1. Field of the Invention
The present invention relates generally to medical devices and methods for treating heart failure and hypertension. More specifically, the present invention relates to inhibiting an inflammatory response at the site of electrode implantation.
The treatment of a wide variety of conditions can benefit from the use of implantable electrodes. Inflammation caused by the implantation of electrodes can result in the growth of scar tissue. While scar tissue growth can be beneficial in certain circumstances, such as where the scar tissue helps to hold an implanted lead in place or where the scar tissue protects tissues located near an implanted lead. However, the growth of scar tissue can also present undesirable effects where the scar tissue grows between an electrode surface and an underlying tissue which is stimulated with the electrode, as the scar tissue can present a barrier to the stimulation of the underlying tissue. Scar tissue which acts as a barrier to stimulation can reduce the effectiveness of a device implanted to stimulate tissue. Thus, there exists a need to limit or control the growth of scar tissue with at least some implanted electrodes.
Of particular interest to the present invention, certain types of implantable electrodes are designed to be placed over a tissue surface. For example, particular implantable electrode structures disclosed in the co-pending patent applications referenced above comprise a membrane, or backing, which can be wrapped around a carotid sinus or other vascular structure. The backing holds an electrode structure in place over a baroreceptor to permit baroreceptor stimulation to induce the baroreflex to control hypertension or other conditions. The implantation of such electrode structures may result in inflammation as described above with scar formation and other undesirable consequences. Work in connection with the present invention suggests that the mechanical properties of such electrode structures may play a role in the formation of scar tissue. For example, placement of a rigid structure over tissue structures which move frequently, for example an artery, may contribute to scar tissue formation.
For these reasons, it would be desirable to provide improved electrode structures, and methods for their implantation, which result in reduced inflammation. It would be particularly desirable if the electrode structures and implantation methods necessitated minimal changes in present assemblies, designs and implantation protocols. At least some of these objectives will be met by the inventions described below.
2. Description of the Background Art
The following U.S. patents may be relevant to the present application: U.S. Pat. No. 6,522,926; 6,253,110; 6,073,048; 5,987,746; 5,853,652; 5,776,178; 5,766,527; 5,700,282; 5,522,874; 5,408,744; 5,282,844; 5,265,608; 5,092,332; 5,086,787; 4,972,848; 5,991,667; 5,154,182; 5,324,325; 5,154,182; 4,711,251. The following commonly owned patent U.S. applications may be relevant to the present application: Ser. No. 10/284,063 and Ser. No. 11/168231. The following U.S. patent application publications may be relevant to the present application: U.S. 20040062852, 20040010303, 20050182468, 20030060858, 20030060857, 20030060848, 20040010303, 20040019364, 20040254616; PCT patent application publication number WO 99/51286. The full disclosures of the aforementioned patents and applications are herein incorporated by reference.
The present invention provides electrode structures for implantation into the human body and methods for implanting the electrodes. In particular, the invention provides electrode structures for long term stimulation of baroreceptors located within the wall of blood vessels. Scar tissue formation is inhibited with a combination of an elastic backing and drug, for example an anti-inflammatory substance, eluted or otherwise released near an electrode. The backing which holds the electrode in place over a blood vessel is adapted to stretch, as the blood vessel changes size, thereby minimizing tissue damage. In many embodiments the electrode, for example a coil electrode, is also adapted stretch to minimize tissue damage. The drug is sequestered, on the electrode and/or the backing near the electrode, to minimize inflammation and scar tissue formation.
Electrode structures according to the present invention include an electrode and an elastic backing to hold the electrode in place on a tissue surface. The elastic backing has a tissue contacting side and an exposed side. The elastic backing stretches and changes size with tissue structures, for example a blood vessel, thereby minimize damage to the tissue. A drug, for example a steroid, is positioned to be released to inhibit inflammation in order to control and/or limit the growth of scar tissue around the implanted electrodes, such as electrodes implanted to activate baroreceptors of the carotid sinus. Usually, the drug is sequestered near the electrode to reduce scar tissue formation. The electrode and the drug can be disposed on the tissue contacting side toward the baroreceptors when the backing is placed on or around the carotid sinus or other vascular structure.
