This invention relates generally to devices that produce ozone and an electro-kinetic flow of air from which particulate matter has been substantially removed, and more particularly to cleaning the wire or wire-like electrodes present in such devices.
The use of an electric motor to rotate a fan blade to create an air flow has long been known in the art. Unfortunately, such fans produce substantial noise, and can present a hazard to children who can be tempted to poke a finger or a pencil into the moving fan blade. Although such fans can produce substantial air flow, e.g., 1,000 ft3/minute or more, substantial electrical power is required to operate the motor, and essentially no conditioning of the flowing air occurs.
It is known to provide such fans with a HEPA-compliant filter element to remove particulate matter larger than perhaps 0.3 μm. Unfortunately, the resistance to air flow presented by the filter element can require doubling the electric motor size to maintain a desired level of airflow. Further, HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
It is also known in the art to produce an air flow using electro-kinetic techniques, by which electrical power is directly converted into a flow of air without mechanically moving components. One such system is described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as
The high voltage pulses ionize the air between the arrays, and an air flow 50 from the minisectional array toward the maxisectional array results, without requiring any moving parts. Particulate matter 60 in the air is entrained within the airflow 50 and also moves towards the maxisectional electrodes 30. Much of the particulate matter is electrostatically attracted to the surface of the maxisectional electrode array, where it remains, thus conditioning the flow of air exiting system 10. Further, the high voltage field present between the electrode arrays can release ozone into the ambient environment, which appears to destroy or at least alter whatever is entrained in the airflow, including for example, bacteria.
In the embodiment of
In another embodiment shown herein as
While the electrostatic techniques disclosed by Lee are advantageous over conventional electric fan-filter units, Lee's maxisectional electrodes are relatively expensive to fabricate. Further, increased filter efficiency beyond what Lee's embodiments can produce would be advantageous, especially without including a third array of electrodes.
The invention in applicants' parent application provided a first and second electrode array configuration electro-kinetic air transporter-conditioner having improved efficiency over Lee-type systems, without requiring expensive production techniques to fabricate the electrodes. The condition also permitted user-selection of acceptable amounts of ozone to be generated.
The second array electrodes were intended to collect particulate matter and to be user-removable from the transporter-conditioner for regular cleaning to remove such matter from the electrode surfaces. The user must take care, however, to ensure that if the second array electrodes were cleaned with water, that the electrodes are thoroughly dried before reinsertion into the transporter-conditioner unit. If the unit were turned on while moisture from newly cleaned electrodes was allowed to pool within the unit, and moisture wicking could result in high voltage arcing from the first to the second electrode arrays, with possible damage to the unit.
The wire or wire-like electrodes in the first electrode array are less robust than the second array electrodes. (The terms “wire” and “wire-like” shall be used interchangeably herein to mean an electrode either made from a wire or, if thicker or stiffer than a wire, having the appearance of a wire.) In embodiments in which the first array electrodes were user-removable from the transporter-conditioner unit, care was required during cleaning to prevent excessive force from simply snapping the wire electrodes. But eventually the first array electrodes can accumulate a deposited layer or coating of fine ash-like material.
If this deposit is allowed to accumulate eventually efficiency of the conditioner-transporter will be degraded. Further, for reasons not entirely understood, such deposits can produce an audible oscillation that can be annoying to persons near the conditioner-transporter.
Thus there is a need for a mechanism by a conditioner-transporter unit can be protected against moisture pooling in the unit as a result of user cleaning. Further there is a need for a mechanism by which the wire electrodes in the first electrode array of a conditioner-transporter can be periodically cleaned. Preferably such cleaning mechanism should be straightforward to implement, should not require removal of the first array electrodes from the conditionertransporter, and should be operable by a user on a periodic basis.
The present invention provides such a method and apparatus.
The present invention is directed to improvements with respect to state of art. In particular, the present invention includes an air cleaner having at least an emitter electrode and at least a collector electrode. An embodiment of the invention includes a bead or other object having a bore there through, with the emitter electrode provided through said bore of the bead or other object. A bead or object moving arm is provided in the air cleaner and is operatively associated with the bead or object, in order to move the bead or object relative to the emitter electrode in order to clean the emitter electrode.
In another aspect of the invention, the collector electrode is removable from the air-cleaner for cleaning and the bead or object moving arm is operatively associated with the collector electrode such as the collector electrode is removed from the air cleaner, the bead or object moving arm moves said bead or object in order to clear said emitter electrode.
In a further aspect of the invention, the air cleaner includes a housing with a top and a base, and wherein the collector electrode is movable through said top in order to be cleaned, and wherein as such collector electrode is removed from the top, said bead or object moving arm moves said bead or object towards the top in order to clean the emitter electrode.
In yet a further aspect of the invention, the emitter electrode has a bottom end stop on which said bead can rest when the bead is at the bottom of the emitter electrode. The bead moving arm is moveably mounted to the collector electrode such that with the bead or object resting on said bottom end stop, said bead or object moving arm can move past said bead or object and reposition under said bead or object in preparation for moving said bead or object to clean said emitter electrode.
