This invention relates to solid state electrochemical cells; and in particular to fuel cells, oxygen sensors, and oxygen pumps, and methods of manufacture.
Worldwide forecasts show electricity consumption increasing dramatically in the next decades, largely due to economic growth in developing countries that lack national power grids. This increased consumption, together with the deregulation of electrical utilities in industrialized nations, creates the need for small scale, distributed generation of electricity.
Fuel cells are a promising technology for providing distributed generation of electricity. A fuel cell places an oxidizing gas, such as air, and a hydrogen-containing fuel, such as hydrogen or natural gas, on opposite sides of an electrolyte in such a way that they combine to form water and electricity. Such a reaction requires a cathode and an anode composed of porous materials, and an ionically-conducting electrolyte. In solid oxide fuel cells, the electrolyte conducts negatively-charged oxygen ions.
Solid oxide fuel cell systems can be made less expensively than other kinds of fuel cells, and thus have particular potential for facilitating distributed power generation.
In one embodiment according to the invention, a process for manufacturing a solid oxide fuel cell comprises: forming a plastic mass comprising a mixture of an electrolyte substance and an electrochemically active substance; extruding the plastic mass through a die to form an extruded tube; and sintering the extruded tube to form a tubular anode capable of supporting the solid oxide fuel cell. The process may further comprise, after sintering the extruded tube, layering an electrolyte onto the tubular anode; and, after layering the electrolyte, layering a cathode onto the electrolyte.
In a further related embodiment, the process comprises reducing an oxide of an electrochemically active substance in the anode, to form pores. The reduction may comprise flowing a reducing gas over a surface of the anode, including flowing hydrogen gas over the surface of the anode at a temperature between 800° C. and 1000° C.
In another related embodiment, the process comprises milling a catalyst with the electrochemically active substance. The catalyst may comprise a material chosen from the group consisting of: CeO2, ruthenium, rhodium, rhenium, palladium, scandia, titania, vanadia, chromium, manganese, iron, cobalt, nickel, zinc, and copper. The catalyst may also comprise CeO2 in a proportion of between 1% and 3% by weight.
In another related embodiment, the process comprises forming a mass comprising a mixture of stabilized zirconia and nickel oxide. Layering the electrolyte may further comprise spraying or dip-coating a stabilized zirconia electrolyte onto the tubular anode. Layering the cathode may further comprise spraying a strontia-doped lanthanum manganite cathode onto the electrolyte.
In another related embodiment, layering the cathode, after layering the electrolyte, and after sintering the anode, comprises forming a tubular fuel cell in which a thickness of the anode comprises over 50% of a total thickness of the anode, the electrolyte, and the cathode. In another embodiment, sintering comprises forming a tubular anode with a thickness in the range of 300 μm to 400 μm.
In another related embodiment, the tubular anode comprises a uniform ratio of electrochemically active substance to electrolyte substance, and may contain a volume percentage of nickel of between 40% and 50%.
In a further related embodiment, the process further comprises co-extruding more than one anode layer to form the tubular anode. Each of the anode layers may comprise a ratio of electrochemically active substance to electrolyte substance, with such ratios being higher for layers that are layered further from a surface of the anode that contacts a fuel gas than for layers that are layered closer to the fuel gas. The electrochemically active substance may be nickel and the electrolyte substance may be stabilized zirconia. There may be two or more anode layers. The more than one anode layers may comprise a thicker support layer and a thinner active layer, the support layer being in contact with a fuel gas. The support layer may comprise a higher ratio of stabilized zirconia to nickel, while the active layer comprises a lower such ratio; for example, the support layer may comprise from 0% to 50% nickel by volume, while the active layer comprises from 40% to 45% nickel by volume. The process may comprise extruding the active layer around a current-collecting wire. The support layer may also comprise aluminum oxide.
In another embodiment, the extruded tube has a non-circular cross-section.