In many embodiments, the backing is adapted to stretch while the backing is wrapped at least partially around a pulsating or otherwise tissue structure, such as a blood vessel. For example, the backing can include an elastic, electrically insulating layer which is disposed toward the exposed side of the backing. This elastic, electrically insulating layer can protect tissue near the exposed side from electrical currents. In addition to the electrically insulating layer, the backing can include another sheet or layer, usually also elastic, which has been impregnated with the drug. In some embodiments, the electrode and the drug are disposed on the tissue contacting side to elute the drug toward the electrode. Positioning the electrode and the sequestered drug on the same side ensures that the drug and the electrode are in proximity.
In some embodiments, the drug is sequestered in a coating on or over at least a portion of a surface of the backing and/or the electrode. For example, the coating can be disposed on a side of the backing, such as a drug sputtered on the tissue contacting side of the backing. Coating the backing with the drug ensures that the drug is located near the surface of the backing so that the drug can be effectively delivered to tissue engaged by the surface.
In many embodiments, the drug is sequestered in an adhesive impregnated with the drug, and the adhesive is disposed on at least one of the tissue contacting side and the electrode. Using an eluting adhesive permits many choices as to where the sequestered drug can be positioned. For example, the adhesive can attach the backing to the electrode. Also, the adhesive can be applied to a side of the backing, for example to the tissue contacting side around the electrode. The drug can be any drug which inhibits the growth of scar tissue, for example a steroid. The electrode can be coupled to an implantable pulse generator to deliver the stimulating electrical energy, and the electrode can be in the shape of a flexible coil which moves with the elastomer backing. Some embodiments include at least a second electrode on the tissue contacting side, and the drug is sequestered around the first and second electrodes on the tissue contacting side. Optionally, third, forth and more electrodes could be provided.
In some embodiments the electrode includes a recess, for example a recess inside a wire coil, and the sequestered drug is disposed at least partially within the recess. This configuration can ensure that the sequestered drug is held near the electrode. For example, the electrode can be a coil electrode, and an elastic core impregnated with the drug or containing the drug in a central passage thereof can be disposed at least partially within the coil.
In another aspect the invention is directed to a method for inhibiting inflammation at a tissue surface. An elastic backing is positioned on the tissue surface to immobilize an electrode against the surface, thereby ensuring that the electrode can stimulate the tissue after the electrode has been implanted. An amount of an anti-inflammatory substance is eluted from at least one of the backing and the electrode into the tissue to inhibit inflammation of the tissue and limit scar tissue growth around the electrode. The amount of eluted drug is sufficient to inhibit inflammation of the tissue caused by the electrode.
In many embodiments, the elastic backing is positioned at least partially around a tissue structure, for example a blood vessel such as an artery. When positioned wholly or partially around a blood vessel, the elastic backing will expand and contract with pulsation of the tissue structure. For example, the backing can be positioned at least partially around an artery and the backing can stretch and contract with the artery. The electrode can also be adapted to expand and contract with the tissue structure for example being formed as a coil as discussed below. The elastic backing is typically positioned at least half way around a circumference of the tissue structure (although in some instances because of the irregular cross-sections of the carotid artery and other vessels, the electrode structure assumes a 180 degree or greater arc while extending around less than one-half the vessel perimeter so that the elastic backing remains as positioned on the tissue structure. The elastic backing can include an elastic electrically insulating layer to protect tissue positioned away from the electrode, and the electrode and the drug can be disposed toward the tissue surface in relation to the electrically insulating layer.
The present invention provides improved electrode structures and methods for implanting such structures against tissue surfaces for stimulating biological tissues such as receptors, nerves, muscles, the spinal cord, and the like. The electrode structures will be adapted for long term, usually permanent, implantation and can be subject to an inflammatory response which can initiate scar tissue formation, as described above. The present invention provides structures and protocols for sequestering steroids and other drugs on the electrode structures so that the drugs will be released into target tissues engaging the electrodes to inhibit inflammation and scar tissue formation. While the electrode structures are particularly described with reference to baroreceptor activation for the control of blood pressure, it will be appreciated that they will also have use in the activation and stimulation of other tissues for other purposes.