In a further aspect of the invention, a method to clean an air-cleaner, which air cleaner has a housing with a top and base, and wherein said air cleaner includes a first electrode, a second electrode array, and a bead or object mounted on the first electrode and a bead or object moving arm mounted on the second electrode array, includes the steps of removing said second electrode array from the top of said housing, and simultaneously moving said bead or object along the first electrode as urged by the bead or object moving arm in order to clean said first electrode.
Other features and advantages of the invention will appear from the following description in which embodiments have been set forth in detail, in conjunction with the accompanying drawings.
The following description is presented to enable any person skilled in the art to make and use the invention. Various modifications to the embodiments described will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention as defined in the appended claims. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein. To the extent necessary to afford a complete understanding of the invention disclosed, the specification and drawings of all patents and patent applications cited in this application are incorporated herein by reference.
As a general introduction, applicants' parent application provides an electro-kinetic system for transporting and conditioning air without moving parts. The air is conditioned in the sense that it is ionized and contains appropriate amounts of ozone and removes at least some airborne particles. The electro-kinetic air transporter-conditioner disclosed therein includes a louvered or grilled body that houses an ionizer unit. The ionizer unit includes a high voltage DC inverter that boosts common 110 VAC to high voltage and a generator that receives the high voltage DC and outputs high voltage pulses of perhaps 10 KV peak-to-peak, although an essentially 100% duty cycle (e.g., high voltage DC) output could be used instead of pulses. The unit also includes an electrode assembly unit comprising first and second spaced-apart arrays of conducting electrodes, the first array and second array being coupled, respectively, preferably to the positive and negative output ports of the high voltage generator.
The electrode assembly preferably is formed using first and second arrays of readily manufacturable electrode configurations. In the embodiments relevant to this present application, the first array included wire (or wire-like) electrodes. The second array comprised “U”-shaped or “L”-shaped electrodes having one or two trailing surfaces and intentionally large outer surface areas upon which to collect particulate matter in the air. In the preferred embodiments, the ratio between effective radii of curvature of the second array electrodes to the first array electrodes was at least about 20:1.
The high voltage pulses create an electric field between the first and second electrode arrays. This field produces an electro-kinetic airflow going from the first array toward the second array, the airflow being rich in preferably a net surplus of negative ions and in ozone. Ambient air including dust particles and other undesired components (germs perhaps) enter the housing through the grill or lover openings, and ionized clean air (with ozone) exits through openings on the downstream side of the housing.
The dust and other particulate matter attaches electrostatically to the second array (or collector) electrodes, and the output air is substantially clean or such particulate matter. Further, ozone generated by the transporter-conditioner unit can kill certain types of germs and the like, and also eliminates odors in the output air. Preferably the transporter operates in periodic bursts, and a control permits the user to temporarily increase the high voltage pulse generator output, e.g., to more rapidly eliminate odors in the environment.
Applicants' parent application provided second array electrode units that were very robust and user-removable from the transporter-conditioner unit for cleaning. These second array electrode units could simply be slid up and out of the transporter-conditioner unit, and wiped clean with a moist cloth, and returned to the unit. However on occasion, if electrode units are returned to the transporter-conditioner unit while still wet (from cleaning), moisture pooling can reduce resistance between the first and second electrode arrays to where high voltage arcing results.
Another problem is that over time the wire electrodes in the first electrode array become dirty and can accumulate a deposited layer or coating of fine ash-like material. This accumulated material on the first array electrodes can eventually reduce ionization efficiency. Further, this accumulated coating can also result in the transporter-conditioner unit producing 500 Hz to 5 KHz audible oscillations that can annoy people in the same room as the unit.
In a first embodiment, the present invention extends one or more thin flexible sheets of MYLAR (polyester film) or KAPTON (polyamide) film type material from the lower portion of the removable second array electrode unit. This sheet or sheets faces the first array electrodes and is nominally in a plane perpendicular to the longitudinal axis of the first and second array electrodes. Such sheet material has high voltage breakdown, high dielectric constant, can withstand high temperature, and is flexible. A slit is cut in the distal edge of this sheet for each first array electrode such that each wire first array electrode fits into a slit in this sheet. Whenever the user removes the second electrode array from the transporter-conditioner unit, the sheet of material is also removed. However in the removal process, the sheet of material is also pulled upward, and friction between the inner slit edge surrounding each wire tends to scrape off any coating on the first array electrode. When the second array electrode unit is reinserted into the transporter-conditioner unit, the slits in the sheet automatically surround the associated first electrode array electrode. Thus, there is an up and down scraping action on the first electrode array electrodes whenever the second array electrode unit is removed from, or simply moved up and down within, the transporter-conditioner unit.
