile or propionitrile, or a mixture of these solvents.
[Battery Module]
A third aspect of this application relates to a battery module, including any electrochemical apparatus or several electrochemical apparatuses in the second aspect of this application.
Further, a quantity of electrochemical apparatuses included in the battery module may be adjusted based on an application and a capacity of the battery module.
In some embodiments, referring to
[Battery Pack]
A fourth aspect of this application relates to a battery pack, including any battery module or several battery modules in the third aspect of this application. To be specific, the battery pack includes any electrochemical apparatus or several electrochemical apparatuses in the second aspect of this application.
A quantity of battery modules in the battery pack may be adjusted based on an application and a capacity of the battery pack.
In some embodiments, referring to
[Device]
A fifth aspect of this application relates to a device, including any electrochemical apparatus or several electrochemical apparatuses in the second aspect of this application. The electrochemical apparatus may be used as a power supply for the device.
Preferably, the device may be, but is not limited to, a mobile device (for example, a mobile phone or a notebook computer), an electric vehicle (for example, a full electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, an electric bicycle, an electric scooter, an electric golf vehicle, or an electric truck), an electric train, a ship, a satellite, an energy storage system, or the like.
For example,
Because the electrochemical apparatus provided in this application is included, the battery module, battery pack, and device have at least the same advantages as the electrochemical apparatus. Details are not described again herein.
A person skilled in the art may understand that the foregoing definitions or preferred ranges of component selection, component content, and material physicochemical performance parameters of the conductive primer layer, the electrode active material layer, and the like in different implementations of this application may be randomly combined, and various implementations obtained through the combination shall still fall within the scope of this application and shall be considered as a part of content disclosed in this specification.
Unless otherwise specified, various parameters in this specification have general meanings well known in the art, and may be measured by using a method well known in the art. For example, a test may be performed according to a method provided in an embodiment of this application. In addition, preferred ranges and options of different parameters provided in various preferred implementations may be randomly combined, and it is considered that various combinations obtained thereby shall fall within the scope of this application.
The following further describes beneficial effects of this application with reference to embodiments.
1. Preparing a Current Collector that does not have a Protection Layer:
A support layer with a certain thickness is selected, and a conductive layer with a certain thickness is formed on a surface of the support layer by vacuum evaporating, mechanical rolling, or bonding.
A current collector that has a protection layer is prepared in the following manners:
In a preparation example, the vapor deposition method uses vacuum evaporating, the in-situ formation method uses in-situ passivating, and the coating method uses blade coating.
A formation condition for vacuum evaporating is as follows: A sample that undergoes surface cleaning processing is placed in a vacuum plating chamber; a protection layer material in an evaporating chamber is melted and evaporated at a high temperature of 1600° C. to 2000° C.; and the evaporated protection layer material passes through a cooling system in the vacuum plating chamber and is finally deposited on a surface of the sample to form a protection layer.
A formation condition for in-situ passivating is as follows: A conductive layer is placed in a high-temperature oxidizing environment, where a temperature is controlled to be 160° C. to 250° C., oxygen supplying in the high-temperature environment is maintained, and processing time is 30 min, so that a metal oxide protection layer is formed.
A formation condition for gravure coating is as follows: A protection layer material and NMP are stirred and mixed; then a sample surface is coated with a slurry of the protection layer material (solid content is 20% to 75%); then a thickness of the coating is controlled by using a gravure roller; and finally, the coating is dried at a temperature of 100° C. to 130° C.
3. Preparing an Electrode Plate:
A conductive material (such as conductive carbon black) and a bonding agent (such as PVDF or polyacrylic acid) that are proportioned are dissolved in an appropriate solvent (for example, NMP or water), and stirred evenly to prepare a primer slurry.
Two surfaces of a composite current collector prepared according to the foregoing method are evenly coated with the primer slurry at a coating speed of 20 m/min, and a primer layer is dried, where an oven temperature is 70° C. to 100° C., and drying time is 5 min.