Referring now to
With reference now to
In addition to baroreceptors, other nervous system tissues are capable of inducing baroreflex activation. For example, baroreflex activation may be achieved in various embodiments by activating one or more baroreceptors, one or more nerves coupled with one or more baroreceptors, a carotid sinus nerve or some combination thereof. Therefore, the phrase “baroreflex activation” generally refers to activation of the baroreflex system by any means, and is not limited to directly activating baroreceptor(s). Although the following description often focuses on baroreflex activation/stimulation and induction of baroreceptor signals, various embodiments of the present invention may alternatively achieve baroreflex activation by activating any other suitable tissue or structure. Thus, the terms “baroreflex activation device” and “baroreflex activation device” are used interchangeably in this application.
Baroreflex signals are used to activate a number of body systems which collectively may be referred to as baroreflex system 50. Baroreceptors 30 are connected to the brain 52 via the nervous system 51, which then activates a number of body systems, including the heart 11, kidneys 53, vessels 54, and other organs/tissues via neurohormonal activity. Such activation of baroreflex system 50 has been the subject of other patent applications by some of the inventors, for example the effect of baroreflex activation on the brain 52 to prevent cardiac arrhythmias and/or promote recovery after occurrence of an arrhythmia. The present methods and apparatus described herein are directed to electrode structures having anti-inflammatory properties which can be used to activate the baroreflex system, ideally for prolonged periods of time.
Referring now to the illustration of
Backing 120 can include a variety of materials and several techniques can be used to sequester drug 104 in backing 120. Backing 120 can have electrically insulating properties and be made from any insulating material, for example silicone as described above, to protect tissue near the exposed side of the electrode. In general, backing 120 includes at least one layer of an electrically insulating material. While any suitable electrically insulating material suitable for implantation into the human body can be used, commercially available silicone polymers can be used as an electrically insulating material, for example silicones as described in “Silicones as a Material of Choice for Drug Delivery Applications”, presented Jun. 16, 2004 at the 31st Annual Meeting and Exposition of the Controlled Release Society (http://www.nusil.com/whitepapers/index.aspx). Examples of silicone polymers are also described in “Drug Delivery Market Summary,” published Jun. 25, 2004, (http://www.nusil.com/whitepapers/index.aspx).
Several techniques can be used to sequester drug 104 on backing 120. As shown in
Sequestered drug 104 can be included within an electrically insulating layer of backing 120, for example where backing 120 has been impregnated with the drug. Silicone materials impregnated with drugs are available as off the shelf items including silicone materials from NuSil Technology LLC, Carpinteria, Calif. (http://www.nusil.com). In addition to silicone polymers, drug 104 can be sequestered within several other materials. Examples of non-silicone polymers suitable for implantation into the human body in which a drug can be sequestered include styrene isobutylene block copolymers, amino acid-based poly(ester amide) copolymers (PEAs), biodegradable polyesters such as poly(lactic acid)s (PLAs), poly(glycolic acid)s (PGAs) and associated copolymers (PLGAs), poly(anhydride esters) such as “polyNSAIDs” and “polyAsprin” as described in “Polymers Exploited for Drug Delivery”, published in Chemical & Engineering News, Apr. 18, 2005, vol. 83, no. 16, pp. 45-47. Polyurethane, polyurea and/or polyurethane-polyurea can also be employed to sequester drug 104, for example polyurethane and polyurea as described in U.S. Pat. No. 4,972,848, the full disclosure of which has been previously incorporated by reference.
Referring now to the electrode structure illustrated in
Referring now to the electrode structure illustrated in
Referring now to the electrode structures illustrated in
Referring now to the electrode structure of
Referring now to the electrode structure illustrated in
Referring now to the electrode structure illustrated in
The drug eluting structures as described above can be combined with baroreceptor activation systems, electrode geometries, configurations and therapies, for example as described in U.S. application Ser. No. 10/402,911, entitled “Electrode assemblies and methods for their use in cardiovascular reflex control”, published Jan. 15, 2004 as publication number US/20040010303, the full disclosure of which has been previously incorporated by reference. For example, several such electrode configurations and assemblies are described herein below.