In a further embodiment, a process for manufacturing a solid oxide fuel cell comprises: forming first and second plastic masses, each plastic mass comprising a mixture of an electrolyte substance and an electrochemically active substance, the first plastic mass having a higher relative content ratio of electrochemically active substance to electrolyte substance, and the second plastic mass having a lower relative content ratio of electrochemically active substance to electrolyte substance; extruding the first plastic mass through a die to form a first extruded tube; extruding the second plastic mass through a die to form a second extruded tube; fitting the first extruded tube inside the second extruded tube to form a combined tube; and sintering the combined tube to form a tubular anode capable of supporting the solid oxide fuel cell. Each plastic mass may comprise a mixture of stabilized zirconia and nickel oxide, with the first plastic mass having a higher relative content ratio of nickel oxide to stabilized zirconia, and the second plastic mass having a lower relative content ratio of nickel oxide to stabilized zirconia.
In another embodiment, a tubular solid oxide fuel cell comprises: a cathode; an electrolyte; and a tubular anode capable of supporting the fuel cell. The anode may comprise a mixture of stabilized zirconia and nickel, and the electrolyte may comprise stabilized zirconia. The cathode may comprise a strontia-doped lanthanum manganite. A thickness of the anode may comprise over 50% of a total thickness of the anode, the electrolyte, and the cathode. The anode may have a thickness in the range of 300 μm to 400 μm. The anode may comprise a catalyst material chosen from the group consisting of: CeO2 (which may be in a proportion of between 1% and 3% by weight), ruthenium, rhodium, rhenium, palladium, scandia, titania, vanadia, chromium, manganese, iron, cobalt, nickel, zinc, and copper. The anode may comprise a volume percentage of nickel of between 40% and 50%.
In a further, related embodiment, the anode comprises more than one anode layer, each layer having a different composition. In one such embodiment, the ratio of electrochemically active substance to electrolyte substance in each of the anode layers is higher for layers that are layered further from a surface of the anode that contacts a fuel gas than for layers that are layered closer to the fuel gas. The electrochemically active substance may be nickel and the electrolyte substance may be stabilized zirconia. There may be two or more anode layers.
In a further, related embodiment, the more than one anode layers comprise a thicker support layer and a thinner active layer, the support layer being in contact with a fuel gas. The support layer may comprise a higher ratio of stabilized zirconia to nickel, and the active layer may comprise a lower such ratio. The support layer may comprise from 0% to 50% nickel by volume, and the active layer may comprise from 40% to 45% nickel by volume. The active layer may comprise an embedded current-collecting wire. The support layer may comprise aluminum oxide.
In another embodiment, the tubular anode has a non-circular cross-section.
In another embodiment, an electrode-supported oxygen pump or oxygen sensor comprises: a first tubular electrode layer capable of supporting the oxygen pump or sensor; an electrolyte layer, layered on the first electrode layer; and a second tubular electrode layer layered on the electrolyte layer. The first tubular electrode layer may comprise an electrolyte substance mixed with a precious metal, which may be chosen from the group consisting of: platinum, palladium, silver, rhodium, and rhenium. The electrolyte substance may comprise stabilized zirconia. The first tubular electrode layer may also comprise a porous perovskite substance, such as doped LaCoO3 or doped La[CoFe]O3.
In a further related embodiment, the electrolyte layer comprises stabilized zirconia. The electrolyte layer may also comprise a thinner layer of stabilized zirconia and a thicker porous support layer, which may comprise alumina. The electrolyte layer may also comprise a doped oxide, the oxide being chosen from the group consisting of: cerium oxide, lanthanum oxide, bismuth oxide, yttrium oxide, and lead oxide. The electrolyte layer may also comprise a porous perovskite, such as doped LaCoO3 or doped La[CoFe]O3.
In another embodiment, a method of manufacturing an oxygen pump or oxygen sensor comprises: extruding a first tubular electrode, capable of supporting the oxygen pump or sensor; layering an electrolyte layer on the first tubular electrode; and layering a second tubular electrode on the electrolyte layer. The first tubular electrode may comprise a precious metal chosen from the group consisting of: platinum, palladium, silver, rhodium, and rhenium. Also, the first tubular electrode may comprise a porous perovskite.