After the primer layer is completely dried, 92 wt % positive electrode active material, 5 wt % conductive agent Super-P (“SP” for short), and 3 wt % PVDF are dissolved in an NMP solvent, and evenly stirred to prepare a slurry of the positive electrode active material layer; a surface of the primer layer is coated with the slurry of the positive electrode active material layer by extrusion coating; and after the coating is dried at 85° C., a positive electrode active material layer is obtained.
Then the current collector having various coating layers is cold-pressed and cut, and dried for four hours under an 85° C. vacuum condition, and a tab is welded, so that a positive electrode plate is obtained.
It is prepared by using a method similar to the method for preparing a positive electrode plate in the foregoing embodiment. However, a slurry of the positive electrode active material layer is directly applied to a surface of a composite current collector, and no primer layer is disposed.
A current collector is an Al foil with a thickness of 12 μm. By using a method similar to the foregoing method for preparing a comparative positive electrode plate, a slurry of the positive electrode active material layer is directly applied to a surface of the Al foil current collector, and after processing, a conventional positive electrode plate is obtained.
A conductive material (such as conductive carbon black) and a bonding agent (such as PVDF or polyacrylic acid) that are proportioned are dissolved in an appropriate solvent (for example, NMP or water), and stirred evenly to prepare a primer slurry.
Two surfaces of a composite current collector prepared according to the foregoing method are evenly coated with the primer slurry at a coating speed of 20 m/min, and a primer layer is dried, where an oven temperature is 70° C. to 100° C., and drying time is 5 min.
After the primer layer is completely dried, a negative electrode active substance artificial graphite, a conductive agent Super-P, a thickening agent CMC, and a bonding agent SBR are added based on a mass ratio of 96.5:1.0:1.0:1.5 to a deionized water solvent, and mixed evenly to prepare a slurry of the negative electrode active material layer; a surface of the primer layer is coated with the slurry of the negative electrode active material layer by extrusion coating; and after the coating is dried at 85° C., a negative electrode active material layer is obtained.
Then the current collector having various coating layers is cold-pressed and cut, and dried for four hours under a 110° C. vacuum condition, and a tab is welded, so that a negative electrode plate is obtained.
It is prepared by using a method similar to the method for preparing a negative electrode plate in the foregoing embodiment. However, a slurry of the negative electrode active material layer is directly applied to a surface of a composite current collector, and no primer layer is disposed.
A current collector is a Cu foil with a thickness of 8 μm. By using a method similar to the foregoing method for preparing a comparative negative electrode plate, a slurry of the negative electrode active material layer is directly applied to a surface of the Cu foil current collector, and after processing, a conventional negative electrode plate is obtained.
4. Preparing a Battery:
Through a conventional battery preparation process, a positive electrode plate (compacted density: 3.4 g/cm3), a PP/PE/PP separator, and a negative electrode plate (compacted density: 1.6 g/cm3) are wound together into a bare cell, and then placed in a battery housing; an electrolyte (EC-EMC volume ratio: 3:7; LiPF6: 1 mol/L) is injected; then after processes such as sealing and formation, a lithium-ion secondary battery (hereinafter referred to as the battery for short) is finally obtained.
5. Battery Testing Method:
(1) Method for Testing Cycle Life of a Lithium-Ion Battery:
The lithium-ion battery is charged and discharged at 45° C., that is, first charged to 4.2 V by using a 1 C current, and then discharged to 2.8 V by using a 1 C current, and a discharge capacity in a first cycle is recorded; then the battery is charged and discharged for 1000 cycles by using 1 C/1 C currents, and a discharge capacity in the 1000th cycle is recorded; the discharge capacity in the 1000th cycle is divided by the discharge capacity in the first cycle, and a capacity retention rate in the 1000th cycle is obtained.
(2) Method for Testing a DCR Growth Rate:
At 25° C., a secondary battery is adjusted to 50% SOC by using a 1 C current, and a voltage U1 is recorded. Then the battery is discharged for 30 s by using a 4 C current, and a voltage U2 is recorded. DCR=(U1−U2)/4 C. Then the battery is charged and discharged for 500 cycles by using 1 C/1 C currents, and DCR in the 500th cycle is recorded. The DCR in the 500th cycle is divided by the DCR in the first cycle, then 1 is subtracted, and a DCR growth rate in the 500th cycle is obtained.