Referring now to
In
The carotid sinus 20, and in particular the bulge 21 of the carotid sinus, may contain a relatively high density of baroreceptors 30 (not shown) in the vascular wall. For this reason, it may be desirable to position the electrodes 302 of electrode structure 300 on and/or around the sinus bulge 21 to maximize baroreceptor responsiveness and to minimize extraneous tissue stimulation.
It should be understood that structure 300 and electrodes 302 are merely schematic, and only a portion of which may be shown, for purposes of illustrating various positions of the electrodes 302 on and/or around the carotid sinus 20 and the sinus bulge 21. In each of the embodiments described herein, the electrodes 302 may be monopolar, bipolar, or tripolar (anode-cathode-anode or cathode-anode-cathode sets). Specific extravascular electrode designs are described in more detail hereinafter.
In
The plurality of electrode pairs 302 may extend from a point proximal of the sinus 20 or bulge 21, to a point distal of the sinus 20 or bulge 21 to ensure activation of baroreceptors 30 throughout the sinus 20 region. The electrodes 302 may be connected to a single channel or multiple channels as discussed in more detail hereinafter. The plurality of electrode pairs 302 may be selectively activated for purposes of targeting a specific area of the sinus 20 to increase baroreceptor responsiveness, or for purposes of reducing the exposure of tissue areas to activation to maintain baroreceptor responsiveness long term.
In
From the foregoing discussion with reference to
For example, in
Referring now to
Backing 120 may comprise a flexible and electrically insulating material suitable for implantation, such as silicone, perhaps reinforced with a flexible material such as polyester fabric as described above. Backing 120 may have a length suitable to wrap around all (360°) or a portion (i.e., less than 360°) of the circumference of one or more of the carotid arteries adjacent the carotid sinus 20. The electrodes 302 may extend around a portion (i.e., less than 360° such as 270°, 180° or 90°) of the circumference of one or more of the carotid arteries adjacent the carotid sinus 20. To this end, the electrodes 302 may have a length that is less than (e.g., 75%, 50% or 25%) the length of the backing 120. The electrodes 302 may be parallel, orthogonal or oblique to the length of backing 120, which is generally orthogonal to the axis of the carotid artery to which it is disposed about. Preferably, the base structure or backing will be elastic (i.e. stretchable), typically being composed of at least in part of silicone, latex, or other elastomer. If such elastic structures are reinforced, the reinforcement should be arranged so that it does not interfere with the ability of the base to stretch and conform to the vascular surface.
The electrodes 302 may comprise round wire, rectangular ribbon or foil formed of an electrically conductive and radiopaque material such as platinum. The backing substantially encapsulates the electrodes 302, leaving only an exposed area for electrical connection to extravascular carotid sinus tissue. For example, each electrode 302 may be partially recessed in the base 206 and may have one side exposed along all or a portion of its length for electrical connection to carotid tissue. Electrical paths through the carotid tissues may be defined by one or more pairs of the elongate electrodes 302.
In all embodiments described with reference to
An alternative multi-channel electrode design is illustrated in
A variation of the multi-channel pad type electrode design is illustrated in
Another variation of the multi-channel pad electrode design is illustrated in
For example, the control signal may comprise a pulse wave form, wherein each pulse includes a different code. The code for each pulse causes the chip 310 to enable one or more pairs of electrodes, and to disable the remaining electrodes. Thus, the pulse is only transmitted to the enabled electrode pair(s) corresponding to the code sent with that pulse. Each subsequent pulse would have a different code than the preceding pulse, such that the chip 310 enables and disables a different set of electrodes 302 corresponding to the different code. Thus, virtually any number of electrode pairs may be selectively activated using control chip 310, without the need for a separate channel in cable 304 for each electrode 302. By reducing the number of channels in cable 304, the size and cost thereof may be reduced.
Optionally, the IC chip 310 may be connected to feedback sensor as described in U.S. Application Publication No. 20040010303, previously incorporated by reference. In addition, one or more of the electrodes 302 may be used as feedback sensors when not enabled for activation. For example, such a feedback sensor electrode may be used to measure or monitor electrical conduction in the vascular wall to provide data analogous to an ECG. Alternatively, such a feedback sensor electrode may be used to sense a change in impedance due to changes in blood volume during a pulse pressure to provide data indicative of heart rate, blood pressure, or other physiologic parameter.