Optionally, upwardly projecting pillars can be disposed on the inner bottom surface of the transporter-conditioner unit to deflect the distal edge of the sheet material upward, away from the first array electrodes when the second array electrode unit is fully inserted. This feature reduces the likelihood of the sheet itself lowering the resistance between the two electrode arrays.
In a presently preferred embodiment, the lower ends of the second array electrodes are mounted to a retainer that includes pivotable arms to which a strip of MYLAR or KAPTON type material is attached. Alternatively two overlapping strips of material can be so attached. The distal edge of each strip includes a slit, and the each strip (and the slit therein) is disposed to self-align with an associated wire electrode. A pedestal extends downward from the base of the retainer, and when fully inserted in the transporter-conditioner unit, the pedestal extends into a pedestal opening in a sub-floor of the unit. The first electrode array-facing walls of the pedestal opening urge the arms and the strip on each arm to pivot upwardly, from a horizontal to a vertical disposition. This configuration can improve resistance between the electrode arrays.
Yet another embodiment provides a cleaning mechanism for the wires in the first electrode array in which one or more bead-like members surrounds each wire, the wire electrode passing through a channel in the bead. When the transporter-conditioner unit is inverted, top-for-bottom and then bottom-for-top, the beads slide the length of the wire they surround, scraping off debris in the process. The beads embodiments may be combined with any or all of the various sheets embodiments to provide mechanisms allowing a user to safely clean the wire electrodes in the first electrode array in a transporter-conditioner unit.
Further as evident from a review of the current specification, embodiments of the invention include a bead and a bead lifting arm, which is operatively associated with both the bead and the collector electrodes. When the collector electrodes are removed for cleaning, the bead lifting arm engages the bead in order to urge the bead upwardly along the emitter electrode in order to clean the emitter electrode. As the collector electrodes are removed from the housing, the bead lifting arm disengages from the bead, allowing the bead to fall to the bottom of the emitter electrode. When the collector electrodes are reinserted into the housing, the bead lifting arm re-engages the bead, which is now located at the bottom of the emitter electrode.
The upper surface of housing 102 includes a user-liftable handle member 112 to which is affixed a second array 240 of electrodes 242 within an electrode assembly 220. Electrode assembly 220 also comprises a first array of electrodes 230, shown here as a single wire or wire-like electrode 232. In the embodiment shown, lifting member 112 in the form of a handle, enables the user to lift the second array electrodes 240 up and, if desired, out of unit 100, while the first electrode array 230 remains within unit 100. In
The first and second arrays of electrodes are coupled in series between the output terminals of ion generating unit 160, as best seen in
The general shape of the invention shown in
As will be described, when unit 100 is energized with S1, high voltage output by ion generator 160 produces ions at the first electrode array, which ions are attracted to the second electrode array. The movement of the ions in an “IN” to “OUT” direction carries with it air molecules, thus electro kinetically producing an outflow of ionized air. The “IN” notation in
As best seen in
As shown in
Output pulses from high voltage generator 170 preferably are at least 10 KV peak-to-peak with an effective DC offset of perhaps half the peak-to-peak voltage, and have a frequency of perhaps 20 KHz. The pulse train output preferably has a duty cycle of perhaps 10%, which will promote battery lifetime. Of course, different peak-peak amplitudes, DC offsets, pulse train waveshapes, duty cycle, and/or repetition frequencies can instead be used. Indeed, a 100% pulse train (e.g., an essentially DC high voltage) can be used, albeit with shorter battery lifetime. Thus, generator unit 170 can be referred to as a high voltage pulse generator.
Frequency of oscillation is not especially critical but frequency of at least about 20 KHz is preferred as being inaudible to humans. If pets will be in the same room as the unit 100, it can be desired to utilize an even higher operating frequency, to prevent pet discomfort and/or howling by the pet. As noted with respect to
The output from high voltage pulse generator unit 170 is coupled to an electrode assembly 220 that comprises a first electrode array 230 and a second electrode array 240. Unit 170 functions as a DC:DC high voltage generator, and could be implemented using other circuitry and/or techniques to output high voltage pulses that are input to electrode assembly 220.
In the embodiment of
When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240, it is believed that a plasma-like field is created surrounding electrodes 232 in first array 230. This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array. It is understood that the IN flow enters via vent(s) 104, and that the OUT flow exits via vent(s) 106.
It is believed that ozone and ions are generated simultaneously by the first array electrode(s) 232, essentially as a function of the potential from generator 170 coupled to the first array. Ozone generation can be increased or decreased by increasing or decreasing the potential at the first array. Coupling an opposite polarity potential to the second array electrode(s) 242 essentially accelerates the motion of ions generated at the first array, producing the air flow denoted as “OUT” in the figures. As the ions move toward the second array, it is believed that it pushes or moves air molecules toward the second array. The relative velocity of this motion can be increased by decreasing the potential at the second array relative to the potential at the first array.