(3) Pin Penetration Test:
A secondary battery (10 samples) is fully charged to a charging cut-off voltage by using a 1 C current, and then constant-voltage charging is performed until the current is reduced to 0.05 C. Then charging is stopped. The battery is penetrated at a speed of 25 mm/s in a direction vertical to a battery plate by using a φ8 mm heat-resistant steel pin, where a penetration position is preferably close to a geometric center in a penetrated surface, and the steel pin stays in the battery. Whether a phenomenon of battery burning or explosion occurs is observed.
6. Test Result and Discussion:
6.1. Function of a Composite Current Collector in Improving Mass Energy Density of a Battery
Specific parameters of electrode plates and current collectors thereof in various embodiments are shown in Table 1 (no protection layer is disposed in the current collectors in the embodiments that are listed in Table 1). In Table 1, for a positive electrode current collector, a weight percentage of the current collector is the percentage of a weight of the positive electrode current collector in a unit area in a weight of a conventional positive electrode current collector in a unit area; and for a negative electrode current collector, a weight percentage of the current collector is the percentage of a weight of the negative electrode current collector in a unit area in a weight of a conventional negative electrode current collector in a unit area.
Based on Table 1, it can be known that weights of both a positive electrode current collector and a negative electrode current collector in this application are reduced to different extents in comparison with a conventional current collector, so that mass energy density of a battery can be increased. However, for a current collector, and in particular, for a negative electrode current collector, when a thickness of a conductive layer is greater than 1.5 μm, an extent of weight reduction improved is reduced.
6.2. Function of a Protection Layer in Improving Electrochemical Performance of a Composite Current Collector
On a basis of the current collectors in the embodiments that are listed in Table 1, protection layers are further formed, to facilitate research on functions of the protection layers in improving electrochemical performance of composite current collectors. “Positive electrode current collector 2-1” in Table 2 represents a current collector whose protection layers are formed based on “positive electrode current collector 2” in Table 1. Meanings of numbers of other current collectors are similar to this.
Table 3 shows cycle performance data obtained through measurement after the electrode plates listed in Table 2 are assembled into batteries.
As shown in Table 3, in comparison with a battery 1 using a conventional positive electrode plate and a conventional negative electrode plate, a battery using a current collector according to an embodiment of this application has good cycle life, and its cycle performance is equivalent to that of a conventional battery. In particular, for a battery made of a current collector including a protection layer, in comparison with a battery made of a current collector not including a protection layer, a capacity retention rate of the battery may be further increased, which indicates that reliability of the battery is higher.
6.3. Function of a Conductive Primer Layer in Improving Electrochemical Performance of a Battery
The following uses a positive electrode plate as an example to describe functions of factors such as the conductive primer layer and composition of the conductive primer layer in improving electrochemical performance of a battery. Table 4 shows specific composition and related parameters of batteries and electrode plates and current collectors that are used in the batteries in various embodiments and comparative examples. Table 5 shows a performance measurement result of each battery.
35%
29%
20%
15%
14%
The following can be seen from the foregoing test data:
When content of a bonding agent in an electrode active material layer is generally high, there is a strong bonding force between the active material layer and a primer layer, so that there is also a strong bonding force between an entire membrane layer (that is, a collective term of the active material layer and the conductive primer layer) and a composite current collector, and in an abnormal case such as nail penetration, the active material layer (or the membrane layer) can effectively wrap metal burrs generated in the conductive layer, to improve safety performance of the battery in nail penetration.
From a perspective of safety of the battery in nail penetration, the following uses a positive electrode plate as an example to describe a function of the content of the bonding agent in the electrode active material layer in improving electrochemical performance of the battery.
Positive electrode plates are prepared according to the method in the foregoing embodiment, but composition of slurries of positive electrode active material layers is adjusted. In this way, a plurality of positive electrode plates with different content of bonding agents in positive electrode active material layers are prepared. Refer to the following tables for specific composition of electrode plates.