Referring now to
In this embodiment, backing 120 of electrode structure 300 may comprise molded tube, a tubular extrusion, or a sheet of material wrapped into a tube shape utilizing a suture flap 308 with sutures 309 as shown. Backing 120 may be formed of a flexible and biocompatible material such as silicone, which may be reinforced with a flexible material such as polyester fabric available under the trade name DACRON® to form a composite structure. The inside diameter of backing 120 may correspond to the outside diameter of the carotid artery at the location of implantation, for example 6 to 8 mm. The wall thickness of backing 120 may be very thin to maintain flexibility and a low profile, for example less than 1 mm. If the structure 300 is to be disposed about a sinus bulge 21, a correspondingly shaped bulge may be formed into the baker for added support and assistance in positioning.
The electrodes 302 (shown in phantom) may comprise round wire, rectangular ribbon or foil, formed of an electrically conductive and radiopaque material such as platinum or platinum iridium. The electrodes may be molded into backing 306 or adhesively connected to the inside diameter thereof, leaving a portion of the electrode exposed for electrical connection to carotid tissues. The electrodes 302 may encompass less than the entire inside circumference (e.g., 300°) of backing 306 to avoid shorting. The electrodes 302 may have any of the shapes and arrangements described previously. For example, as shown in
The support collar 312 may be formed similarly to backing 120. For example, the support collar may comprise molded tube, a tubular extrusion, or a sheet of material wrapped into a tube shape utilizing a suture flap 315 with sutures 313 as shown. The support collar 312 may be formed of a flexible and biocompatible material such as silicone, which may be reinforced to form a composite structure. The cables 304 are secured to the support collar 312, leaving slack in the cables 304 between the support collar 312 and electrode structure 300.
In all embodiments described herein, it may be desirable to secure the activation device to the vascular wall using sutures or other fixation means. For example, sutures 311 may be used to maintain the position of electrode structure 300 relative to the carotid anatomy (or other vascular site containing baroreceptors). Such sutures 311 may be connected to backing 120, and pass through all or a portion of the vascular wall. For example, the sutures 311 may be threaded through backing 120, through the adventitia of the vascular wall, and tied. If backing 120 comprises a patch or otherwise partially surrounds the carotid anatomy, the corners and/or ends of the backing may be sutured, with additional sutures evenly distributed therebetween. In order to minimize the propagation of a hole or a tear through backing 120, a reinforcement material such as polyester fabric may be embedded in the silicone material. In addition to sutures, other fixation means may be employed such as staples or a biocompatible adhesive, for example.
Refer now to
The ribs 316 of structure 300 are sized to fit about the carotid anatomy, such as the internal carotid artery 19 adjacent the carotid sinus 20. Similarly, the ribs 316 of the support collar 312 may be sized to fit about the carotid anatomy, such as the common carotid artery 14 proximal of the carotid sinus 20. The ribs 316 may be separated, placed on a carotid artery, and closed thereabout to secure structure 300 to the carotid anatomy.
Each of the ribs 316 of structure 300 includes one of electrodes 302 on the inside surface thereof for electrical connection to carotid tissues. The ribs 316 provide insulating material around the electrodes 302, leaving only an inside portion exposed to the vascular wall. The electrodes 302 are coupled to the multi-channel cable 304 through spine 317. Spine 317 also acts as a tether to ribs 316 of the support collar 312, which do not include electrodes since their function is to provide support. The multi-channel electrode 302 functions discussed with reference to
The ends of the ribs 316 may be connected (e.g., sutured) after being disposed about a carotid artery, or may remain open as shown. If the ends remain open, the ribs 316 may be formed of a relatively stiff material to ensure a mechanical lock around the carotid artery. For example, the ribs 316 may be formed of polyethylene, polypropylene, PTFE, or other similar insulating and biocompatible material. Alternatively, the ribs 316 may be formed of a metal such as stainless steel or a nickel titanium alloy, as long as the metallic material was electrically isolated from the electrodes 302. As a further alternative, the ribs 316 may comprise an insulating and biocompatible polymeric material with the structural integrity provided by metallic (e.g., stainless steel, nickel titanium alloy, etc.) reinforcement. In this latter alternative, the electrodes 302 may comprise the metallic reinforcement.