In another embodiment, a method of manufacturing an oxygen pump or oxygen sensor comprises: extruding a tubular electrolyte layer comprising cerium oxide; and reducing an outside and an inside surface of the electrolyte layer.
Embodiments of the present invention allow the production of solid state electrochemical cells that have a lower electrical resistance than such systems have had in the past; that are less expensive; and that achieve faster response times.
In cell 100, electrolyte 140 is formed from a ceramic such as yttria-doped stabilized zirconia (YSZ). Electrolyte 140 has a thickness T1 of about 200 μm that enables it to provide mechanical support for cell 100; the cell is therefore an electrolyte-supported cell. Once the electrolyte has been formed, cathode 120 is typically sprayed onto the outside of electrolyte 140 to a thickness T2 of about 50 μm to 100 μm; and anode 160 is sprayed onto the inside of electrolyte 140 to a thickness T3 of about 50 μm.
A disadvantage of cell 100 is that electrolyte 140 must be thick enough to support the cell mechanically. According to Ohm's law, the resistance across an electrolyte of thickness 1, resistivity ρ, and cross-sectional area A is given by:
It follows from Equation 1 that an electrolyte of greater thickness (l) has a higher electrical resistance (R). Since, in cell 100, electrolyte 140 must be thick enough to support the cell, it has a high value of l and thus a greater resistance. Since power losses are proportional to resistance, more cells 100 must be used, to produce a given power output, than would have to be used if cell 100 had a lower resistance. Thus fuel cell systems using such cells are more expensive than they would be otherwise. Also, since the fuel cell reaction occurs at high temperature, the start-up time of a fuel cell system is limited by the time that it takes for the cells to heat up to the reaction temperature. Systems containing more cells for a given power output require longer to heat up, and thus longer to start. Systems containing electrolyte-supported cells 100 are thus larger, more expensive, and slower to start than they would be if cell 100 had a lower resistance.
Attempts have been made to solve this problem by using materials for electrolyte 140 that have a lower resistivity ρ (see Equation 1). Materials containing CeO2, Bi2O3, and LaGaO3 (along with secondary dopants) have produced dramatic reductions in resistivity ρ. However, these materials have disadvantages in other characteristics. CeO2 reduces easily to CeO2(−x); Bi2O3 melts at low temperatures and is extremely volatile; LaGaO3 suffers from evaporation of Ga; and all three are mechanically weak. Most notably, however, all three are presently expensive: LaGaO3 costs about 1000 times as much as yttria-stabilized zirconia (YSZ).
Another fuel cell design is found in U.S. Pat. No. 5,998,056 of Divisek et al., which discloses an anode substrate for a planar fuel cell. Planar fuel cells suffer from several disadvantages by comparison with tubular fuel cells. In particular, because of their planar shape, they are difficult to seal to prevent gas leaks.
Other designs use cathode-supported tubular fuel cells. These, however, are relatively expensive.
The disadvantages of these designs are overcome by the anode-supported tubular fuel cell shown in
Fuel cell 200, according to an embodiment of the invention, reacts negative oxygen ions from an oxidizing gas 225 (such as the oxygen found in air) with hydrogen found in fuel 265 (which may be hydrogen gas, natural gas, a hydrocarbon gas, or another source of hydrogen). Oxygen ions pass through porous cathode layer 220 and are ionically conducted through electrolyte layer 240 to the porous cell-supporting anode layer 260, where they react with the fuel 265 to form electricity and water. Terminals (not shown) conduct electrical current to and from the cell.
As can be seen in
In describing the process of the embodiment of
In step 301 of the process of the embodiment of
Next, in step 308 of the embodiment of
Next, in step 311, an electrolyte layer is coated onto the anode tube. The electrolyte layer may be formed of yttria-doped stabilized zirconia (YSZ), and may be sprayed, dip-coated, or otherwise layered onto the anode tube. Preferably, a YSZ slurry is prepared using the electrode ink methodology, and a thin coating is then sprayed onto the sintered anode support tube to form an electrolyte layer. The electrolyte layer is then dried in air and isostatically pressed at 200 MPa. Finally the electrolyte layer is sintered at 1350° C. for 2 hours to form a fully dense membrane of about 20 μm thickness.
