Electrodes for tissue treatment

Information

  • Patent Grant
  • 9592086
  • Patent Number
    9,592,086
  • Date Filed
    Wednesday, May 15, 2013
    11 years ago
  • Date Issued
    Tuesday, March 14, 2017
    7 years ago
Abstract
An energy delivery device is disclosed. The energy delivery device may include an elongate member having a proximal end and a distal end, and an energy emitting portion coupled to the distal end of the elongate member. The energy emitting portion may be configured to transition between a first, collapsed configuration and a second, expanded configuration. In addition, the energy emitting portion may include a plurality of legs forming a basket, such that when the energy emitting portion is in the second, expanded configuration a central portion of at least one of the legs includes a substantially straight configuration.
Description
TECHNICAL FIELD

Embodiments of the present disclosure relate generally to devices and methods for treating tissue in a cavity or passageway of a body. More particularly, embodiments of the present disclosure relate to devices and methods employing electrodes for treating tissue in an airway of a body, among other things.


BACKGROUND

The anatomy of a lung includes multiple airways. As a result of certain genetic and/or environmental conditions, an airway may become fully or partially obstructed, resulting in an airway disease such as emphysema, bronchitis, chronic obstructive pulmonary disease (COPD), and asthma. Certain obstructive airway diseases, including, but not limited to, COPD and asthma, are reversible. Treatments have accordingly been designed in order to reverse the obstruction of airways caused by these diseases.


One treatment option includes management of the obstructive airway diseases via pharmaceuticals. For example, in a patient with asthma, inflammation and swelling of the airways may be reversed through the use of short-acting bronchodilators, long-acting bronchodilators, and/or anti-inflammatories. Pharmaceuticals, however, are not always a desirable treatment option because in many cases they do not produce permanent results, or patients are resistant to such treatments or simply non-compliant when it comes to taking their prescribed medications.


Accordingly, more durable/longer-lasting and effective treatment options have been developed in the form of energy delivery systems for reversing obstruction of airways. Such systems may be designed to contact an airway of a lung to deliver energy at a desired intensity for a period of time that allows for the airway tissue (e.g., airway smooth muscle, nerve tissue, etc.) to be altered and/or ablated. However, energy delivery through these systems to the airway tissue is not always uniform due to the contact between the systems and the tissue. Uniform delivery of energy to the airway tissue is important for enabling consistent treatment and lowering the impedance level of the tissue. There is accordingly a need for an energy delivery system that enables uniform contact between the system and the tissue of an airway.


SUMMARY OF THE DISCLOSURE

In accordance with the present disclosure, energy delivery devices and methods of use are disclosed. The energy delivery device may include an elongate member having a proximal end and a distal end, and an energy emitting portion coupled to the distal end of the elongate member. The energy emitting portion may be configured to transition between a first, collapsed configuration and a second, expanded configuration. In addition, the energy emitting portion may include a plurality of legs forming a basket, such that when the energy emitting portion is in the second, expanded configuration a central portion of at least one of the legs includes a substantially straight or linear configuration.


Embodiments of the energy delivery device may include the following features either alone or in combination: the central portion of the at least one leg may be between proximal and distal portions of the at least one leg, and the central portion may be stiffer than each of the proximal and distal portions; the central portion may include a modulus of elasticity that is greater than a modulus of elasticity of each of the proximal and distal portions; the central portion may include a cross-section dimension that is larger than a corresponding cross-section dimension of both the proximal and distal portions; at least a portion of the central portion may be surrounded by one of a hypotube or a heat shrink tube; at least one piece of material may be attached to a radially inner surface of the central portion, and the at least one piece of material may be substantially the same length as the length of the central portion, such that the at least one piece of material may include a first material, and the central portion may include a second material different from the first material; the central portion may include a folded configuration; the central portion of the at least one leg may be between proximal and distal portions that are curved in the second, expanded configuration; and the central portion of at least one leg may include a plurality of layers formed by at least two angled bends in the leg.


Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.


The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the present disclosure and together with the description, serve to explain the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a system for delivering energy to tissue within a cavity or passageway of a body.



