Claims
- 1. In a method of sputtering platinum onto a solid electrolyte body to form an exhaust gas electrode for an electrochemical-type exhaust gas oxygen sensor, the improvement wherein the platinum is sputtered under an atmosphere consisting essentially of more than about 50% by volume of at least one member selected from the group consisting of nitrogen and oxygen and less than about 50% of an inert gas, in proportion effective to provide low sensor rich-to-lean and lean-to-rich switching response times of less than 600 milliseconds with the electrode as deposited.
- 2. In a method of sputtering platinum onto a vitrified zirconia body to form an exhaust gas electrode for an electrochemical-type exhaust gas oxygen sensor, the improvement wherein the sputtering is performed using an argon atmosphere that contains at least 65% by volume of one member selected from the group consisting of nitrogen and oxygen, whereby low sensor rich-to-lean switching response times of less than 600 milliseconds are obtained that are generally equal to lean-to-rich switching response times, without post-electroding treatments.
- 3. In a method of sputtering platinum onto a solid electrolyte body to form an exhaust gas electrode for a zirconia, solid-electrolyte exhaust gas oxygen sensor, the improvement wherein the platinum is sputtered under an atmosphere consisting predominantly of nitrogen, the remainder being an inert gas and a target spacing, deposition rate and chamber pressure sufficient to provide a highly porous platinum deposit and a partially blackened zirconia surface under the platinum deposit, whereby sensor switching response time is reduced to below 250 milliseconds as deposited.
- 4. In a method of sputtering a porous platinum exhaust gas electrode onto a vitrified zirconia thimble for an electrochemical-type exhaust gas oxygen sensor wherein a generally planar platinum target is oriented normal to the axis of a zirconia thimble, the target is spaced at least about 3.0 cm from a closed end on the thimble, and the target is sputtered under an argon atmosphere at a pressure of about 10-20 millitorr and a power of about 13-22 watts/cm.sup.2 of target area, the improvement wherein the atmosphere contains more than about 65% by volume of at least one member selected from the group consisting of nitrogen and oxygen and the total pressure is about 10-20 millitorr, effective to increase sensor controllability and to reproducibly obtain sensor rich-to-lean and lean-to-rich switching response times below 250 milliseconds.
- 5. In a method of sputtering a porous platinum exhaust gas electrode onto a vitrified zirconia thimble for an electrochemical-type exhaust gas oxygen sensor wherein a generally planar platinum target is oriented normal to the axis of a zirconia thimble, the target is spaced about 3.0-5.0 cm from a closed end on the thimble, a thickness of at least about 0.65 micrometer is applied to the thimble end and the target is sputtered under argon at a pressure of about 10-20 millitorr and a DC power of about 13-22 watts/cm.sup.2 of target area, the improvement wherein the platinum is sputtered in an atmosphere consisting essentially of about 65-75% by volume nitrogen and the balance argon at a total pressure of about 10-20 millitorr, effective to increase sensor controllability and to reproducibly obtain low and symmetrical sensor rich-to-lean and lean-to-rich switching response times below 250 milliseconds without post-electroding electrolytic or heat treatments.
CROSS REFERENCE TO RELATED PATENT APPLICATION:
This patent application is a continuation-in-part of U.S. patent application Ser. No. 030,748, filed Apr. 17, 1979, now abandoned.
US Referenced Citations (4)
Non-Patent Literature Citations (1)
Entry |
L. I. Maissel et al., Handbook of Thin Film Technology, McGraw-Hill Book Co., New York, 1970, pp. 4-26 to 4-31. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
30748 |
Apr 1979 |
|