The present disclosure generally relates to end-effectors adapted and configured to operate with multiple energy modalities to enable tissue sealing and cutting employing simultaneously, independently, or sequentially applied energy modalities. More particularly, the present disclosure relates to end-effectors adapted and configured to operate with surgical instruments that employ combined ultrasonic and electrosurgical systems, such as monopolar or bipolar radio frequency (RF), to enable tissue sealing and cutting employing simultaneously, independently, or sequentially applied ultrasonic and electrosurgical energy modalities. The energy modalities may be applied based on tissue parameters or other algorithms. The end-effectors may be adapted and configured to couple to hand held or robotic surgical systems.
Ultrasonic surgical instruments employing ultrasonic energy modalities are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and hemostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically realized by an end-effector, ultrasonic blade, or ultrasonic blade tip, at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end-effector. An ultrasonic end-effector may comprise an ultrasonic blade, a clamp arm, and a pad, among other components.
Some surgical instruments utilize ultrasonic energy for both precise cutting and controlled coagulation. Ultrasonic energy cuts and coagulates by vibrating a blade in contact with tissue. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue with the blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. The precision of cutting and coagulation is controlled by the surgeon's technique and adjusting the power level, blade edge, tissue traction, and blade pressure.
Electrosurgical instruments for applying electrical energy modalities to tissue to treat, seal, cut, and/or destroy tissue also are finding increasingly widespread applications in surgical procedures. An electrosurgical instrument typically includes an instrument having a distally-mounted end-effector comprising one or more than one electrode. The end-effector can be positioned against the tissue such that electrical current is introduced into the tissue. Electrosurgical instruments can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced though a first electrode (e.g., active electrode) into the tissue and returned from the tissue through a second electrode (e.g., return electrode). During monopolar operation, current is introduced into the tissue by an active electrode of the end-effector and returned through a return electrode such as a grounding pad, for example, separately coupled to the body of a patient. Heat generated by the current flowing through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end-effector of an electrosurgical instrument also may include a cutting member that is movable relative to the tissue and the electrodes to transect the tissue. Electrosurgical end-effectors may be adapted and configured to couple to hand held instruments as well as robotic instruments.
Electrical energy applied by an electrosurgical instrument can be transmitted to the instrument by a generator in communication with the hand piece. The electrical energy may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 200 kilohertz (kHz) to 1 megahertz (MHz). In application, an electrosurgical instrument can transmit low frequency RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary is created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy is useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.
The RF energy may be in a frequency range described in EN 60601 2:2009+A11:2011, Definition 201.3.218—HIGH FREQUENCY. For example, the frequency in monopolar RF applications may be typically restricted to less than 5 MHz. However, in bipolar RF energy applications, the frequency can be almost anything. Frequencies above 200 kHz can be typically used for monopolar applications in order to avoid the unwanted stimulation of nerves and muscles that would result from the use of low frequency current. Lower frequencies may be used for bipolar applications if the risk analysis shows the possibility of neuromuscular stimulation has been mitigated to an acceptable level. Normally, frequencies above 5 MHz are not used in order to minimize the problems associated with high frequency leakage currents. Higher frequencies may, however, be used in the case of bipolar applications. It is generally recognized that 10 mA is the lower threshold of thermal effects on tissue.
Ultrasonic surgical instruments and electrosurgical instruments of the nature described herein can be configured for open surgical procedures, minimally invasive surgical procedures, or non-invasive surgical procedures. Minimally invasive surgical procedures involve the use of a camera and instruments inserted through small incisions in order to visualize and treat conditions within joints or body cavities. Minimally invasive procedures may be performed entirely within the body or, in some circumstances, can be used together with a smaller open approach. These combined approaches, known as “arthroscopic, laparoscopic or thoracoscopic-assisted surgery,” for example. The surgical instruments described herein also can be used in non-invasive procedures such as endoscopic surgical procedures, for example. The instruments may be controlled by a surgeon using a hand held instrument or a robot.
A challenge of utilizing these surgical instruments is the inability to control and customize single or multiple energy modalities depending on the type of tissue being treated. It would be desirable to provide end-effectors that overcome some of the deficiencies of current surgical instruments and improve the quality of tissue treatment, sealing, or cutting or combinations thereof. The combination energy modality end-effectors described herein overcome those deficiencies and improve the quality of tissue treatment, sealing, or cutting or combinations thereof.
In one aspect, an apparatus is provided for dissecting and coagulating tissue. The apparatus comprises a surgical instrument comprising an end-effector adapted and configured to deliver a plurality of energy modalities to tissue at a distal end thereof. The energy modalities may be applied simultaneously, independently, or sequentially. A generator is electrically coupled to the surgical instrument and is configured to supply a plurality of energy modalities to the end-effector. In one aspect, the generator is configured to supply electrosurgical energy (e.g., monopolar or bipolar radio frequency (RF) energy) and ultrasonic energy to the end-effector to allow the end-effector to interact with the tissue. The energy modalities may be supplied to the end-effector by a single generator or multiple generators.
In various aspects, the present disclosure provides a surgical instrument configured to deliver at least two energy types (e.g., ultrasonic, monopolar RF, bipolar RF, microwave, or irreversible electroporation [IRE]) to tissue. The surgical instrument includes a first activation button for activating energy, a second button for selecting an energy mode for the activation button. The second button is connected to a circuit that uses at least one input parameter to define the energy mode. The input parameter can be modified remotely through connection to a generator or through a software update.