Table 7 shows nail penetration test results when the foregoing different positive electrode plates are assembled into batteries. The results indicate that when content of a bonding agent in a positive electrode active material layer is higher, safety performance of a corresponding battery in nail penetration is higher. Preferably, the content of the bonding agent in the positive electrode active material layer is not less than 1 wt %, and more preferably, not less than 1.5 wt %.
6.5. Surface Morphology of a Composite Current Collector
In a process of preparing a positive electrode plate 24, after cold pressing, a small sample is taken, and a surface of the positive electrode plate 24 is cleaned by using a piece of dust-free paper dipped in a DMC solvent, so that a surface of a composite current collector can be exposed. Then a surface morphology is observed by using a CCD microscope instrument. Refer to
A person skilled in the art may understand that the foregoing shows an application example of an electrode plate in this application only by using a lithium battery as an example; however, the electrode plate in this application may also be applied to another type of battery or electrochemical apparatus, and a good technical effect of this application can still be achieved.
According to the disclosure and instruction of this specification, a person skilled in the art of this application may further make appropriate changes or modifications to the foregoing implementations. Therefore, this application is not limited to the foregoing disclosure and the described specific embodiments, and some changes or modifications to this application shall also fall within the protection scope of the claims of this application. In addition, although some specific terms are used in this specification, these terms are used only for ease of description, and do not constitute any limitation on this application.
Number | Date | Country | Kind |
---|---|---|---|
201811638645.2 | Dec 2018 | CN | national |
This application is a continuation application of PCT Patent Application No. PCT/CN2019/117143, entitled “ELECTRODE PLATE, ELECTROCHEMICAL APPARATUS, BATTERY MODULE, BATTERY PACK, AND DEVICE” filed on Nov. 11, 2019, which claims priority to Chinese Patent Application No. 201811638645.2, filed with the State Intellectual Property Office of the People's Republic of China on Dec. 29, 2018, and entitled “ELECTRODE PLATE, ELECTROCHEMICAL APPARATUS, BATTERY MODULE, BATTERY PACK, AND DEVICE”, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4492021 | Wright | Jan 1985 | A |
5478676 | Turi et al. | Dec 1995 | A |
5645959 | Rowlette | Jul 1997 | A |
6022642 | Tsukamoto | Feb 2000 | A |
6420066 | Frustaci | Jul 2002 | B1 |
8323831 | Wilkins | Dec 2012 | B2 |
8691445 | Park | Apr 2014 | B2 |
8785053 | Wang | Jul 2014 | B2 |
9786904 | Park | Oct 2017 | B2 |
11769883 | Liang | Sep 2023 | B2 |
20020160265 | Hashimoto | Oct 2002 | A1 |
20040126654 | Sudano et al. | Jul 2004 | A1 |
20040126663 | Sudano | Jul 2004 | A1 |
20050221190 | Sudano et al. | Oct 2005 | A1 |
20060019168 | Li | Jan 2006 | A1 |
20060105243 | Okamura | May 2006 | A1 |
20060127773 | Kawakami | Jun 2006 | A1 |
20060206186 | Mori et al. | Sep 2006 | A1 |
20060263691 | Park | Nov 2006 | A1 |
20070224502 | Affinito | Sep 2007 | A1 |
20090305135 | Shi | Dec 2009 | A1 |
20100075223 | Hwang | Mar 2010 | A1 |
20100075225 | Wilkins | Mar 2010 | A1 |
20100129699 | Mikhaylik | May 2010 | A1 |
20100291442 | Wang | Nov 2010 | A1 |
20110200884 | Uchida | Aug 2011 | A1 |
20120164528 | Xu | Jun 2012 | A1 |