FIG. 2 is an enlarged view of a distal portion of a therapeutic energy delivery device, according to a first embodiment of the present disclosure.



FIG. 3 is an enlarged view of an electrode of the therapeutic energy delivery device of FIG. 2.



FIG. 4 is an enlarged view of an electrode of a therapeutic energy delivery device, according to a second embodiment of the present disclosure.



FIG. 5A is an enlarged view of an electrode of a therapeutic energy delivery device, according to a third embodiment of the present disclosure.



FIG. 5B is an enlarged view of an electrode of a therapeutic energy delivery device, according to a fourth embodiment of the present disclosure.





DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to exemplary embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


Embodiments of the present disclosure relate to devices and methods for applying energy to tissue within a wall or cavity of a body. More particularly, embodiments of the present disclosure relate to devices and methods for applying energy to tissue in the airway of a lung in order to treat reversible obstructive airway diseases including, but not limited to, COPD and asthma. It should be emphasized, however, that embodiments of the present disclosure may also be utilized in any procedure where heating of tissue is required, such as, for example cardiac ablation procedures.



FIG. 1 illustrates a system for delivering energy 10, in accordance with a first embodiment of the present disclosure. The system may include an energy generator 12, a controller 14, a user interface surface 16, and an energy delivery device 18. Energy generator 12 may be any suitable device configured to produce energy for heating and/or maintaining tissue in a desired temperature range. In one embodiment, for example, energy generator 12 may be an RF energy generator. The RF energy generator may be configured to emit energy at specific frequencies and for specific amounts of time in order to reverse obstruction in an airway of a lung.


In certain obstructive airway diseases, obstruction of an airway may occur as a result of narrowing due to airway smooth muscle contraction. Accordingly, in one embodiment, energy generator 12 may be configured to emit energy that reduces the ability of the smooth muscle to contract, increases the diameter of the airway by debulking, denaturing, and/or eliminating the smooth muscle or nerve tissue, and/or otherwise alters airway tissue or structures. That is, energy generator 12 may be configured to emit energy capable of killing smooth muscle cells or nerve tissue, preventing smooth muscle cells or nerve tissue from replicating, and/or eliminating smooth muscle or nerve tissue by damaging and/or destroying the smooth muscle or nerve tissue.


More particularly, energy generator 12 may be configured to generate energy with a wattage output sufficient to maintain a target tissue temperature in a range of about 60 degrees Celsius to about 80 degrees Celsius. In one embodiment, for example, energy generator may be configured to generate RF energy at a frequency of about 400 kHz to about 500 kHz and for treatment cycle durations of about 5 seconds to about 15 seconds per treatment cycle. Alternatively, the duration of each treatment cycle may be set to allow for delivery of energy to target tissue in a range of about 125 Joules of RF energy to about 150 Joules of energy. In one embodiment, for example, when a monopolar electrode is used, the duration of treatment may be about 10 seconds, and the target tissue temperature may be about 65 degrees Celsius. In another embodiment, when a bipolar electrode is used, the duration of treatment may be about 2 to 3 seconds, with the target tissue temperature being approximately 65 degrees Celsius.


Energy generator 12 may further include an energy operating mechanism 26. Energy operating mechanism 26 may be any suitable automatic and/or user operated device in operative communication with energy generator 12 via a wired or wireless connection, such that energy operating mechanism 26 may be configured to enable activation of energy generator 12. Energy operating mechanism 26 may therefore include, but is not limited to, a switch, a push-button, or a computer. The embodiment of FIG. 1, for example, illustrates that energy operating mechanism 26 may be a footswitch 26. Footswitch 26 may include a conductive cable 70 coupled to a proximal coupler 72 which is configured to be electrically coupled to an interface coupler 30 disposed on user interface surface 16.