In one aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, the at least one electrode acts a deflectable support with respect to an opposing ultrasonic blade. The at least one electrode crosses over the ultrasonic blade and is configured to be deflectable with respect to the clamp arm having features to change the mechanical properties of the tissue compression under the at least one electrode. The at least one electrode includes a feature to prevent inadvertent contact between the electrode and the ultrasonic blade.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, the movable clamp jaw comprises at least one non-biased deflectable electrode to minimize contact between the ultrasonic blade and the RF electrode. The ultrasonic blade pad contains a feature for securing the electrode to the pad. As the pad height wears or is cut through, the height of the electrode with respect to the clamp jaw is progressively adjusted. Once the clamp jaw is moved away from the ultrasonic blade, the electrode remains in its new position.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, the at least one bipolar RF electrode is deflectable and has a higher distal bias than proximal bias. The bipolar RF electrode is deflectable with respect to the clamp jaw. The end-effector is configured to change the mechanical properties of the tissue compression proximal to distal end to create a more uniform or differing pattern of pressure than due to the clamping alone.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, the bipolar RF electrode is deflectable and the end-effector provides variable compression/bias along the length of the deflectable electrode. The end-effector is configured to change the mechanical properties of the tissue compression under the electrodes based on clamp jaw closure or clamping amount.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. The one aspect, the pad includes asymmetric segments to provide support for the ultrasonic blade support and the electrode is movable. The asymmetric segmented pad is configured for cooperative engagement with the movable bipolar RF electrode. The segmented ultrasonic support pad extends at least partially through the bipolar RF electrode. At least one pad element is significantly taller than a second pad element. The first pad element extends entirely through the bipolar RF electrode and the second pad element extends partially through the bipolar RF electrode. The first pad element and the second pad element are made of dissimilar materials.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, variations in the physical parameters of the electrode in combination with a deflectable electrode are employed to change the energy density delivered to the tissue and the tissue interactions. The physical aspects of the electrode vary along its length in order to change the contact area and/or the energy density of the electrode to tissue as the electrode also deflects.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, an ultrasonic transducer control algorithm is provided to reduce the power delivered by the ultrasonic or RF generator when a short circuit of contact between the ultrasonic blade and the electrode is detected to prevent damage to the ultrasonic blade. The ultrasonic blade control algorithm monitors for electrical shorting or ultrasonic blade to electrode contact. This detection is used to adjust the power/amplitude level of the ultrasonic transducer when the electrical threshold minimum is exceeded and adjusts the transducer power/amplitude threshold to a level below the minimum threshold that would cause damage to the ultrasonic blade, ultrasonic generator, bipolar RF electrode, or bipolar RF generator. The monitored electrical parameter could be tissue impedance (Z) or electrical continuity. The power adjustment could be to shut off the ultrasonic generator, bipolar RF generator, of the surgical device or it could be a proportionate response to either the electrical parameter, pressure, or time or any combination of these parameters.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, the clamp jaw features or aspects are provided in the clamp ram to minimize tissue sticking and improve tissue control. The clamp arm tissue path or clamp area includes features configured to adjust the tissue path relative to the clamp arm/ultrasonic blade to create a predefined location of contact to reduce tissue sticking and charring.
In another aspect, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In one aspect, a partially conductive clamp arm pad is provided to enable electrode wear through and minimize electrical shorting between the ultrasonic blade and the bipolar RF electrode. The clamp arm pad includes electrically conductive and non-conductive portions allowing it to act as one of the bipolar RF electrodes while also acting as the wearable support structure for the ultrasonic blade. The electrically conductive portions of the clamp ram pad are positioned around the perimeter of the pad and not positioned directly below the ultrasonic blade contact area. The electrically conductive portion is configured to degrade or wear to prevent any contact with the ultrasonic blade from interrupting the electrical conductivity of the remaining electrically conductive pad.
In another aspect, the present disclosure provides an end-effector configured to grasp tissue. The end-effector includes an ultrasonic blade configured to be coupled to an ultrasonic transducer and a clamp arm, including a clamp arm pad. The ultrasonic blade is configured to transfer ultrasonic energy to the tissue. The clamp arm pad includes an electrically conductive material, and an electrically non-conductive material. The clamp arm pad is configured as an electrode of a radiofrequency energy circuit. The electrode is configured to transfer radiofrequency energy through the tissue to a return electrode of the radiofrequency energy circuit. The electrically non-conductive material is configured to reduce the possibility of an electrical short between the electrically conductive material and the ultrasonic blade as the clamp arm pad degrades throughout the usable life of the end effector.
In another aspect, the present disclosure provides a clamp arm configured to grasp tissue in conjunction with an ultrasonic blade. The clamp arm includes a clamp arm pad including an electrically conductive layer defining a channel and an electrically non-conductive layer. The electrically non-conductive layer is positioned adjacent the electrically conductive layer such that at least a portion of the electrically non-conductive layer is positioned through the channel. The clamp arm pad is configured as an electrode of a radiofrequency energy circuit. The electrically non-conductive material is configured to reduce the possibility of an electrical short between the electrically conductive material and the ultrasonic blade.
In another aspect, the present disclosure provides an end-effector configured to grasp tissue. The end-effector includes an ultrasonic blade and a clamp arm including a clamp arm pad. The clamp arm pad includes an electrically conductive material and an electrically non-conductive material. The electrically non-conductive material is configured to prevent the electrically conductive material from being positioned a predetermined distance away from the ultrasonic blade as the clamp arm pad degrades throughout the usable life of the end effector.