20120208082 | Honda | Aug 2012 | A1 |
20120237824 | Koh | Sep 2012 | A1 |
20130045413 | Wang | Feb 2013 | A1 |
20130171523 | Chen | Jul 2013 | A1 |
20140072873 | Wang et al. | Mar 2014 | A1 |
20140154580 | Park | Jun 2014 | A1 |
20140162138 | Fujiki | Jun 2014 | A1 |
20140291442 | Låks et al. | Oct 2014 | A1 |
20140370349 | Kwon | Dec 2014 | A1 |
20140370350 | Kwon | Dec 2014 | A1 |
20150221452 | Lida | Aug 2015 | A1 |
20150280241 | Hara | Oct 2015 | A1 |
20160181620 | Kim et al. | Jun 2016 | A1 |
20160211524 | Hao | Jul 2016 | A1 |
20160351892 | Sugimori | Dec 2016 | A1 |
20170033399 | Fujisawa | Feb 2017 | A1 |
20170324077 | Liu | Nov 2017 | A1 |
20170338493 | Shin | Nov 2017 | A1 |
20170353585 | Krishnan | Dec 2017 | A1 |
20180006291 | Kim | Jan 2018 | A1 |
20180006307 | Song | Jan 2018 | A1 |
20180069229 | Ko | Mar 2018 | A1 |
20180145317 | Momma et al. | May 2018 | A1 |
20180198132 | Liang et al. | Jul 2018 | A1 |
20180205115 | Haba | Jul 2018 | A1 |
20180219212 | Seol | Aug 2018 | A1 |
20180287158 | Ma | Oct 2018 | A1 |
20180301709 | Qiu | Oct 2018 | A1 |
20190006658 | Chae | Jan 2019 | A1 |
20190173090 | Liang | Jun 2019 | A1 |
20190173092 | Liang | Jun 2019 | A1 |
20190245210 | Matsushita | Aug 2019 | A1 |
20190393511 | Zhou | Dec 2019 | A1 |
20200083527 | Nakamura | Mar 2020 | A1 |
20200083542 | Yushin | Mar 2020 | A1 |
20200295377 | Liang | Sep 2020 | A1 |
20200388875 | Kano | Dec 2020 | A1 |
20200403247 | Turi | Dec 2020 | A1 |
20210066691 | Asai | Mar 2021 | A1 |
20210119196 | Li | Apr 2021 | A1 |
20210119218 | Li | Apr 2021 | A1 |
20210119221 | Li | Apr 2021 | A1 |
20210151769 | Li | May 2021 | A1 |
20210151772 | Li | May 2021 | A1 |
20210167397 | Kim et al. | Jun 2021 | A1 |
20210210763 | Li | Jul 2021 | A1 |
20210288329 | Liang | Sep 2021 | A1 |
20210296654 | Liang | Sep 2021 | A1 |
20210320322 | Yasuda | Oct 2021 | A1 |
20220037663 | Tamaki | Feb 2022 | A1 |
20220037667 | Li | Feb 2022 | A1 |
20220037669 | Li | Feb 2022 | A1 |
20220037670 | Li | Feb 2022 | A1 |
20220037672 | Xue | Feb 2022 | A1 |
20220093932 | Li | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1579028 | Feb 2005 | CN |
1669163 | Sep 2005 | CN |
1855588 | Nov 2006 | CN |
101071860 | Nov 2007 | CN |
101174685 | May 2008 | CN |
101207197 | Jun 2008 | CN |
101627494 | Jan 2010 | CN |
101884125 | Nov 2010 | CN |
2011165388 | Aug 2011 | CN |
102195032 | Sep 2011 | CN |
102306800 | Jan 2012 | CN |
102332558 | Jan 2012 | CN |
102569816 | Jul 2012 | CN |
102847859 | Jan 2013 | CN |
103131267 | Jun 2013 | CN |
103165863 | Jun 2013 | CN |
103268942 | Aug 2013 | CN |
103326029 | Sep 2013 | CN |
203218375 | Sep 2013 | CN |
103545530 | Jan 2014 | CN |
103779569 | May 2014 | CN |
103956499 | Jul 2014 | CN |
104303344 | Jan 2015 | CN |
104321907 | Jan 2015 | CN |
204088469 | Jan 2015 | CN |
103094619 | Feb 2015 | CN |
104508896 | Apr 2015 | CN |
104659368 | May 2015 | CN |
104716328 | Jun 2015 | CN |
105027347 | Nov 2015 | CN |
105406083 | Mar 2016 | CN |
105489845 | Apr 2016 | CN |
105493323 | Apr 2016 | CN |
105514349 | Apr 2016 | CN |
105895193 | Aug 2016 | CN |
105958118 | Sep 2016 | CN |
106463698 | Feb 2017 | CN |
106654285 | May 2017 | CN |
106684319 | May 2017 | CN |
106848324 | Jun 2017 | CN |
106898729 | Jun 2017 | CN |
106910897 | Jun 2017 | CN |
106935901 | Jul 2017 | CN |
106941149 | Jul 2017 | CN |
106981665 | Jul 2017 | CN |
107123812 | Sep 2017 | CN |
107154499 | Sep 2017 | CN |
107221676 | Sep 2017 | CN |
107240721 | Oct 2017 | CN |
107302094 | Oct 2017 | CN |
107431186 | Dec 2017 | CN |
107437622 | Dec 2017 | CN |
107565137 | Jan 2018 | CN |