Next, in step 312, a cathode layer is coated onto the electrolyte layer. The cathode layer is preferably made from strontia-doped lanthanum manganite (LaMnO3), but may also be made from gadolinium manganate, a cobaltate, or other substances. In a preferred embodiment, two cathode layers are applied to the outside of the electrolyte layer by using a spray gun to form thin, even cathode layers on the electrolyte layer's surface. The first (inner) cathode layer is preferably a mixture, 50/50 wt % of La0.80Sr0.20MnO3 (Rhodia, 99.9% pure) with 8 mol % YSZ (Tosoh). The second cathode layer is preferably only La0.80Sr0.20MnO3 (Rhodia, 99.9% pure).
Finally, in step 313, current collectors are connected to the anode and cathode layers to complete the fuel cell's fabrication. The cathode current collector is preferably made of silver wire (Alfa 99.997% pure) of 0.25 mm diameter, and wound criss-cross along the anode length with close contact between windings. Silver paste (Alfa) is preferably painted onto the cathode and air dried, before the current collection is wound onto it. The anode current collector is preferably made of nickel wire (Alfa 99.98% pure) of 0.5 mm diameter, and is spiraled around a 1 mm diameter needle former to produce a tight coil. The coil is fed into the fuel cell by jamming inside the tube, to produce a good contact.
An example of preparation of cell-supporting anode tubes according to an embodiment of the invention is now provided. It should be recognized that this example is provided for the purpose of illustration, and should not be taken to limit the invention to the example given.
65.08 g of NiO powder was milled in 100 g isopropanol in a 1 L plastic milling container with 1 kg of 5 mm diameter milling media, at 25 Hz, for 42-48 hours, until a particle size of 0.8 μm was reached. 7.19 g of 8 mol % yttria stabilized zirconia (8 YSZ) (which had been calcined for 2 hours at 900° C.), and 27.72 g 8 YSZ (which had been calcined for 2 hours at 1100° C.), were added to the milling container and milled a further 6-8 hours, until an average particle size of 0.6 μm was reached.
The prepared slurry was then poured into a shallow tray and left to evaporate at room temperature for 12 hours. The resulting dried cake of material was further dried in an oven at 100° C. for 2 hours. The powder was milled to break up agglomerates.
50 g of the milled powder was then made into a dough. Additives were prepared by weight of ceramic powder. 2% polyethylene glycol-400 (PEG-400) was mixed with 4.5% distilled water, and then added to the powder and mixed for 2-3 minutes. Following that, 10% Duramax B-1051 and 2.5% B-1052 were blended together, and then mixed into the powder, mixing for 3-5 minutes. A further 7-10% distilled water and 1.5% AMP-95 was mixed into the powder, and mixed for approximately 10 minutes to form a dough. The dough was kneaded by hand for 1-2 hours before being left to age in a sealed plastic bag for 4-6 hours. The dough was kneaded again for approximately 30 minutes, and then passed through the extrusion die several times to ensure homogeneity. The dough was kneaded 5 minutes more before being extruded into tubes and enclosed in tube holders to dry for 24 hours. The tubes were then sintered for 2 hours at 1300° C.
In accordance with a further embodiment of the invention, no pore-forming substance is added to create the pores in the anode tube. Addition of a pore-forming substance creates the risk of changing the size of the tube when the pores form, and of creating cracks in the electrolyte layer. Thus, an embodiment according to the invention avoids the need to add a pore-forming substance. This embodiment involves first creating a fully dense, sintered system (which may be made, for example, in accordance with the process of the embodiment of
In accordance with another embodiment of the invention, catalysts may be added to the anode layer to facilitate reformation of a hydrocarbon fuel gas. Instead of spraying such catalysts onto the anode's surface, they may be added to the anode at the milling stage, and extruded with the anode, to allow in situ catalysis.