In another aspect, the present disclosure provides a surgical device. The surgical device can include an end effector including a clamp jaw, a trigger configured to open and close the clamp jaw, a sensor configured to detect a relative position of the trigger, and a control circuit communicably coupled to the sensor and a generator, wherein the control circuit is configured to cause the generator to administer energy associated with a surgical operation to be performed on the tissue, receive a signal from the sensor, determine that a user is trying to release the tissue from the clamp jaws based on the signal, and cause the generator to administer energy configured to release the tissue from the clamp jaw in response to determining that the user is trying to release the tissue from the clamp jaws, wherein the energy configured to release the tissue from the clamp jaw is different than the energy associated with a surgical operation to be performed on the tissue.
In another aspect, the present disclosure provides an end effector configured for use with a surgical device. The end effector can include a clamp arm base, a clamp arm pad including a first geometry, an ultrasonic blade including a first hardness; and an electrode. The electrode can include an electrode material including a second hardness, wherein the second hardness is less than the first hardness of the ultrasonic blade, and wherein the electrode material defines a cavity including a second geometry. The second geometry can correspond to the first geometry such that a portion of the clamp arm pad can be positioned within the cavity; and an intermediate material configured to adhere the electrode material to the clamp arm base.
In another aspect, the present disclosure provides a method of manufacturing an electrode configured for use within an end effector of a surgical device. The method can include forming an electrode material into a desired geometrical configuration, forming one or more pockets into the electrode material, and applying an intermediate material into the one or more pockets formed into the electrode, wherein the intermediate material is suited for welding, bonding the intermediate material to the electrode material. The method can further include attaching the intermediate material to a clamp arm base of the end effector to secure the intermediate material and electrode material to the clamp arm base.
In addition to the foregoing, various other method and/or system and/or program product aspects are set forth and described in the teachings such as text (e.g., claims and/or detailed description) and/or drawings of the present disclosure.
The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.
In one or more various aspects, related systems include but are not limited to circuitry and/or programming for effecting herein-referenced method aspects; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to affect the herein-referenced method aspects depending upon the design choices of the system designer. In addition to the foregoing, various other method and/or system aspects are set forth and described in the teachings such as text (e.g., claims and/or detailed description) and/or drawings of the present disclosure.
Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
The novel features of the described forms are set forth with particularity in the appended claims. The described forms, however, both as to organization and methods of operation, may be best understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Dec. 30, 2019, the disclosure of each of which is hereby incorporated by reference in its respective entirety: U.S. Provisional Patent Application Ser. No. 62/955,294, entitled USER INTERFACE FOR SURGICAL INSTRUMENT WITH COMBINATION ENERGY MODALITY END-EFFECTOR; U.S. Provisional Patent Application Ser. No. 62/955,299, entitled ELECTROSURGICAL INSTRUMENTS FOR COMBINATION ENERGY DELIVERY; and U.S. Provisional Patent Application Ser. No. 62/955,306, entitled SURGICAL INSTRUMENTS.
Applicant of the present application owns the following U.S. Patent Applications filed on May 28, 2020, each of which is hereby incorporated by reference in its respective entirety: U.S. patent application Ser. No. 16/887,499, entitled USER INTERFACE FOR SURGICAL INSTRUMENT WITH COMBINATION ENERGY MODALITY END-EFFECTOR; U.S. patent application Ser. No. 16/887,493, entitled METHOD OF OPERATING A COMBINATION ULTRASONIC/BIPOLAR RF SURGICAL DEVICE WITH A COMBINATION ENERGY MODALITY END-EFFECTOR; U.S. patent application Ser. No. 16/887,506, entitled DEFLECTABLE SUPPORT OF RF ENERGY ELECTRODE WITH RESPECT TO OPPOSING ULTRASONIC BLADE; U.S. patent application Ser. No. 16/887,515, entitled NON-BIASED DEFLECTABLE ELECTRODE TO MINIMIZE CONTACT BETWEEN ULTRASONIC BLADE AND ELECTRODE; U.S. patent application Ser. No. 16/887,519, entitled DEFLECTABLE ELECTRODE WITH HIGHER DISTAL BIAS RELATIVE TO PROXIMAL BIAS; U.S. patent application Ser. No. 16/887,532, entitled DEFLECTABLE ELECTRODE WITH VARIABLE COMPRESSION BIAS ALONG THE LENGTH OF THE DEFLECTABLE ELECTRODE; U.S. patent application Ser. No. 16/887,554, entitled ASYMMETRIC SEGMENTED ULTRASONIC SUPPORT PAD FOR COOPERATIVE ENGAGEMENT WITH A MOVABLE RF ELECTRODE; U.S. patent application Ser. No. 16/887,561, entitled VARIATION IN ELECTRODE PARAMETERS AND DEFLECTABLE ELECTRODE TO MODIFY ENERGY DENSITY AND TISSUE INTERACTION; U.S. patent application Ser. No. 16/887,568, entitled TECHNIQUES FOR DETECTING ULTRASONIC BLADE TO ELECTRODE CONTACT AND REDUCING POWER TO ULTRASONIC BLADE; U.S. patent application Ser. No. 16/887,576, entitled CLAMP ARM JAW TO MINIMIZE TISSUE STICKING AND IMPROVE TISSUE CONTROL; U.S. patent application Ser. No. 16/887,579, entitled PARTIALLY CONDUCTIVE CLAMP ARM PAD TO ENABLE ELECTRODE WEAR THROUGH AND MINIMIZE SHORT CIRCUITING; U.S. patent application Ser. No. 10/289,787, entitled ULTRASONIC CLAMP COAGULATOR APPARATUS HAVING AN IMPROVED CLAMPING END-EFFECTOR; and U.S. patent application Ser. No. 11/243,585, entitled ULTRASONIC CLAMP COAGULATOR APPARATUS HAVING AN IMPROVED CLAMPING END-EFFECTOR.