107732146 | Feb 2018 | CN |
107768677 | Mar 2018 | CN |
107851836 | Mar 2018 | CN |
207097950 | Mar 2018 | CN |
104428928 | Apr 2018 | CN |
107925056 | Apr 2018 | CN |
108110220 | Jun 2018 | CN |
108155363 | Jun 2018 | CN |
108199005 | Jun 2018 | CN |
108258249 | Jul 2018 | CN |
108281662 | Jul 2018 | CN |
108306013 | Jul 2018 | CN |
108539252 | Sep 2018 | CN |
108598491 | Sep 2018 | CN |
108666525 | Oct 2018 | CN |
108682788 | Oct 2018 | CN |
108832134 | Nov 2018 | CN |
109004171 | Dec 2018 | CN |
109103490 | Dec 2018 | CN |
208298924 | Dec 2018 | CN |
109216675 | Jan 2019 | CN |
109216703 | Jan 2019 | CN |
109273668 | Jan 2019 | CN |
208507818 | Feb 2019 | CN |
109546154 | Mar 2019 | CN |
109546204 | Mar 2019 | CN |
109873160 | Jun 2019 | CN |
109873161 | Jun 2019 | CN |
109873163 | Jun 2019 | CN |
109873164 | Jun 2019 | CN |
109873166 | Jun 2019 | CN |
208955108 | Jun 2019 | CN |
110660957 | Dec 2020 | CN |
110661001 | Dec 2020 | CN |
1551070 | Jul 2005 | EP |
2903063 | Aug 2015 | EP |
3182487 | Jun 2017 | EP |
3367485 | Aug 2018 | EP |
3389122 | Oct 2018 | EP |
3796423 | Mar 2021 | EP |
3796436 | Mar 2021 | EP |
H1167277 | Mar 1999 | JP |
2003282064 | Oct 2003 | JP |
2003297353 | Oct 2003 | JP |
2008258055 | Oct 2008 | JP |
2010027530 | Feb 2010 | JP |
2013178953 | Sep 2013 | JP |
2013254692 | Dec 2013 | JP |
2015115233 | Jun 2015 | JP |
2017021888 | Jan 2017 | JP |
2018049825 | Mar 2018 | JP |
2018073723 | May 2018 | JP |
2018156787 | Oct 2018 | JP |
2018174107 | Nov 2018 | JP |
2018190656 | Nov 2018 | JP |
20140137660 | Dec 2014 | KR |
20180000183 | Jan 2018 | KR |
2008115168 | Sep 2008 | WO |
2011029058 | Mar 2011 | WO |
2012127561 | Sep 2012 | WO |
2015020338 | Feb 2015 | WO |
2018180742 | Oct 2018 | WO |
2018207643 | Nov 2018 | WO |
2019109928 | Jun 2019 | WO |
Entry |
---|
Contemporary Amperex Technology Co., Limited, International Search Report and Written Opinion, PCT/CN2019117143, Mar. 11, 2020, 14 pgs. |
Contemporary Amperex Technology Co., Limited, Extended European Search Report, EP19906208.4, Sep. 10, 2021, 9 pgs. |
Ningder Age New Energy Technology Co. Ltd. First Office Action, CN201811638645.2, Jun. 16, 2020, 15 pgs. |
Ningder Age New Energy Technology Co. Ltd. Third Office Action, CN201811638645.2, Sep. 18, 2021, 10 pgs. |
First Office Action received in the corresponding Chinese Application 202110806493.8, mailed Nov. 9, 2022. |
First Office Action received in the corresponding European Application 19906208.4, mailed Mar. 6, 2023. |
Eunice K Wong et al:“Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries”, May 1, 2010 (May 1, 2010), XP055608606, Retrieved from the Internet: URL:https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100021170.pdf. |
Pszczolkowski Bartosz et al:“A Comparative Analysis of Selected Methods for Determining Young's Modulus in Polylactic Acid Samples Manufactured with the FDM Method”, Materials, vol. 15, No. 1, Dec. 25, 2021 (Dec. 25, 2021), p. 149, XP093019570, DOI: 10.3390/ma15010149. |
“Temperature-Compensated Crystal Oscillator”, Elektor Electronics, Elektor Electronics, GB, vol. 25, No. 279, Jul. 1, 1999 (Jul. 1, 1999), p. 54/55, XP000930277, ISSN: 0268-4519. |
The international search report received in the corresponding International Application PCT/CN2019/119739, mailed Jan. 14, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/119739, mailed Jan. 14, 2020. |
The extended European search report received in the corresponding European Application 19902406.8, mailed Aug. 5, 2021. |
The first office action received in the corresponding Chinese Application 201811642323.5, mailed Jun. 3, 2020. |