An example of a reaction occurring in a solid oxide fuel cell that uses a hydrocarbon fuel gas may be expressed, in a simplified form that ignores partial reactions, as:
Here, methane (CH4) is used as the hydrocarbon gas, but other hydrocarbons may be used. The first half reaction of Equation 2, a partial oxidation, may be catalyzed by CeO2 (cerium), ruthenium, rhodium, rhenium, or palladium, or other catalysts in accordance with embodiments of the invention. By encouraging the reaction of Equation 2, such catalysts reduce harmful “coking” reactions, such as:
CH4→C+2H2 {Equation 3}
Such “coking” reactions can degrade performance by producing carbon deposits, and may result in a cell's anode lifting away from its electrolyte layer.
The second half reaction of Equation 2 may be catalyzed, in accordance with embodiments of the invention, by oxidation catalysts such as: scandia, titania, vanadia, chromium, manganese, iron, cobalt, nickel, zinc, and copper. A catalyst may be selected from amongst such catalysts in order to optimize performance with a particular hydrocarbon fuel. The simple oxide of these catalysts may be used, or a pyrochlore or perovskite form.
In accordance with embodiments of the invention, the catalysts described above are milled with the NiO/YSZ mixture, in a fashion similar to that described in steps 301 to 303 above. They can then be extruded along with the other ingredients of the anode layer, and used to produce in situ catalysis. Anywhere from 0 to 10% by weight of the catalysts in the anode is preferable, depending on the hydrocarbon fuel with which the catalyst is being used. About 2% by weight of CeO2 is preferable for use with methane fuel. Instead of extruding the catalysts with the anode, they may alternatively be sprayed, co-extruded, or dip-coated onto the anode, in a thin layer.
An anode which satisfies both of these constraints thus has opposing gradients of the electrochemically active substance and the electrolyte substance, from the inner surface of the anode layer to the outer surface of the anode layer.
In accordance with embodiments of the invention, the proportions of electrochemically active substance and electrolyte substance in the cell-supporting anode need not vary as shown in
Alternatively, the anode may have a composition with a uniform ratio of electrochemically active substance to electrolyte substance. In this embodiment, a total volume percentage of about 40-50% nickel in the anode layer is preferable. The anode layer may act to some degree as a current collector, as well as a support tube, in such a case, thereby eliminating the need to wrap a current-collecting wire throughout the inside of the fuel cell.
In another embodiment, the anode is formed by co-extruding a thicker support layer with a thinner active layer. In this case, the support layer has a high proportion of YSZ, and a low proportion of NiO (for example, from 0 to 50 Vol %); and is positioned at the inner surface of the anode. The thinner active layer has a higher proportion of NiO (for example, from 40-45%), and is positioned between the support layer and the electrolyte. In such a case, current collection may occur through the active layer; for example, the active layer may be extruded around a current-collecting wire. The thicker support layer may be formed of an electrolyte substance (such as YSZ), or may instead be formed of aluminum oxide.
Note that the particular substances (nickel and YSZ) and proportions shown in
In step 502 of the process of the embodiment of
In step 503 of the embodiment of
In step 504, the co-extruded anode tube is dried and sintered. The resulting anode, in one embodiment, has a thickness in the range of 300 μm to 400 μm. In steps 505 and 506, an electrolyte layer is coated onto the anode tube, and a cathode layer is coated onto the electrolyte layer, in a similar fashion to that described above.
While the above description has described processes in which a cell-supporting anode is formed as the innermost layer of a tubular fuel cell, it is equally possible to produce a cell-supporting anode as the outermost layer of a tubular fuel cell, in accordance with an embodiment of the invention. In such a case, the process for manufacturing the anode is similar to that described above, except that an electrolyte layer and a cathode layer are coated on the inside of the anode layer after it has been extruded and sintered. Also, to manufacture such a cell by a co-extrusion process, a higher ratio of electrochemically active substance to electrolyte substance would be present at larger diameters of the anode (rather than smaller). In operation, a fuel gas (containing hydrogen) would be made to flow on the outside of the tubular fuel cell, while an oxidizing gas (containing oxygen) would be made to flow on the inside of the tubular fuel cell.
Further embodiments of the invention include electrode-supported oxygen pumps and oxygen sensors. Along with solid oxide fuel cells, solid state oxygen pumps and oxygen sensors are both examples of solid state electrochemical cells.