Energy generator 12 may be coupled to controller 14. Controller 14 may include a processor 22 configured to receive information feedback signals, process the information feedback signals according to various algorithms, produce signals for controlling the energy generator 12, and produce signals directed to visual and/or audio indicators. For example, processor 22 may include one or more integrated circuits, microchips, microcontrollers, and microprocessors, which may be all or part of a central processing unit (CPU), a digital signal processor (DSP), an analogy processor, a field programmable gate array (FPGA), or any other circuit known to those skilled in the art that may be suitable for executing instructions or performing logic operations. That is, processor may include any electric circuit that may be configured to perform a logic operation on at least one input variable. In one embodiment, for example, processor 22 may be configured use a control algorithm to process a temperature feedback signal and generate control signals for energy generator 12. Alternative or additional control algorithms and system components that may be used in conjunction with processor 22 may be found in U.S. Pat. No. 7,104,987 titled CONTROL SYSTEM AND PROCESS FOR APPLICATION OF ENERGY TO AIRWAY WALLS AND OTHER MEDIUMS, issued Sep. 12, 2006, and in U.S. Patent Application Publication No. 2009/0030477 titled SYSTEM AND METHOD FOR CONTROLLING POWER BASED ON IMPEDANCE DETECTION, SUCH AS CONTROLLING POWER TO TISSUE TREATMENT DEVICES, published on Jan. 29, 2009, each of which is incorporated by reference herein in its entirety.


Controller 14 may additionally be coupled to and in communication with user interface 16. The embodiment of FIG. 1 illustrates that controller 14 may be electrically coupled to user interface 16 via a wire connection. In alternative embodiments, however, controller 14 may be in wireless communication with user interface 16. User interface 16 may be any suitable device capable of providing information to an operator of the energy delivery system 10. Accordingly, user interface 16 may be configured to operatively couple to each of the components of energy delivery system 10, receive information signals from the components, and output at least one visual or audio signal to a device operator in response to the information received. The surface of user interface 16 may therefore include, but is not limited to, at least one switch 74, a digital display 32, visual indicators, audio tone indicators, and/or graphical representations of components of the energy delivery system 60, 68. Embodiments of user interface 16 may be found in U.S. Patent Application Publication No. 2006/0247746 A1 titled CONTROL METHODS AND DEVICES FOR ENERGY DELIVERY, published Nov. 2, 2006, which is incorporated by reference herein in its entirety.



FIG. 1 illustrates that user interface 16 may be coupled to energy delivery catheter 18. The coupling may be any suitable medium enabling distribution of energy from energy generator 12 to energy deliver device 18, such as, for example, a wire or a cable 38. Energy delivery device 18 may include an elongate member 34 having a proximal end 34A and a distal end 34B. Elongate member 34 may be any suitable longitudinal device configured to be inserted into a cavity and/or passageway of a body. Elongate member 34 may further include any suitable stiff or flexible material configured to enable movement of energy delivery device 18 through a cavity and/or passageway in a body. In one embodiment, for example, elongate member 34 may be sufficiently flexible to enable elongate member to conform to the cavity and/or passageway through which it is inserted.


Elongate member 34 may be any suitable size, shape, and or configuration such that elongate member 34 may be configured to pass through a lumen of a bronchoscope. Elongate member may be solid or hollow. In one embodiment, for example, elongate member 34 may include one or more lumens or internal channels (not shown) for the passage of an actuation/pull wire 50 (as shown) and/or a variety of surgical equipment, including, but not limited to, imaging devices and tools for irrigation, insufflation, vacuum suctioning, biopsies, and drug delivery. Elongate member 34 may further include an atraumatic exterior surface having a rounded shape and/or coating. The coating be any coating known to those skilled in the art enabling ease of movement of energy delivery device 18 through a passageway and/or cavity within a body. Coating may therefore include, but is not limited to, a lubricious coating and/or an anesthetic.



FIG. 1 further illustrates that an energy emitting portion 44 may be attached to distal end 34B of elongate member 34. Energy emitting portion 44 may be permanently or removably attached to distal end 34B of elongate member. In one embodiment, for example, energy emitting portion 44 may be permanently or removably attached to elongate member 34 via a flexible junction enabling movement of energy emitting portion 44 relative to distal end 34B of elongate member 34. Embodiments of a junction may be found, for example, in U.S. Patent Application Publication No. 2006/0247618 A2 titled MEDICAL DEVICE WITH PROCEDURE IMPROVEMENT FEATURES, published Nov. 2, 2006, which is incorporated by reference herein in its entirety.