The non-final office action received in the corresponding U.S. Appl. No. 17/112,766, mailed Jan. 31, 2024. |
The international search report received in the corresponding International Application PCT/CN2019/117142, mailed Feb. 3, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/117142, mailed Feb. 3, 2020. |
The first office action received in the corresponding Chinese Application 201811644245.2, mailed Jun. 9, 2020. |
The extended European search report received in the corresponding European Application 19905423.0, mailed Sep. 10, 2021. |
Pszczólkowski Bartosz et al: “A Comparative Analysis of Selected Methods for Determining Young's Modulus in Polylactic Acid Samples Manufactured with the FDM Method”, Materials, vol. 15, No. 1, Dec. 25, 2021 (Dec. 25, 2021) , p. 149. |
The first office action received in the corresponding European Application 19905423.0, mailed Feb. 6, 2023. |
The final office action received in the corresponding U.S. Appl. No. 17/132,548, mailed Jun. 6, 2023. |
The international search report received in the corresponding International Application PCT/CN2019/117141, mailed Feb. 5, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/117141, mailed Feb. 5, 2020. |
The extended European search report received in the corresponding European Application 19905422.2, mailed Sep. 9, 2021. |
The first office action received in the corresponding Chinese Application 201811638781.1, mailed Jun. 4, 2020. |
The third office action received in the corresponding Chinese Application 201811644244.8, mailed Jan. 12, 2021. |
The extended European search report received in the corresponding European Application 19903066.9, mailed Jul. 19, 2021. |
The non-final office action received in the corresponding U.S. Appl. No. 17/059,503, mailed Aug. 30, 2023. |
The international search report received in the corresponding International Application PCT/CN2019/119717, mailed Jan. 23, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/119717, mailed Jan. 23, 2020. |
The first office action received in the corresponding Chinese Application 201811638405.2, mailed Jun. 9, 2020. |
The extended European search report received in the corresponding European Application 19902246.8, mailed Nov. 29, 2021. |
The first office action received in the corresponding European Application 19902246.8, mailed Jul. 1, 2022. |
The non-final office action received in the corresponding U.S. Appl. No. 17/335,034, mailed Mar. 31, 2023. |
The first office action received in the corresponding Chinese Application 201910580127.8, mailed Mar. 19, 2021. |
The second office action received in the corresponding Chinese Application 201910580127.8, mailed Jun. 16, 2021. |
The international search report received in the corresponding International Application PCT/CN2019/125061, mailed Mar. 12, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/125061, mailed Mar. 12, 2020. |
The first office action received in the corresponding Chinese Application 201910299179.8, mailed Sep. 2, 2020. |
The second office action received in the corresponding Chinese Application 201910299179.8, mailed Dec. 9, 2020. |
The international search report received in the corresponding International Application PCT/CN2019/129352, mailed Mar. 27, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/129352, mailed Mar. 27, 2020. |
The international search report received in the corresponding International Application PCT/CN2019/129354, mailed Mar. 26, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/129354, mailed Mar. 26, 2020. |
The first office action received in the corresponding Chinese Application 201910299937.6, mailed Sep. 1, 2020. |