Applicant of the present application owns the following U.S. Patent Applications filed on May 28, 2020, each of which is hereby incorporated by reference in its respective entirety: U.S. patent application Ser. No. 16/885,813, entitled METHOD FOR AN ELECTROSURGICAL PROCEDURE; U.S. patent application Ser. No. 16/885,820, entitled ARTICULATABLE SURGICAL INSTRUMENT; U.S. patent application Ser. No. 16/885,823, entitled SURGICAL INSTRUMENT WITH JAW ALIGNMENT FEATURES; U.S. patent application Ser. No. 16/885,826, entitled SURGICAL INSTRUMENT WITH ROTATABLE AND ARTICULATABLE SURGICAL END EFFECTOR; U.S. patent application Ser. No. 16/885,838, entitled ELECTROSURGICAL INSTRUMENT WITH ASYNCHRONOUS ENERGIZING ELECTRODES; U.S. patent application Ser. No. 16/885,851, entitled ELECTROSURGICAL INSTRUMENT WITH ELECTRODES BIASING SUPPORT; U.S. patent application Ser. No. 16/885,860, entitled ELECTROSURGICAL INSTRUMENT WITH FLEXIBLE WIRING ASSEMBLIES; U.S. patent application Ser. No. 16/885,866, entitled ELECTROSURGICAL INSTRUMENT WITH VARIABLE CONTROL MECHANISMS; U.S. patent application Ser. No. 16/885,870, entitled ELECTROSURGICAL SYSTEMS WITH INTEGRATED AND EXTERNAL POWER SOURCES; U.S. patent application Ser. No. 16/885,873, entitled ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING ENERGY FOCUSING FEATURES; U.S. patent application Ser. No. 16/885,879, entitled ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING VARIABLE ENERGY DENSITIES; U.S. patent application Ser. No. 16/885,881, entitled ELECTROSURGICAL INSTRUMENT WITH MONOPOLAR AND BIPOLAR ENERGY CAPABILITIES; U.S. patent application Ser. No. 16/885,888, entitled ELECTROSURGICAL END EFFECTORS WITH THERMALLY INSULATIVE AND THERMALLY CONDUCTIVE PORTIONS; U.S. patent application Ser. No. 16/885,893, entitled ELECTROSURGICAL INSTRUMENT WITH ELECTRODES OPERABLE IN BIPOLAR AND MONOPOLAR MODES; U.S. patent application Ser. No. 16/885,900, entitled ELECTROSURGICAL INSTRUMENT FOR DELIVERING BLENDED ENERGY MODALITIES TO TISSUE; U.S. patent application Ser. No. 16/885,917, entitled CONTROL PROGRAM ADAPTATION BASED ON DEVICE STATUS AND USER INPUT; U.S. patent application Ser. No. 16/885,923, entitled CONTROL PROGRAM FOR MODULAR COMBINATION ENERGY DEVICE; and U.S. patent application Ser. No. 16/885,931, entitled SURGICAL SYSTEM COMMUNICATION PATHWAYS.
Applicant of the present application owns related U.S. patent application Ser. No. 16/951,259, filed Nov. 18, 2020 and titled MULTI-LAYER CLAMP ARM PAD FOR ENHANCED VERSATILITY AND PERFORMANCE OF A SURGICAL DEVICE, the disclosure of which is hereby incorporated by reference in its respective entirety.
Applicant of the present application owns related U.S. patent application Ser. No. 16/887,493, filed May 29, 2020 and titled METHOD OF OPERATING A COMBINATION ULTRASONIC/BIPOLAR RF SURGICAL DEVICE WITH A COMBINATION ENERGY MODALITY END-EFFECTOR, the disclosure of which is hereby incorporated by reference in its respective entirety.
Before explaining various forms of surgical devices in detail, it should be noted that the illustrative forms are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative forms may be implemented or incorporated in other forms, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions utilized herein have been chosen for the purpose of describing the illustrative forms for the convenience of the reader and are not for the purpose of limitation thereof. As used herein, the term “surgical device” is used interchangeably with the term “surgical instrument.” Furthermore, as used herein “ultrasonic blade” includes an component configured to delivery energy at a frequency configured to cut a tissue sample. However, it shall be appreciated that according to some aspects, an ultrasonic blade can be further configured for use as an electrode to deliver and/or receive RF energy, depending on the desired implementation.
Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.
Various forms are directed to improved ultrasonic and/or electrosurgical (RF) instruments configured for effecting tissue treating, dissecting, cutting, and/or coagulation during surgical procedures. In one form, a combined ultrasonic and electrosurgical device may be configured for use in open surgical procedures, but has applications in other types of surgery, such as minimally invasive laparoscopic, orthoscopic, or thoracoscopic procedures, for example, non-invasive endoscopic procedures, either in hand held or and robotic-assisted procedures. Versatility is achieved by selective application of multiple energy modalities simultaneously, independently, sequentially, or combinations thereof. For example, versatility may be achieved by selective use of ultrasonic and electrosurgical energy (e.g., monopolar or bipolar RF energy) either simultaneously, independently, sequentially, or combinations thereof.