Solid state oxygen pumps are typically used to remove the oxygen gas component from a mixture of gases. For example, they enable oxygen gas to be removed from an N2/O2 mix, or from an Argon/O2 mix.
Solid state oxygen sensors generate a voltage that depends on the partial pressure of oxygen in a gas with which they are in contact, and are commonly used to sense whether a car engine is running “fuel rich” or “fuel lean” by sensing oxygen levels in the car's exhaust.
Oxygen pumps and oxygen sensors, which may be made in accordance with the embodiment of
for electromotive force ε, gas constant R, temperature T, n electrons transferred (e.g. 4 for O2), Faraday's constant ℑ, transport number t1, and oxygen partial pressures PO2′ and PO2″ on opposite sides of the cell layers. The transport number t1 is given by
for an electrolyte having ionic conductivity σi, electron conductivity σe, and hole conductivity σh. For an electrolyte that is a poor electronic conductor, but a good ionic conductor (i.e. when σe and σh are small compared with σi), the transport number is approximately 1 (as follows from Equation 5). This is the case, for example, when zirconia (a common electrolyte) is used as the electrolyte layer. For such a case, Equation 4 can be approximated as
In an oxygen pump, an electromotive force ε is applied across the terminals of the pump, thereby causing oxygen partial pressures PO2′ and PO2″ to adjust to the levels specified by the Nernst equation. Thus oxygen ions are pumped through the electrolyte layer; one oxygen partial pressure (for example that of the N2/O2 mix 765 in
Conversely, in an oxygen sensor, a gas containing a known partial pressure of oxygen, PO2′, (for example air 725 in
Alternative embodiments of oxygen sensors according to the invention may be configured to have the gas with an unknown partial pressure of oxygen flow through the center of the tube, while the gas with a known partial pressure of oxygen flows on the outside of the tube; or may be reversed, with the unknown gas flowing on the outside of the tube, and the known gas flowing through its center. Similarly, alternative embodiments of oxygen pumps may have the mixed gas flow through the center of the tube, with oxygen pumped outwards; or may have the mixed gas flow on the outside of the tube, with oxygen being pumped inwards. For both oxygen sensors and oxygen pumps, the two alternative configurations differ from each other by the relative placement of the anode and cathode (i.e. by whether the cathode is the innermost layer and the anode outermost, or vice versa).
In one embodiment according to the invention, an electrode-supported oxygen pump or oxygen sensor is manufactured by an analogous technique to that of the embodiment of
In another embodiment, an electrode capable of supporting an oxygen pump or oxygen sensor is manufactured by extruding a porous perovskite, such as doped LaCoO3 or doped La[CoFe]O3.
In both the precious metal and perovskite embodiments, an electrolyte layer is layered around the first electrode, and a second electrode is layered around the electrolyte layer. The second electrode is preferably formed of the same material as the first electrode.
In one embodiment of an oxygen sensor or pump according to the invention, the electrolyte layer is made of YSZ, in a similar fashion to that described for the embodiment of
In another embodiment, the electrolyte layer is made of a thin layer of YSZ (or other electrolyte substance) along with a porous support layer, such as an alumina layer.
In another embodiment, the electrolyte layer is made of doped cerium oxide (CeO2), which may be doped with calcia or yttria. In this case, the surface of the electrolyte layer may be reduced (for example by passing a reducing gas over its surface) to form CeO2−x, which is an N-type electronic conductor. The reduced layers on the electrolyte may thus play the role of electrodes, and there is no need for further separately layered electrodes to be applied. Alternatively, separate electrode layers may be applied, without reducing the surface of the electrolyte. Instead of CeO2, doped Ln2O3, or other lanthanum oxides, may be used; or doped bismuth oxide (Bi2O3); yttrium oxide (Y2O3); or lead oxides (PbO).
In another embodiment, the electrolyte layer may be made of a porous perovskite, such as doped LaCoO3 or doped La[CoFe]O3.