For example, if +10 KV were applied to the first array electrode(s), and no potential were applied to the second array electrode(s), a cloud of ions (whose net charge is positive) would form adjacent the first electrode array. Further, the relatively high 10 KV potential would generate substantial ozone. By coupling a relatively negative potential to the second array electrode(s), the velocity of the air mass moved by the net emitted ions increases, as momentum of the moving ions is conserved.
On the other hand, if it were desired to maintain the same effective outflow (OUT) velocity but to generate less ozone, the exemplary 10 KV potential could be divided between the electrode arrays. For example, generator 170 could provide +4 KV (or some other value) to the first array electrode(s) and −KV (or some other value) to the second array electrode(s). In this example, it is understood that the +4 KV and the −6 KV are measured relative to ground. Understandably it is desired that the unit 100 operate to output safe amounts of ozone. Accordingly, the high voltage is preferably fractionalized with about +4 KV applied to the first array electrode(s) and about −6 KV applied to the second array electrodes.
As noted, outflow (OUT) preferably includes safe amounts of O3 that can destroy or at least substantially alter bacteria, germs, and other living (or quasi-living) matter subjected to the outflow. Thus, when switch S1 is closed and battery B1 has sufficient operating potential, pulses from high voltage pulse generator unit 170 create an outflow (OUT) of ionized air and O3. When switch S1 is closed, LED will visually signal when ionization is occurring.
Preferably operating parameters of unit 100 are set during manufacture and are not user-adjustable. For example, increasing the peak-to-peak output voltage and/or duty cycle in the high voltage pulses generated by unit 170 can increase air flowrate, ion content, and ozone content. In an embodiment, output flowrate is about 200 feet/minute, ion content is about 2,000,000/cc and ozone content is about 40 ppb (over ambient) to perhaps 2,000 ppb (over ambient). Decreasing the R2/R1 ratio below about 20:1 will decrease flow rate, as will decreasing the peak-to-peak voltage and/or duty cycle of the high voltage pulses coupled between the first and second electrode arrays.
In practice, unit 100 is placed in a room and connected to an appropriate source of operating potential, typically 117 VAC. With switch S1 energized, ionization unit 160 emits ionized air and preferably some ozone (O3) via outlet vents 150. The air flow, coupled with the ions and ozone freshens the air in the room, and the ozone can beneficially destroy or at least diminish the undesired effects of certain odors, bacteria, germs, and the like. The air flow is indeed electro-kinetically produced, in that there are no intentionally moving parts within unit 100. (As noted, some mechanical vibration can occur within the electrodes.) As will be described with respect to
Having described various aspects of the invention in general, a variety of embodiments of electrode assembly 220 will now be described. In the various embodiments, electrode assembly 220 will comprise a first array 230 of at least one electrode 232, and will further comprise a second array 240 of preferably at least one electrode 242. Understandably material(s) for electrodes 232 and 242 should conduct electricity, be resilient to corrosive effects from the application of high voltage, yet be strong enough to be cleaned.
In the various electrode assemblies to be described herein, electrode(s) 232 in the first electrode array 230 are preferably fabricated from tungsten. Tungsten is sufficiently robust to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization. On the other hand, electrodes 242 preferably will have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, electrodes 242 preferably are fabricated from stainless steel, brass, among other materials. The polished surface of electrodes 232 also promotes ease of electrode cleaning.
In contrast to the prior art electrodes disclosed by Lee, discussed supra, electrodes 232 and 242, used in unit 100 are lightweight, easy to fabricate, and appropriate for mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and production of safe amounts of ozone, O3.
In unit 100, a high voltage pulse generator 170 is coupled between the first electrode array 230 and the second electrode array 240. The high voltage pulses produce a flow of ionized air that travels in the direction from the first array towards the second array (indicated herein by hollow arrows denoted “OUT”). As such, electrode(s) 232 can be referred to as an emitting electrode, and electrodes 242 can be referred to as collector electrodes. This outflow advantageously contains safe amounts of O3, and exits unit 100 from vent(s) 106.
It is preferred that the positive output terminal or port of the high voltage pulse generator be coupled to electrodes 232, and that the negative output terminal or port be coupled to electrodes 242. It is believed that the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. In any event, the preferred electrode assembly electrical coupling minimizes audible hum from electrodes 232 contrasted with reverse polarity (e.g., interchanging the positive and negative output port connections).
However, while generation of positive ions is conducive to a relatively silent air flow, from a health standpoint, it is desired that the output air flow be richer in negative ions, not positive ions. It is noted that in some embodiments, however, one port (preferably the negative port) of the high voltage pulse generator can in fact be the ambient air. Thus, electrodes in the second array need not be connected to the high voltage pulse generator using wire. Nonetheless, there will be an “effective connection” between the second array electrodes and one output port of the high voltage pulse generator, in this instance, via ambient air.