In one aspect, the present disclosure provides an ultrasonic surgical clamp apparatus comprising an ultrasonic blade and a deflectable RF electrode such that the ultrasonic blade and deflectable RF electrode cooperate to effect sealing, cutting, and clamping of tissue by cooperation of a clamping mechanism of the apparatus comprising the RF electrode with an associated ultrasonic blade. The clamping mechanism includes a pivotal clamp arm which cooperates with the ultrasonic blade for gripping tissue therebetween. The clamp arm is preferably provided with a clamp tissue pad (also known as “clamp arm pad”) having a plurality of axially spaced gripping teeth, segments, elements, or individual units which cooperate with the ultrasonic blade of the end-effector to achieve the desired sealing and cutting effects on tissue, while facilitating grasping and gripping of tissue during surgical procedures.
In one aspect, the end-effectors described herein comprise an electrode. In other aspects, the end-effectors described herein comprise alternatives to the electrode to provide a compliant coupling of RF energy to tissue, accommodate pad wear/thinning, minimize generation of excess heat (low coefficient of friction, pressure), minimize generation of sparks, minimize interruptions due to electrical shorting, or combinations thereof. The electrode is fixed to the clamp jaw at the proximal end and is free to deflect at the distal end. Accordingly, throughout this disclosure the electrode may be referred to as a cantilever beam electrode or as a deflectable electrode.
In other aspects, the end-effectors described herein comprise a clamp arm mechanism configured to apply high pressure between a pad and an ultrasonic blade to grasp and seal tissue, maximize probability that the clamp arm electrode contacts tissue in limiting or difficult scenarios, such as, for example, thin tissue, tissue under lateral tension, tissue tenting/vertical tension especially tenting tissue away from clamp arm.
In other aspects, the end-effectors described herein are configured to balance match of surface area/current densities between electrodes, balance and minimize thermal conduction from tissue interface, such as, for example, impacts lesion formation and symmetry, cycle time, residual thermal energy.
In other aspects, the end-effectors described herein are configured to minimize sticking, tissue adherence (minimize anchor points) and may comprise small polyimide pads.
In various aspects, the present disclosure provides a combination ultrasonic/bipolar RF energy surgical device. The combination ultrasonic/bipolar RF energy surgical device comprises an end-effector. The end-effector comprises a clamp arm and an ultrasonic blade. The clamp arm comprises a movable clamp jaw, a compliant polymeric pad, and at least one bipolar RF electrode. The at least one electrode is coupled to a positive pole of an RF generator and the ultrasonic blade is coupled to the negative pole of the RF generator. The ultrasonic blade is acoustically coupled to an ultrasonic transducer stack that is driven by an ultrasonic generator. In various aspects, the end-effector comprises electrode biasing mechanisms.
In one general aspect, the present disclosure is directed to a method for using a surgical device comprising a combination of ultrasonic and advanced bipolar RF energy with a movable RF electrode on at least one jaw of an end-effector. The movable RF electrode having a variable biasing force from a proximal end to a distal end of the movable RF electrode. The movable RF electrode being segmented into discrete portions than can be put in electrical communication or isolated from each other. The movable RF electrode being made of a conductive or partially conductive material. It will be appreciated that any of the end effectors described in this disclosure may be configured with an electrode biasing mechanism.
In one aspect, the present disclosure provides a limiting electrode biasing mechanism to prevent ultrasonic blade to electrode damage. Generally, in various aspects, the present disclosure provides an end-effector for use with a ultrasonic/RF combination device, where the end-effector comprises an electrode. In one aspect, the combination ultrasonic/bipolar RF energy surgical device comprises an electrode biasing mechanism. In one aspect, the limiting electrode biasing mechanism is configured to prevent or minimize ultrasonic blade to electrode damage. The electrode is fixed to the clamp jaw at the proximal end and is free to deflect at the distal end. Accordingly, throughout this disclosure the electrode may be referred to as a cantilever beam electrode or as a deflectable electrode.
In various aspects, the present disclosure provides an electrode cantilever beam fixated at only one end comprising a biasing threshold mechanism. In one aspect, the deflectable cantilever electrode is configured for combination ultrasonic/bipolar RF energy surgical devices.
In one aspect, the combination ultrasonic/RF energy surgical device comprises an ultrasonic blade, a clamp arm, and at least one electrode which crosses over the ultrasonic blade. In one aspect, the electrode is configured to be deflectable with respect to the clamp arm and includes features to change the mechanical properties of the tissue under compression between the electrode and the ultrasonic blade. In another aspect, the electrode includes a feature to prevent inadvertent contact between the electrode and the ultrasonic blade to prevent or minimize ultrasonic blade to electrode damage.