Energy emitting portion 44 may be any suitable device configured to emit energy from energy generator 12. In addition, as illustrated in FIG. 2, energy emitting portion 44 may include a contact region 102 that may be configured to contact tissue 104 within a cavity and/or passageway 100 of a body. The contact region 102 may include at least a portion that is configured to emit energy from energy generator 12. Energy emitting portion 44 may further be a resilient member configured to substantially maintain a suitable size, shape, and configuration that corresponds to a size of a cavity and/or passageway in which energy delivery device 18 is inserted.


In one embodiment, for example, energy emitting portion 44 may be an expandable member. The expandable member may include a first, collapsed configuration (not shown) and a second, expanded configuration (FIG. 2). The expandable member may include any size, shape, and/or configuration, such that in the second, expanded configuration, the contact region may be configured to contact tissue in a cavity and/or passageway of a body. The expandable member of energy emitting portion 44 may be any suitable expandable member known to those skilled in the art including, but not limited to, a balloon or cage. In one embodiment, as illustrated in FIGS. 1 and 2, energy emitting portion 44 may include an expandable basket having a plurality of legs 46. The plurality of legs 46 may be configured to converge at an atraumatic distal tip 48 of energy delivery device 18.


Energy emitting portion 44 may further include at least one electrode. The at least one electrode may be any suitable electrode known to those skilled in the art configured to emit energy. The at least one electrode may be located along the length of at least one of the plurality of legs 46 and may include at least a portion of the contact region of energy emitting portion 44. Accordingly, the at least one electrode may include, but is not limited to, a band electrode or a dot electrode. Alternatively, the embodiment of FIG. 1 illustrates that at least one leg 46 of the energy emitting portion is made up of a single, elongate electrode 46. In one embodiment, for example, the elongate electrode 46 may have an electrical insulator material. In addition, at least a portion of the electrode 46 may be exposed, forming an active region for delivering energy to tissue.


As previously discussed, and illustrated in FIGS. 1 and 2, each of the plurality of legs 46 of energy emitting portion may be configured to form an expandable basket-type shape when in the second, expanded configuration. Accordingly, upon expansion of energy emitting portion 44, each of the plurality of legs 46 may be configured to bow radially outward from a longitudinal axis of energy delivery device 18. A central portion of each leg 46 may be configured to be the portion of the leg 46 that is the greatest distance from the longitudinal axis when the energy emitting portion 44 is in its second, expanded configuration. In some embodiments, the central portion of at least one leg 46 may form a rounded configuration upon expansion of energy emitting portion 44. Alternatively, as illustrated in FIGS. 2 and 3, the central portion 46B of at least one leg 46 may be configured to maintain a substantially straight or linear configuration upon expansion of energy emitting portion 44, such that energy delivery device 18 may be configured to provide uniform and controlled energy delivery to tissue in a cavity and/or passageway within a body, and such that energy delivery device 18 may be configured to provide controlled tissue to leg 46 contact at all times regardless of the size of the cavity and/or passageway.


Leg 46 may be configured to maintain the substantially flat configuration at central portion 46B as a result of mechanical properties of leg 46. For example, in one embodiment central portion 46B may have a higher modulus of elasticity than proximal and distal portions 46A of leg 46. That is, in some embodiments, central portion 46B may include a stiffer material than proximal and distal portions 46A. Alternatively, or in addition, in another embodiment, central portion 46B may have a higher moment of inertia than proximal and distal portions 46A of leg 46. The higher moment of inertia may be achieved, for example, by configuring central portion 46B to have a larger cross-sectional width and/or thickness than the proximal and distal portions 46A of leg 46.