Refer now to
The electrodes 302 are connected to a modified bipolar endocardial pacing lead, available under the trade name CONIFIX from Innomedica (now BIOMEC Cardiovascular, Inc.), model number 501112. The proximal end of the cable 304 is connected to the control system 60 or driver 66 as described previously. The pacing lead is modified by removing the pacing electrode to form the cable body 304. The MP35 wires are extracted from the distal end thereof to form two coils 318 positioned side by side having a diameter of about 0.020 inches. The coils 318 are then attached to the electrodes utilizing 316 type stainless steel crimp terminals laser welded to one end of the platinum electrodes 302. The distal end of the cable 304 and the connection between the coils 318 and the ends of the electrodes 302 are encapsulated by silicone.
The cable 304 illustrated in
Referring now to
As seen in
Each turn of the coil in the contact area of the electrodes 702/704 is exposed from backing 706 and any adhesive to form a conductive path to the artery wall. The exposed electrodes 702/704 may have a length (e.g., 0.236 inches) sufficient to extend around at least a portion of the carotid sinus, for example. The electrode cuff structure 700 is assembled flat with the contact surfaces of the coil electrodes 702/704 tangent to the inside plane of the flexible support 706. When the electrode cuff electrode structure 700 is wrapped around the artery, the inside contact surfaces of the coiled electrodes 702/704 are naturally forced to extend slightly above the adjacent surface of the flexible support, thereby improving contact to the artery wall.
The ratio of the diameter of the coiled electrodes 702/704 to the wire diameter is preferably large enough to allow the coil to bend and elongate without significant bending stress or torsional stress in the wire. Flexibility is a significant advantage of this design which allows the electrode cuff electrode structure 700 to conform to the shape of the carotid artery and sinus, and permits expansion and contraction of the artery or sinus without encountering significant stress or fatigue. In particular, the flexible electrode cuff electrode structure 700 may be wrapped around and stretched to conform to the shape of the carotid sinus and artery during implantation. This may be achieved without collapsing or distorting the shape of the artery and carotid sinus due to the compliance of the cuff electrode structure 700. Backing 706 is able to flex and stretch with the conductor coils 702/704 because of the absence of fabric reinforcement in the electrode contact portion of the cuff electrode structure 700. By conforming to the artery shape, and by the edge of backing 706 sealing against the artery wall, the amount of stray electrical field and extraneous stimulation will likely be reduced.
The pitch of the coil electrodes 702/704 may be greater than the wire diameter in order to provide a space between each turn of the wire to thereby permit bending without necessarily requiring axial elongation thereof. For example, the pitch of the contact coils 702/704 may be 0.004 inches per turn with a 0.002 inch diameter wire, which allows for a 0.002 inch space between the wires in each turn. The inside of the coil may be filled with a flexible adhesive material such as silicone adhesive which may fill the spaces between adjacent wire turns. By filling the small spaces between the adjacent coil turns, the chance of pinching tissue between coil turns is minimized thereby avoiding abrasion to the artery wall. Thus, the embedded coil electrodes 702/704 are mechanically captured and chemically bonded into backing 706. In the unlikely event that a coil electrode 702/704 comes loose from backing 706, the diameter of the coil is large enough to be atraumatic to the artery wall. Preferably, the centerline of the coil electrodes 702/704 lie near the neutral axis of cuff electrode structure 700 and backing 706 comprises a material with isotropic elasticity such as silicone in order to minimize the shear forces on the adhesive bonds between the coil electrodes 702/704 and backing 706.