Turning now to the embodiments of
Electrodes 232 are preferably lengths of tungsten wire, whereas electrodes 242 are formed from sheet metal, preferably stainless steel, although brass or other sheet metal could be used. The sheet metal is readily formed to define side regions 244 and bulbous nose region 246 for hollow elongated “U” shaped electrodes 242. While
As best seen in
In
Electrodes 232 in first array 230 are coupled by a conductor 234 to a first (preferably positive) output port of high voltage pulse generator 170, and electrodes 242 in second array 240 are coupled by a conductor 244 to a second (preferably negative) output port of generator 170. As will be appreciated by those of skill in the art, other locations on the various electrodes can be used to make electrical connection to conductors 234 or 244. Thus, by way of example
To facilitate removing the electrode assembly from unit 100 (as shown in
The ratio of the effective electric field emanating area of electrode 232 to the nearest effective area of electrodes 242 is at least about 15:1, and preferably is at least 20:1. Thus, in the embodiment of
In this and the other embodiments to be described herein, ionization appears to occur at the smaller electrode(s) 232 in the first electrode array 230, with ozone production occurring as a function of high voltage arcing. For example, increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air. If desired, user-control S2 can be used to somewhat vary ozone content by varying (in a safe manner) amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
Note the inclusion in
Another advantage of including pointed electrodes 243 is that they can be stationarily mounted within the housing of unit 100, and thus are not readily reached by human hands when cleaning the unit. Were it otherwise, the sharp point on electrode(s) 243 could easily cause cuts. The inclusion of one electrode 243 has been found sufficient to provide a sufficient number of output negative ions, but more such electrodes can be included.
In the embodiment of
Note that the embodiments of
In the embodiment of
Turning now to
The configuration of the sheets or strips 515 and slots 510 of electrode cleaning mechanism 500 is such that each wire or wire-like electrode 232 in the first electrode array 230 fits snugly and frictionally within a corresponding slot 510. As indicated by
A user hearing that excess noise or humming emanates from unit 100 might simply turn the unit off, and slide array 240 (and thus cleaning mechanism 500 or sheets or strips 515) up and down (as indicated by the up/down arrows in
As noted earlier, a user can remove second electrode array 240 for cleaning (thus also removing cleaning mechanism 500, which will have scraped electrodes 232 on its upward vertical path). If the user cleans electrodes 242 with water and returns second array 240 to unit 100 without first completely drying the array 240, moisture might form on the upper surface of a horizontally disposed member 550 within unit 100. Thus, as shown in
The inclusion of a projecting vane 560 in the configuration of
In
As best seen in
Assume that a user had removed second electrode array 240 completely from the transporter-conditioner unit for cleaning, and that
In
In
Thus, the embodiments shown in
Turning now to
As indicated by
Friction between debris 612 on electrode 232 and the mouth of channel 630 will tend to remove the debris from the electrode as bead 620 slides up and down the length of the electrode, e.g., when a user inverts transporter-conditioner unit 100, to clean electrodes 232. It is understood that each electrode 232 will include its own bead or beads, and some of the beads can have symmetrically disposed channels, while other beads can have asymmetrically disposed channels. An advantage of the configuration shown in
Turning now to another embodiment of the invention, in