Central portion 46B of leg 46 may accordingly be any suitable size (e.g., length), shape, and/or configuration that maintains a substantially straight configuration. In some embodiments, for example, each leg 46 may include a central portion having a substantially similar central portion 46B. Alternatively, in other embodiments, the central portion 46B of each leg 46 may vary. The size, shape, and/or configuration of the central portion 46B may be determined based on multiple factors including, but not limited to, the location of treatment, desired treatment energy level, duration of treatment, and size of body lumen.



FIG. 3 illustrates an example of a portion of a leg 46 of an expanded energy emitting portion 44 according to a first embodiment of the present disclosure. As illustrated in FIG. 3, central portion 46B may be configured to have a higher modulus of elasticity and/or a higher moment of inertia than proximal and distal portions 46A of leg 46. Leg 46 may include any suitable material known to those skilled in the art configured to emit energy and resiliently bow outward. Suitable materials may include, but are not limited to, metals and metal alloys. In one embodiment, for example, leg 46 may include stainless steel or nitinol.


Leg 46 may further include a stiffer material at central portion 46B relative to remaining portions of leg 46. In one embodiment, for example, proximal and distal portions 46A of leg 46 may be permanently or removably connected to central portion 46B. In addition, proximal and distal portions 46A of leg 46 may include a metal or metal alloy having a lower modulus of elasticity than the metal or metal alloy of central portion 46B. Proximal and distal portions 46A of leg 46 may include the same or different materials, with the material determination of each of the proximal, distal, and central portions of leg 46 being determined by the desired shape of energy emitting portion 44 when energy emitting portion 44 is in the second, expanded configuration.


In an alternative embodiment, proximal, distal and central portions of leg 46 may include a continuous piece of metal or metal alloy. Central portion 46B may additionally be at least partially surrounded by a layer of material having a higher modulus of elasticity than the metal or metal alloy. The surrounding material may be any suitable material configured to maintain central portion 46B in a substantially straight configuration when energy emitting portion 44 is expanded. Suitable materials for the surrounding layer may include, but are not limited to, polymers, polymer alloys, metals, and metal alloys. In one embodiment, as illustrated in FIG. 3, central portion 46B may be at least partially surrounded by a hypotube 52. Alternatively, central portion 46B may be at least partially surrounded by a PEEK tubing and/or a PEEK heat shrink tubing. Central portion 46B may be configured, however, such that at least a portion of the contact region 102 of leg 46 is not surrounded by any non-conductive material.



FIG. 4 illustrates an example of a portion of a leg 146 of an expanded energy emitting portion 44 according to a second embodiment of the present disclosure. Similar to the embodiment of FIG. 3, proximal portion 146A, central portion 146B, and distal portion 146A may be different pieces of material connected by any suitable means known to those skilled in the art. Alternatively, as illustrated in FIG. 4, leg 146 may be a single piece of material. At least one piece or layer of material 152 may be attached to at least one surface of the central portion 1466 of leg 146. The at least one piece of material 152 may include a length that is substantially the same as a length of central portion 146B of leg 146. Piece 152 also may have a cross-sectional size that approximates a width of leg 146, if leg 146 is flat, or a diameter of leg 146 if leg 146 is round. Accordingly, the at least one piece of material 152 may act as a stiffener for central portion 146B of leg 146.



FIG. 4 illustrates that the at least one piece of material 152 may be attached to a bottom surface of central portion 146B of leg 146. In alternative embodiments, however, the at least one piece of material may be attached to any surface (e.g., side, top, and/or bottom) such that central portion 146B of leg 146 may be configured to maintain a substantially straight configuration when energy emitting portion 44 is in the second, expanded configuration.


The at least one piece of material 152 may further be any suitable material known to those skilled in the art. Piece 152 may be conductive, especially if positioned on an outer tissue contacting surface of leg 146, or non-conductive, especially if positioned on an inner non-tissue contacting surface of leg 146. Suitable materials may include, but are not limited to, polymers and polymer alloys such as plastics, PEEK, and PET; and metals and metal alloys such as stainless steel. Similar to the embodiment of FIG. 3, the at least one piece of material 152 may be chosen based on multiple factors, including, but not limited to, the desired stiffness of central portion 146B and the shape, size, and/or configuration of central portion 146B. In the embodiment of FIG. 4, for example, the at least one piece of material 152 may be a stainless steel ribbon wire.