In various aspects, the electrode comprises a metallic spring element attached at a proximal end of the clamp jaw of the end effector. The metallic spring element defines openings for receives therethrough one or more clamp arm pads (also known as “tissue pads” or “clamp tissue pads”) and comprises integrated minimum gap elements. This configuration of the electrode provides a method of preventing tissue from accumulating around the biasing mechanism that can impact the performance of the electrode. This configuration also minimizes the binding between the wear pads and the biasing spring, increases the strength of the electrode to clamp arm connection, minimizes inadvertent release of the clamp arm pads by attaching the polyimide pads to the electrode, and balance matches the surface area/current densities between electrodes. The electrode is fixed to the clamp jaw at the proximal end and is free to deflect at the distal end. Accordingly, throughout this disclosure the electrode is deflectable and may be referred to as a cantilever beam electrode or deflectable electrode.
Although ultrasonic and radio frequency (“RF”) energy surgical devices provide numerous surgical benefits, the unwanted sticking of tissue samples to clamp arm pads after clamping and/or sealing can be problematic. For example, if a tissue sample sticks to the ultrasonic or RF blade after a cutting and/or sealing operation, subsequent charring can occur due to an undesired, prolonged application of heat to the stuck tissue sample. Various clamp pads and clamp pad configurations have been contemplated to define a desired energy path and reduce the probability of unwanted sticking, such as those disclosed in U.S. patent application Ser. No. 16/951,259, filed Nov. 18, 2020 and titled MULTI-LAYER CLAMP ARM PAD FOR ENHANCED VERSATILITY AND PERFORMANCE OF A SURGICAL DEVICE, the disclosure of which is hereby incorporated by reference in its respective entirety.
However, to further reduce tissue sticking to the ultrasonic and/or RF energy blade after a desired delivery of energy, it would be desirable to administer a specifically configured burst of energy to essentially kick the blade off the tissue sample. Accordingly, there is a need for devices, systems, and methods for automatically providing a small amount of specifically configured (e.g., amount, duration, frequency, etc.) energy to the blade after a surgical device performs a desired surgical operation (e.g., cutting or sealing), to remove the tissue sample from the blade and thus, reduce the probability of unwanted sticking and charring. It would be additionally beneficial if the administered energy could be automatically delivered at a particularly desirable moment after a surgical operation. For example, the specifically configured burst of energy could be automatically administered upon the opening of jaws of the surgical device, after the surgical operation is performed.
Referring now to
According to one non-limiting one aspect, the clamp arm pad 120 can be made of a non-stick lubricious material such as PTFE or similar synthetic fluoropolymers of tetrafluoroethylene. PTFE is a hydrophobic, non-wetting, high density and resistant to high temperatures, and versatile material and non-stick properties. The clamp arm pad 120 can be electrically non-conductive. In contrast, the electrode 118 can be made of an electrically conductive material to deliver electrical energy such as monopolar RF, bipolar RF, microwave, or irreversible electroporation (IRE), for example. The electrode 118 can further include one or more gap setting pads made of a polyimide material, and in one aspect, can be made of a durable high-performance polyimide-based plastic known under the tradename VESPEL and manufactured by DuPont or other suitable polyimide, polyimide polymer alloy, or PET (Polyethylene Terephthalate), PEEK (Polyether Ether Ketone), PEKK (Poly Ether Ketone Ketone) polymer alloy, for example. Unless otherwise noted herein below, the clamp arm pads and gap pads described herein below are made of the materials described in this paragraph.
In further reference to
According to the non-limiting aspect of
Still referring to the non-limiting aspect of
In further reference to
Referring now to
According to the non-limiting aspect of
Referring now to
In further reference to
A first voltage sensing circuit 3912 can be coupled across the terminals labeled ENERGY1 and the RETURN path to measure the output voltage therebetween. A second voltage sensing circuit 3924 can be coupled across the terminals labeled ENERGY2 and the RETURN path to measure the output voltage therebetween. A current sensing circuit 3914 can be disposed in series with the RETURN leg of the secondary side of the power transformer 3908 as shown to measure the output current for either energy modality. If different return paths are provided for each energy modality, then a separate current sensing circuit should be provided in each return leg. The outputs of the first and second voltage sensing circuits 3912, 3924 can be provided to respective isolation transformers 3916, 3922 and the output of the current sensing circuit 3914 can be provided to another isolation transformer 3918. The outputs of the isolation transformers 3916, 3928, 3922 in the on the primary side of the power transformer 3908 (non-patient isolated side) can be provided to a one or more ADC circuit 3926. The digitized output of the ADC circuit 3926 can be provided to the processor 3902 for further processing and computation. The output voltages and output current feedback information can be employed to adjust the output voltage and current provided to the surgical device 100 and to compute output impedance, among other parameters. Input/output communications between the processor 3902 and patient isolated circuits can be provided through an interface circuit 3920. Sensors, such as the sensors 140, 142, 144 can also be in electrical communication with the processor 3902 by way of the interface circuit 3920.