In the preferred embodiment, the bead lifting arm 677 is configured so that the arm sits below bead 600 with the collector electrode 242 fully seated in the unit 100 as shown in
Turning now to
The embodiment of the invention depicted in
When it is desired to clean the electrodes, the collector electrodes 242 are lifted from the housing. As this is accomplished, the bead lifting arm 677 lifts the bead 600 from the position shown in
In alternative embodiment, the lifting arms 677 themselves actually engage and clean the emitter electrodes 232 as described in the other embodiments. In this arrangement, the lifting arm 677 can also be configured much as the distal end of the arm 677 in
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention from the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
This application is a continuation of U.S. patent application Ser. No. 10/835,743, filed on Apr. 30, 2004 (now U.S. Pat. No. 6,908,501), which is a continuation of 10/278,193, filed Oct. 21, 2002 (now U.S. Pat. No. 6,749,667), which claims priority to U.S. Provisional Patent Application 60/391,070, filed Jun. 20, 2002. This application is further a continuation-in-part of co-pending U.S. patent application Ser. No. 11/064,797, filed on Feb. 24, 2005, which is a continuation of U.S. patent application Ser. No. 10/074,347, filed Feb. 12, 2002 (now U.S. Pat. No. 6,911,186), which claims priority to U.S. Provisional Patent Application No. 60/340,702, filed Dec. 13, 2001, and is a continuation of co-pending U.S. patent application Ser. No. 09/924,624, filed on Aug. 8, 2001, which claims priority to U.S. Provisional Patent Application No. 60/306,479, filed on Jul. 18, 2001, and is a continuation-in-part of U.S. patent application Ser. No. 09/774,198, filed on Jan. 29, 2001 (now U.S. Pat. No. 6,544,485), which is a continuation-in-part of U.S. patent application Ser. No. 09/730,499, filed on Dec. 5, 2001 (now U.S. Pat. No. 6,713,026), which is a continuation of U.S. patent application Ser. No. 09/564,960, filed on May 4, 2000 (now U.S. Pat. No. 6,350,417), which is a continuation-in-part of U.S. patent application Ser. No. 09/186,471, filed on Nov. 5, 1998 (now U.S. Pat. No. 6,176,977). Each of the above-identified applications and patents are hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
653421 | Lorey | Jul 1900 | A |
995958 | Goldberg | Jun 1911 | A |
1791338 | Wintermute | Feb 1931 | A |
1869335 | Day | Jul 1932 | A |
2327588 | Bennett | Aug 1943 | A |
2359057 | Skinner | Sep 1944 | A |
2509548 | White | May 1950 | A |
2949550 | Brown | Aug 1960 | A |
3018394 | Brown | Jan 1962 | A |
3026964 | Penney | Mar 1962 | A |
3374941 | Okress | Mar 1968 | A |
3518462 | Brown | Jun 1970 | A |
3540191 | Herman | Nov 1970 | A |
3581470 | Aitkenhead et al. | Jun 1971 | A |
3638058 | Fritzius | Jan 1972 | A |
3744216 | Halloran | Jul 1973 | A |
3981695 | Fuchs | Sep 1976 | A |
3984215 | Zucker | Oct 1976 | A |
4052177 | Kide | Oct 1977 | A |
4092134 | Kikuchi | May 1978 | A |
4102654 | Pellin | Jul 1978 | A |
4138233 | Masuda | Feb 1979 | A |
4209306 | Feldman et al. | Jun 1980 | A |
4227894 | Proynoff | Oct 1980 | A |
4231766 | Spurgin | Nov 1980 | A |
4232355 | Finger et al. | Nov 1980 | A |
4244710 | Burger | Jan 1981 | A |
4244712 | Tongret | Jan 1981 | A |
4253852 | Adams | Mar 1981 | A |
4259452 | Yukuta et al. | Mar 1981 | A |
4266948 | Teague et al. | May 1981 | A |
4282014 | Winkler et al. | Aug 1981 | A |
4284420 | Borysiak | Aug 1981 | A |
4318718 | Utsumi et al. | Mar 1982 | A |
4342571 | Hayashi | Aug 1982 | A |
4357150 | Masuda et al. | Nov 1982 | A |
4386395 | Francis, Jr. | May 1983 | A |
4413225 | Donig et al. | Nov 1983 | A |
4445911 | Lind | May 1984 | A |
4477263 | Shaver et al. | Oct 1984 | A |
4496375 | Le Vantine | Jan 1985 | A |
4502002 | Ando | Feb 1985 | A |
4509958 | Masuda et al. | Apr 1985 | A |
4516991 | Kawashima | May 1985 | A |
4536698 | Shevalenko et al. | Aug 1985 | A |
4587475 | Finney, Jr. et al. | May 1986 | A |