The electrode coils 702/704 are connected to corresponding conductive coils 712/714, respectively, in an elongate lead 710 which is connected to the control system 60. Anchoring wings 718 may be provided on the lead 710 to tether the lead 710 to adjacent tissue and minimize the effects or relative movement between the lead 710 and the electrode cuff 700. As seen in
The conductive material of the electrodes 702/704 may be a metal as described above or a conductive polymer such as a silicone material filled with metallic particles such as Pt particles. In this latter embodiment, the polymeric electrodes may be integrally formed with backing 706 with the electrode contacts comprising raised areas on the inside surface of backing 706 electrically coupled to the lead 710 by wires or wire coils. The use of polymeric electrodes may be applied to other electrode design embodiments described elsewhere herein.
Reinforcement patches 708 such as DACRON® fabric may be selectively incorporated into backing 706. For example, reinforcement patches 708 may be incorporated into the ends or other areas of backing 706 to accommodate suture anchors. The reinforcement patches 708 provide points where the electrode cuff 700 may be sutured to the vessel wall and may also provide tissue in growth to further anchor the device 700 to the exterior of the vessel wall. For example, the fabric reinforcement patches 708 may extend beyond the edge of backing 706 so that tissue in growth may help anchor the electrode structure or cuff 700 to the vessel wall and may reduce reliance on the sutures to retain the electrode structure 700 in place. As a substitute for or in addition to the sutures and tissue in growth, bioadhesives such as cyanoacrylate may be employed to secure the structure 700 to the vessel wall. In addition, an adhesive incorporating conductive particles such as Pt coated micro spheres may be applied to the exposed inside surfaces of the electrodes 702/704 to enhance electrical conduction to the tissue and possibly limit conduction along one axis to limit extraneous tissue stimulation.
The reinforcement patches 708 may also be incorporated into the flexible support 706 for strain relief purposes and to help retain the coils 702/704 to the backing 706 where the leads 710 attach to the electrode structure 700 as well as where the outer coil 702 loops back around the inner coil 704. Preferably, the patches 708 are selectively incorporated into backing 706 to permit expansion and contraction of the device 700, particularly in the area of the electrodes 702/704. In particular, backing 706 can be only fabric reinforced in selected areas thereby maintaining the ability of the cuff electrode structure 700 to stretch.
Referring now to an electrode structure 800 shown in
Referring now to
The geometry of the electrode structure 900, and in particular the geometry of the baker 902, is selected to permit a number of different attachment modes to the blood vessel. In particular, the geometry of the structure 900 of
A number of reinforcement regions 910 (910a, 910b, 910c, 910d, and 910e) are attached to different locations on the base 902 to permit suturing, clipping, stapling, or other fastening of the attachment tabs 906 to each other and/or the electrode-carrying surface 904 of backing 902. In the preferred embodiment intended for attachment at or around the carotid sinus, a first reinforcement strip 910a is provided over an end of backing 902 opposite to the end which carries the attachment tabs. Pairs of reinforcement strips 910b and 910c are provided on each of the axially aligned attachment tabs 906a and 906b, while similar pairs of reinforcement strips 910d and 910e are provided on each of the transversely angled attachment tabs 906c and 906d. In the illustrated embodiment, all attachment tabs will be provided on one side of the base, preferably emanating from adjacent corners of the rectangular electrode-carrying surface 904.
The structure of electrode structure 900 permits the surgeon to implant the electrode structure so that the electrodes 920 (which are preferably stretchable, flat-coil electrodes as described in detail above), are located at a preferred location relative to the target baroreceptors. The preferred location may be determined, for example, as described in copending application Ser. No. 09/963,991, filed on Sep. 26, 2001, the full disclosure of which has been previously incorporated herein by reference.
Once the preferred location for the electrodes 920 of the electrode structure 900 is determined, the surgeon may position the base 902 so that the electrodes 920 are located appropriately relative to the underlying baroreceptors. Thus, the electrodes 920 may be positioned over the common carotid artery CC as shown in
In other cases, the bulge of the carotid sinus and the baroreceptors may be located differently with respect to the carotid bifurcation. For example, as shown in
Referring to
While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a variety of additional modifications, adaptations, and changes may be clear to those of skill in the art. Hence, the scope of the present invention is limited solely by the appended claims.
This application is related to and claims priority as a divisional of U.S. patent application Ser. No. 11/322,841, (Attorney Docket No. 021433-001900US) filed Dec. 29, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | 11322841 | Dec 2005 | US |
Child | 12174428 | US |