In one aspect, the impedance can be determined by the processor 3902 by dividing the output of either the first voltage sensing circuit 3912 coupled across the terminals labeled ENERGY1/RETURN or the second voltage sensing circuit 3924 coupled across the terminals labeled ENERGY2/RETURN by the output of the current sensing circuit 3914 disposed in series with the RETURN leg of the secondary side of the power transformer 3908. The outputs of the first and second voltage sensing circuits 3912, 3924 are provided to separate isolations transformers 3916, 3922 and the output of the current sensing circuit 3914 is provided to another isolation transformer 3916. The digitized voltage and current sensing measurements from the ADC circuit 3926 are provided the processor 3902 for computing impedance. As an example, the first energy modality ENERGY1 may be ultrasonic energy and the second energy modality ENERGY2 may be RF energy. Nevertheless, in addition to ultrasonic and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, although the example illustrated in
As shown in
Additional details regarding the generator 3900 of
Referring now to
According to the non-limiting aspect of
In response to the signal received from the sensor, the control circuit can cause the generator to administer an amount, such as a burst, of energy 2730 particularly configured to cause the tissue sample 2728 to be released from the one or more clamp jaws 2712 of the surgical device 2700, as depicted in
According to other non-limiting aspects, the burst of energy 2730 can include a ultrasonic pulse can be administered at a specific transducer current set point and/or a desired percentage of a current set point. For example, it could be preferable to configure the burst of energy 2730 to include a ultrasonic pulse greater than or equal to 50% and less than or equal to 120% of the current set point. A lower percentage of the current set point can be preferable in cases where the burst of energy 2730 is used in conjunction with a non-stick coating and/or clamp pad, such as those described in U.S. patent application Ser. No. 16/951,259, filed Nov. 18, 2020 and titled MULTI-LAYER CLAMP ARM PAD FOR ENHANCED VERSATILITY AND PERFORMANCE OF A SURGICAL DEVICE, the disclosure of which is hereby incorporated by reference in its respective entirety.
In other words, the burst of energy 2730 can be particularly configured to jolt the tissue out of the one or more clamp jaws 2712 after the surgical operation, that the tissue 2728 does not stick, thereby mitigating the risk of the tissue 2728 charring. Although the non-limiting aspect of
Additionally and/or alternately, a control circuit of the surgical device 2700 can be programmed such that the burst of energy 2730 will not be administered, altered, or will be cut short in a variety of scenarios. For example, the burst of energy 2730 will not be administered or will be cut short if the user manually initiates firing before and/or during an automatic administration of the burst of energy 2730. Alternately and/or additionally, if the user activates the surgical device 2700 during the automatic administration of the burst of energy 2730, the control circuit could cause the generator to directly adjust a parameter of the burst of energy 2730 until the energy is suitable for performing the surgical operation without terminating the firing. Alternately, the control circuit surgical device 2700 According to other non-limiting aspects, such adjustments can be made if the user closes the jaws again before and/or during the automatic administering of the burst of energy 2730.
Accordingly, the surgical device 2700 of
Referring now to
As previously discussed, various clamp pads and clamp pad configurations have been contemplated to define a desired energy path and reduce the probability of unwanted sticking, such as those disclosed in U.S. patent application Ser. No. 16/951,259, filed Nov. 18, 2020 and titled MULTI-LAYER CLAMP ARM PAD FOR ENHANCED VERSATILITY AND PERFORMANCE OF A SURGICAL DEVICE, the disclosure of which is hereby incorporated by reference in its respective entirety. Such clamp arms can be used to administer the previously-discussed bursts of energy. However, clamp arms and clamp arm pads can degrade, break, and wear out due to continued use of an implementing surgical device. This is particularly important when clamp arm pads are implemented to reduce the risk of tissue sticking and charring, since such pads provide the non-stick surface that interfaces with a tissue sample. This degradation can be exacerbated when the clamp arm construction utilizes different materials, including, but not limited to, Teflon (e.g., PTFE, etc.), aluminum (e.g., 60601 T0, etc.), and/or stainless steel (e.g., 300 series, 17-4, H900, etc.). Accordingly, there is a need for means of reducing failure modes of clamp arm pads attachment of dissimilar materials implemented in end effectors—and more specifically, clamp pads—such as those disclosed in U.S. patent application Ser. No. 16/951,259.
Referring now to
In further reference to
According to the non-limiting aspect of
Referring now to
According to the non-limiting aspect of
Referring now to
As previously discussed, various clamp pads and clamp pad configurations have been contemplated to define a desired energy path and reduce the probability of unwanted sticking, such as those disclosed in U.S. patent application Ser. No. 16/951,259, filed Nov. 18, 2020 and titled MULTI-LAYER CLAMP ARM PAD FOR ENHANCED VERSATILITY AND PERFORMANCE OF A SURGICAL DEVICE, the disclosure of which is hereby incorporated by reference in its respective entirety. However, such clamp pads can utilize different materials, such as Teflon (e.g., PTFE, etc.), aluminum (e.g., 60601 T0, etc.) and stainless steel (e.g., 17-4 PH, H900 HT, 300 series). However, multi-component assemblies involving dissimilar materials can result in insecure attachments, which can lead to further excitation and degradation of the non-stick clam pads discussed herein. Accordingly, there is also a need for means of providing a robust, secure attachment of dissimilar materials implemented in end effectors—and more specifically, clamp pads—such as those disclosed in U.S. patent application Ser. No. 16/951,259.