4600411 | Santamaria | Jul 1986 | A |
4601733 | Ordines et al. | Jul 1986 | A |
4626261 | Jorgensen | Dec 1986 | A |
4643745 | Sakakibara et al. | Feb 1987 | A |
4659342 | Lind | Apr 1987 | A |
4674003 | Zylka | Jun 1987 | A |
4686370 | Blach | Aug 1987 | A |
4689056 | Noguchi et al. | Aug 1987 | A |
4694376 | Gesslauer | Sep 1987 | A |
4713093 | Hansson | Dec 1987 | A |
4713724 | Voelkel | Dec 1987 | A |
4726812 | Hirth | Feb 1988 | A |
4726814 | Weitman | Feb 1988 | A |
4772297 | Anzai | Sep 1988 | A |
4779182 | Mickal et al. | Oct 1988 | A |
4781736 | Cheney et al. | Nov 1988 | A |
4786844 | Farrell et al. | Nov 1988 | A |
4789801 | Lee | Dec 1988 | A |
4808200 | Dallhammer et al. | Feb 1989 | A |
4811159 | Foster, Jr. | Mar 1989 | A |
4940470 | Jaisinghani et al. | Jul 1990 | A |
4941068 | Hofmann | Jul 1990 | A |
4955991 | Torok et al. | Sep 1990 | A |
4967119 | Torok et al. | Oct 1990 | A |
4976752 | Torok et al. | Dec 1990 | A |
D315598 | Yamamoto et al. | Mar 1991 | S |
5006761 | Torok et al. | Apr 1991 | A |
5010869 | Lee | Apr 1991 | A |
5012093 | Shimizu | Apr 1991 | A |
5012159 | Torok et al. | Apr 1991 | A |
5024685 | Torok et al. | Jun 1991 | A |
5053912 | Loreth et al. | Oct 1991 | A |
5077500 | Torok et al. | Dec 1991 | A |
RE33927 | Fuzimura | May 1992 | E |
5141529 | Oakley et al. | Aug 1992 | A |
D329284 | Patton | Sep 1992 | S |
D332655 | Lytle et al. | Jan 1993 | S |
5180404 | Loreth et al. | Jan 1993 | A |
5183480 | Raterman et al. | Feb 1993 | A |
5196171 | Peltier | Mar 1993 | A |
5215558 | Moon | Jun 1993 | A |
5217504 | Johansson | Jun 1993 | A |
5248324 | Hara | Sep 1993 | A |
5266004 | Tsumurai et al. | Nov 1993 | A |
5290343 | Morita et al. | Mar 1994 | A |
5296019 | Oakley et al. | Mar 1994 | A |
5302190 | Williams | Apr 1994 | A |
5315838 | Thompson | May 1994 | A |
5316741 | Sewell et al. | May 1994 | A |
5378978 | Gallo et al. | Jan 1995 | A |
5435817 | Davis et al. | Jul 1995 | A |
5437713 | Chang | Aug 1995 | A |
5484472 | Weinberg | Jan 1996 | A |
5532798 | Nakagami et al. | Jul 1996 | A |
5535089 | Ford et al. | Jul 1996 | A |
D375546 | Lee | Nov 1996 | S |
5578112 | Krause | Nov 1996 | A |
D377523 | Marvin et al. | Jan 1997 | S |
5601636 | Glucksman | Feb 1997 | A |
5641342 | Smith et al. | Jun 1997 | A |
5656063 | Hsu | Aug 1997 | A |
5667564 | Weinberg | Sep 1997 | A |
5669963 | Horton et al. | Sep 1997 | A |
5698164 | Kishioka et al. | Dec 1997 | A |
5702507 | Wang | Dec 1997 | A |
D389567 | Gudefin | Jan 1998 | S |
5766318 | Loreth et al. | Jun 1998 | A |
5779769 | Jiang | Jul 1998 | A |
5814135 | Weinberg | Sep 1998 | A |
5879435 | Satyapal et al. | Mar 1999 | A |
5893977 | Pucci | Apr 1999 | A |
5911957 | Khatchatrian et al. | Jun 1999 | A |
5972076 | Nichols et al. | Oct 1999 | A |
5975090 | Taylor et al. | Nov 1999 | A |
5980614 | Loreth et al. | Nov 1999 | A |
5993521 | Loreth et al. | Nov 1999 | A |
5997619 | Knuth et al. | Dec 1999 | A |
6019815 | Satyapal et al. | Feb 2000 | A |
6042637 | Weinberg | Mar 2000 | A |
6063168 | Nichols et al. | May 2000 | A |
6086657 | Freije | Jul 2000 | A |
6117216 | Loreth | Sep 2000 | A |
6118645 | Partridge | Sep 2000 | A |
6126722 | Mitchell et al. | Oct 2000 | A |
6126727 | Lo | Oct 2000 | A |
6149717 | Satyapal et al. | Nov 2000 | A |
6149815 | Sauter | Nov 2000 | A |
6152146 | Taylor et al. | Nov 2000 | A |
6163098 | Taylor et al. | Dec 2000 | A |
6176977 | Taylor et al. | Jan 2001 | B1 |
6182461 | Washburn et al. | Feb 2001 | B1 |
6182671 | Taylor et al. | Feb 2001 | B1 |
6193852 | Caracciolo et al. | Feb 2001 | B1 |
6203600 | Loreth | Mar 2001 | B1 |
6212883 | Kang | Apr 2001 | B1 |
6228149 | Alenichev et al. | May 2001 | B1 |
6252012 | Egitto et al. | Jun 2001 | B1 |
6270733 | Rodden | Aug 2001 | B1 |
6277248 | Ishioka et al. | Aug 2001 | B1 |
6282106 | Grass | Aug 2001 | B1 |
D449097 | Smith et al. | Oct 2001 | S |
D449679 | Smith et al. | Oct 2001 | S |