It it to be understood that analogous features of oxygen pumps and oxygen sensors according to an embodiment of the invention are manufactured in an analogous fashion to that described for the fuel cell embodiments above. Layers may be applied by extrusion, co-extrusion, spraying, dipping, coating, or other methods as appropriate to the materials used.
It should also be noted that, for fuel cell, oxygen pump, and oxygen sensor embodiments, tubes may alternatively be manufactured in open- or closed-ended versions (with closed ends being formed, for example, by pinching an open end of an extruded tube).
In further embodiments of fuel cells, oxygen pumps, and oxygen sensors according to the invention, hollow tubes may be manufactured (for example, by extrusion) that have a non-circular cross-section. In one embodiment, the tube has a star-shaped cross-section, instead of a circular cross-section, but other cross-sections are possible. The cross-section used may be adjusted depending upon desired fuel cell packing density and thermal characteristics. Thus, it should be understood that where, above, reference is made to an inner diameter of a tube, similar considerations apply to an inner surface of a tube (for example where the tube's cross-section is non-circular).
Although this description has set forth the invention with reference to several preferred embodiments, one of ordinary skill in the art will understand that one may make various modifications without departing from the spirit and the scope of the invention, as set forth in the claims.
This application claims the benefit of our provisional application Ser. No. 60/206,456, filed May 22, 2000, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3525646 | Tannenberger et al. | Aug 1970 | A |
4374184 | Somers et al. | Feb 1983 | A |
4490444 | Isenberg | Dec 1984 | A |
4729931 | Grimble | Mar 1988 | A |
4751152 | Zymboly | Jun 1988 | A |
4791035 | Reichner | Dec 1988 | A |
4808491 | Reichner | Feb 1989 | A |
4888254 | Reichner | Dec 1989 | A |
5035962 | Jensen | Jul 1991 | A |
5082751 | Reichner | Jan 1992 | A |
5085742 | Dollard et al. | Feb 1992 | A |
5108850 | Carlson et al. | Apr 1992 | A |
5143801 | Bates | Sep 1992 | A |
5338623 | Nachlas et al. | Aug 1994 | A |
5342703 | Kawasaki et al. | Aug 1994 | A |
5368667 | Minh et al. | Nov 1994 | A |
5368951 | Shiratori et al. | Nov 1994 | A |
5395704 | Barnett et al. | Mar 1995 | A |
5458989 | Dodge | Oct 1995 | A |
5527633 | Kawasaki et al. | Jun 1996 | A |
5589017 | Minh | Dec 1996 | A |
5741605 | Gillett et al. | Apr 1998 | A |
5788788 | Minh | Aug 1998 | A |
5827620 | Kendall | Oct 1998 | A |
5908713 | Ruka et al. | Jun 1999 | A |
5916700 | Ruka et al. | Jun 1999 | A |
5993985 | Borglum | Nov 1999 | A |
5998056 | Divisek et al. | Dec 1999 | A |
6060188 | Muthuswamy et al. | May 2000 | A |
6221522 | Zafred et al. | Apr 2001 | B1 |
6228521 | Kim et al. | May 2001 | B1 |
6436565 | Song et al. | Aug 2002 | B1 |
6551735 | Badding et al. | Apr 2003 | B2 |
6841284 | Brown et al. | Jan 2005 | B2 |
6998187 | Finnerty et al. | Feb 2006 | B2 |
20030134170 | Sarkar et al. | Jul 2003 | A1 |
20040247972 | Kendall et al. | Dec 2004 | A1 |
20050042490 | Finnerty et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0442742 | May 1985 | EP |
0055016 | Jul 1985 | EP |
0055011 | Feb 1987 | EP |
0 372 680 | Jun 1990 | EP |
0264688 | Jul 1991 | EP |
0468698 | Jan 1992 | EP |
0562724 | Sep 1993 | EP |
0505184 | Jun 1997 | EP |
04012461 | Jan 1992 | JP |
04014766 | Jan 1992 | JP |
05343079 | Dec 1993 | JP |
WO 9917390 | Apr 1999 | WO |
WO 0124300 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20020028367 A1 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
60206456 | May 2000 | US |