Referring now to
However, components constructed from different materials, such as the electrode 2904 and intermediate material 2908 of
Once clad, the bonded electrode 2904 and intermediate material 2908 can be formed into a desired geometrical configuration via a desired process (e.g., machining, wire electrical discharge machining (“EDM”), stamping, fine blanking, etc.). The electrode 2904 geometry should achieve a desired fit around the clamp arm pad 2906 (
According to the non-limiting aspect of
Referring now to
Still referring to
Referring now to
However, unlike the electrodes 2904, 3304 of
According to the non-limiting aspect of
Referring now to
According to the non-limiting aspect of
Of course, the steps of the method 3500 of
Examples of various aspects of end-effectors and surgical instruments of the present disclosure are provided below. An aspect of the end-effector or surgical instrument may include any one or more than one, and any combination of, the examples described below:
Example 1. A surgical device, including: an end effector including a clamp jaw configured to grasp tissue; a trigger configured to open and close the clamp jaw about the tissue; a sensor configured to detect a relative position of the trigger and generate a first signal associated with the detected relative position of the trigger; and a control circuit communicably coupled to the sensor and configured to communicate with a generator, wherein the control circuit is configured to: transmit a second signal to the generator to cause the generator to administer energy associated with a surgical operation to be performed on the tissue; receive the first signal from the sensor; determine that clamp jaws are not positioned to administer the energy associated with the surgical operation based, at least in part, on the first signal; and cause the generator to administer energy configured to release the tissue from a blade in response to determining that the clamp jaws are opened sufficiently wherein a parameter of the energy configured to release the tissue from the blade is different than a parameter of the energy associated with a surgical operation to be performed on the tissue.
Example 2. The surgical device of Example 1, wherein the energy configured to release the tissue from the blade is ultrasonic.
Example 3. The surgical device of any one of Examples 1-2, wherein the parameter of the energy configured to release the tissue from the blade includes at least one of a magnitude, a frequency, or an amplitude, or any combinations thereof.
Example 4. The surgical device of any one of Examples 1-3, wherein the parameter of the energy configured to release the tissue from the has a duration selected in a range of 0.1 to 1.0 seconds.
Example 5. The surgical device of any one of Examples 1-4, wherein the energy configured to release the tissue from the blade is administered at a percentage of a current set point.
Example 6. The surgical device of any one of Examples 1-5, wherein the percentage is selected in a range of 50% to 120% of maximum energy output.
Example 7. The surgical device of any one of Examples 1-6, wherein the control circuit is further configured to: determine that a closure of the clamp jaws has initiated about the tissue based, at least in part, on the first signal; and prevent the generator from administering the energy configured to release the tissue from the blade in response to determining that the closure of the clamp jaws has initiated.
Example 8. The surgical device of any one of Examples 1-7, wherein the control circuit is further configured to: determine that a closure of the clamp jaws has initiated about the tissue based, at least in part, on the first signal; and adjust the parameter of the of energy configured to release the tissue from the blade until it is the same as the parameter of the energy associated with a surgical operation to be performed on the tissue.
Example 9. An end effector configured for use with a surgical device, the end effector including: a clamp arm base; a clamp arm pad including a first geometry; an ultrasonic blade including a first hardness; and a second electrode including: an electrode material including a second hardness, wherein the second hardness is less than the first hardness of the ultrasonic blade, and wherein the electrode material defines a cavity including a second geometry, wherein the second geometry corresponds to the first geometry such that a portion of the clamp arm pad can be positioned within the cavity; and an intermediate material configured to join the electrode material to the clamp arm base.
Example 10. The end effector of Example 9, wherein the intermediate material is welded to the clamp arm base.
Example 11. The end effector of any one of Examples 9-10, wherein the electrode material is cladded to the intermediate material.
Example 12. The end effector of any one of Examples 9-11, wherein the electrode material further defines a pocket configured to accommodate the intermediate material, and wherein the intermediate material is positioned within the pocket.
Example 13. The end effector of any one of Examples 9-12, wherein the electrode material is at least one of an aluminum-based material, a copper-based material, or a titanium-based material, and wherein the intermediate material is a stainless steel.
Example 14. The end effector of any one of Examples 9-13, wherein the clamp arm pad is constructed from a non-stick, PTFE material.
Example 15. The end effector of any of Examples 9-14, wherein the clamp arm pad includes a first thickness that corresponds to a rated life of the clamp arm pad.
Example 16. The end effector of any of Examples 9-15, wherein the electrode material includes a second thickness, and wherein the intermediate material includes a third thickness that is less than the second thickness.
Example 17. The end effector of any one of Examples 9-16, wherein the electrode material includes a second thickness, and wherein the intermediate material includes a third thickness that is greater than the second thickness.
Example 18. A method of manufacturing an electrode configured for use within an end effector of a surgical device, the method including: forming an electrode material into a desired geometrical configuration; forming one or more pockets into the electrode material; applying an intermediate material into the one or more pockets formed into the electrode, wherein the intermediate material is suited for welding; bonding the intermediate material to the electrode material; and attaching the intermediate material to a clamp arm base of the end effector to secure the intermediate material and electrode material to the clamp arm base.
Example 19. The method of Examples 18, wherein applying the intermediate material includes spraying the intermediate material into the one or more pockets.
Example 20. The method of any either of Examples 18-19, wherein spraying the intermediate material into the one or more pockets includes thermal spraying the intermediate material into the one or more pockets.
Example 21. The method of any one of Examples 18-20, wherein attaching the intermediate material to the clamp arm base includes at least one of welding, brazing, adhering, or soldering the intermediate material to the clamp arm base.
Example 22. The method of any one of Examples 18-21, wherein attaching the intermediate material to the clamp arm base includes laser welding the intermediate material to the clamp arm base.
While several forms have been illustrated and described, it is not the intention of Applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.
Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).
As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor including one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.
As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.
As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.
A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.
Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 63/271,410, titled ELECTRODES AND METHODS FOR USE WITH A MULTI-LAYER CLAMP ARM PAD TO ENHANCE THE PERFORMANCE OF A SURGICAL DEVICE, filed on Oct. 25, 2021, the disclosure of which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63271410 | Oct 2021 | US |