6302944 | Hoenig | Oct 2001 | B1 |
6309514 | Conrad et al. | Oct 2001 | B1 |
6312507 | Taylor et al. | Nov 2001 | B1 |
6315821 | Pillion et al. | Nov 2001 | B1 |
6328791 | Pillion et al. | Dec 2001 | B1 |
6348103 | Ahlborn et al. | Feb 2002 | B1 |
6350417 | Lau et al. | Feb 2002 | B1 |
6362604 | Cravey | Mar 2002 | B1 |
6372097 | Chen | Apr 2002 | B1 |
6373723 | Wallgren et al. | Apr 2002 | B1 |
6379427 | Siess | Apr 2002 | B1 |
6391259 | Malkin et al. | May 2002 | B1 |
6398852 | Loreth | Jun 2002 | B1 |
6447587 | Pillion et al. | Sep 2002 | B1 |
6451266 | Lau et al. | Sep 2002 | B1 |
6464754 | Ford | Oct 2002 | B1 |
6471753 | Ahn et al. | Oct 2002 | B1 |
6494940 | Hak | Dec 2002 | B1 |
6504308 | Krichtafovitch et al. | Jan 2003 | B1 |
6508982 | Shoji | Jan 2003 | B1 |
6544485 | Taylor | Apr 2003 | B1 |
6585935 | Taylor et al. | Jul 2003 | B1 |
6588434 | Taylor et al. | Jul 2003 | B1 |
6603268 | Lee | Aug 2003 | B1 |
6613277 | Monagan | Sep 2003 | B1 |
6632407 | Lau et al. | Oct 2003 | B1 |
6635105 | Ahlborn et al. | Oct 2003 | B1 |
6672315 | Taylor et al. | Jan 2004 | B1 |
6709484 | Lau et al. | Mar 2004 | B1 |
6713026 | Taylor et al. | Mar 2004 | B1 |
6749667 | Reeves et al. | Jun 2004 | B1 |
6855190 | Nikkhah | Feb 2005 | B1 |
6908501 | Reeves et al. | Jun 2005 | B1 |
6911186 | Taylor et al. | Jun 2005 | B1 |
20010048906 | Lau et al. | Dec 2001 | A1 |
20020069760 | Pruette et al. | Jun 2002 | A1 |
20020079212 | Taylor et al. | Jun 2002 | A1 |
20020098131 | Taylor et al. | Jul 2002 | A1 |
20020122751 | Sinaiko et al. | Sep 2002 | A1 |
20020122752 | Taylor et al. | Sep 2002 | A1 |
20020127156 | Taylor | Sep 2002 | A1 |
20020134664 | Taylor et al. | Sep 2002 | A1 |
20020134665 | Taylor et al. | Sep 2002 | A1 |
20020141914 | Lau et al. | Oct 2002 | A1 |
20020144601 | Palestro et al. | Oct 2002 | A1 |
20020146356 | Sinaiko et al. | Oct 2002 | A1 |
20020150520 | Taylor et al. | Oct 2002 | A1 |
20020152890 | Leiser | Oct 2002 | A1 |
20020155041 | McKinney, Jr. et al. | Oct 2002 | A1 |
20020170435 | Joannou | Nov 2002 | A1 |
20020190658 | Lee | Dec 2002 | A1 |
20020195951 | Lee | Dec 2002 | A1 |
20030005824 | Katou et al. | Jan 2003 | A1 |
20030206837 | Taylor et al. | Nov 2003 | A1 |
20030206839 | Taylor et al. | Nov 2003 | A1 |
20030206840 | Taylor et al. | Nov 2003 | A1 |
20040033176 | Lee et al. | Feb 2004 | A1 |
20040052700 | Kotlyar et al. | Mar 2004 | A1 |
20040065202 | Gatchell et al. | Apr 2004 | A1 |
20040136863 | Yates et al. | Jul 2004 | A1 |
20040166037 | Youdall et al. | Aug 2004 | A1 |
20040226447 | Lau et al. | Nov 2004 | A1 |
20040234431 | Taylor et al. | Nov 2004 | A1 |
20040237787 | Reeves et al. | Dec 2004 | A1 |
20040251124 | Lau | Dec 2004 | A1 |
20040251909 | Taylor et al. | Dec 2004 | A1 |
20050000793 | Taylor et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
2111112 | Jul 1972 | CN |
87210843 | Jul 1988 | CN |
2138764 | Jun 1993 | CN |
2153231 | Dec 1993 | CN |
2206057 | Aug 1973 | DE |
0433152 | Dec 1990 | EP |
0332624 | Jan 1992 | EP |
2690509 | Oct 1993 | FR |
643363 | Sep 1950 | GB |
S51-90077 | Aug 1976 | JP |
S62-20653 | Feb 1987 | JP |
10137007 | May 1998 | JP |
11104223 | Apr 1999 | JP |
2000236914 | Sep 2000 | JP |
WO9205875 | Apr 1992 | WO |
WO9604703 | Feb 1996 | WO |
WO9907474 | Feb 1999 | WO |
WO0010713 | Mar 2000 | WO |
WO0147803 | Jul 2001 | WO |
WO0148781 | Jul 2001 | WO |
WO0164349 | Sep 2001 | WO |
WO0185348 | Nov 2001 | WO |
WO0220162 | Mar 2002 | WO |
WO0220163 | Mar 2002 | WO |
WO0230574 | Apr 2002 | WO |
WO0232578 | Apr 2002 | WO |
WO0242003 | May 2002 | WO |
WO02066167 | Aug 2002 | WO |
WO03009944 | Feb 2003 | WO |
WO03013620 | Feb 2003 | WO |
WO03013734 AA | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050160906 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60391070 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10835743 | Apr 2004 | US |
Child | 11087969 | US | |
Parent | 10287193 | Oct 2002 | US |
Child | 10835743 | US |