The extended European search report received in the corresponding European Application 19924802.2, mailed Apr. 26, 2022. |
The first office action received in the corresponding Chinese Application 201910299297.9, mailed Aug. 20, 2020. |
The notice of allowance received in the corresponding Chinese Application 201910299297.9, mailed Nov. 27, 2020. |
The extended European search report received in the corresponding European Application 19924692.7, mailed Mar. 21, 2022. |
The international search report received in the corresponding International Application PCT/CN2019/129356, mailed Mar. 26, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/129356, mailed Mar. 26, 2020. |
The first office action received in the corresponding Chinese Application 201910299473.9, mailed Aug. 18, 2020. |
The notice of allowance received in the corresponding Chinese Application 201910299473.9, mailed Oct. 18, 2021. |
The extended European search report received in the corresponding European Application 19925225.5, mailed Mar. 22, 2022. |
The non-final office action received in the corresponding U.S. Appl. No. 17/501,905, mailed Sep. 14, 2023. |
The international search report received in the corresponding International Application PCT/CN2019/129357, mailed Jan. 23, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/129357, mailed Jan. 23, 2020. |
The international search report received in the corresponding International Application PCT/CN2019/129360, mailed Apr. 1, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/129360, mailed Apr. 1, 2020. |
The extended European search report received in the corresponding European Application 19933228.9, mailed Sep. 30, 2021. |
The first office action received in the corresponding Chinese Application 201910586647.X, mailed Jun. 16, 2023. |
The notification to grant patent right for invention eceived in the corresponding Chinese Application 201910586647.X, mailed Aug. 15, 2023. |
Matweb, Material Property Data Sheet for Aluminum, 2021. |
The non-final office action received in the corresponding U.S. Appl. No. 17/139,124, mailed Mar. 19, 2021. |
The non-final office action received in the corresponding U.S. Appl. No. 17/139,124, mailed Aug. 10, 2022. |
Matweb, Datasheet for Aluminum, 2022. |
The final office action received in the corresponding U.S. Appl. No. 17/139,124, mailed Apr. 11, 2022. |
The notice of allowance received in the corresponding U.S. Appl. No. 17/139,124, mailed Aug. 23, 2023. |
The international search report received in the corresponding International Application PCT/CN2019/119700, mailed Feb. 19, 2020. |
The written opinion of ISA received in the corresponding International Application PCT/CN2019/119700, mailed Feb. 19, 2020. |
The extended European search report received in the corresponding European Application 19902910.9, mailed Jul. 8, 2021. |
The first office action received in the corresponding Chinese Application 201811637655.4, mailed Jun. 16, 2020. |
The Final Office Action received in the corresponding U.S. Appl. No. 17/112,749, mailed Mar. 14, 2024. |
The Non-Final Office Action received in the corresponding U.S. Appl. No. 17/501,902, mailed May 7, 2024. |
The Final Office Action received in the counterpart U.S. Appl. No. 17/112,766, mailed on Jul. 11, 2024. |
The Non-Final Office Action received in the corresponding U.S. Appl. No. 17/059,503, mailed on Jun. 21, 2024. |
Number | Date | Country | |
---|---|---|---|
20210119221 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/117143 | Nov 2019 | WO |
Child | 17134014 | US |