Moreover, the at least one piece of material 152 may be attached to the at least one surface of central portion 146B of leg 146 via any suitable means known to those skilled in the art. Suitable attachment means may enable the at least one piece of material 152 to be permanently or removably attached to central portion 146B of leg 146. Accordingly, suitable attachment means may include, but are not limited to, welding, gluing, soldering, or any other adhesive method known to those skilled in the art. In the embodiment of FIG. 4, for example, the at least one piece of material 152 may be attached to the at least one surface of central portion 146B by laser welding. In some embodiments, a coating, such as PET shrink may additionally be placed onto the at least one surface of central portion 146B of leg 146 in order to enhance attachment of the at least one piece of material 152 with central portion 146B. Similar to the embodiment of FIG. 3, however, central portion 146B may be configured such that at least a portion of the tissue contact region 102 of leg 146 is not surrounded by any non-conductive material.



FIGS. 5A and 5B illustrate further examples of legs 246, 346 of expanded energy emitting portions 44 according to third and fourth embodiments, respectively, of the present disclosure. As previously discussed, one means of stiffening the central portion of a leg includes creating a cross-sectional width and/or thickness that is larger than the cross-sectional width and/or thickness of the proximal and distal portions of the leg. As illustrated in FIGS. 5A and 5B, this may be accomplished by folding the leg in a manner such that the central portion of leg is provided with a thicker cross-section than that of the proximal and distal portions.


Similar to the embodiment of FIG. 4, legs 246, 346 may include a single piece of material to be folded. Alternatively, however, central section 246B, 346B may include at least one different piece of material than that of proximal and distal portions 246A, 346A of leg 246, 346. For example, in one embodiment, the central portion may include multiple pieces of material connected to each other and to the proximal and distal portions of the leg in a hinge-like manner in order to facilitate folding.


Central portion 246B, 346B of leg may further be folded in any suitable configuration known to those skilled in the art such that the folded central portion may be configured to maintain a substantially straight configuration upon expansion of energy emitting portion 44. As illustrated in FIGS. 5A and 5B, folding of central portion 246B, 346B may be symmetrical or non-symmetrical about a plane perpendicular to central portion 246B, 346B at a midpoint of central portion 246B, 346B. For example, FIG. 5A illustrates a non-symmetrical fold of central portion 246B. That is, upon folding of central portion 246B, proximal and distal portions 246A of leg 246 are offset from one another. In the alternative, FIG. 5B illustrates a symmetrical fold, such that folding of central portion 346B creates a configuration of leg 346 where both the proximal and distal portions 346A of leg 346 are aligned radially.



FIGS. 5A and 5B illustrate that central portion 246B, 346B may be folded in order to form a plurality of layers of leg 246, 346. Each central portion 246B, 346B may therefore include at least two angled bends. The at least two angled bends may form a z-shape. Accordingly, at least certain embodiments of legs with central portions having folded configurations each include at least one z-shape. For example, FIG. 5A illustrates a folded central portion 246B with one z-shape. Alternatively, FIG. 5B illustrates a folded central portion 346B with two z-shapes. Moreover, while the present disclosure describes the at least one z-shape in the leg 246, 246 as being “folded,” it should be emphasized that the at least one z-shape in the leg 246, 346 may be formed by any suitable means known to those skilled in the art, including, but not limited to stamping and/or bending of leg 246, 346.


Folded legs 246, 346 may additionally include retaining means for maintaining central portion 246B, 346B in the desired folded configuration. The retaining means may be any suitable means configured to prevent central portion 246B, 346B from unfolding. Suitable retaining means may include, but are not limited to, adhesives, tubing, and materials for tying down end portions 246C, 246D, 346C, 346D of the fold. In one embodiment, for example, central portion may be retained in PET shrink material, with the PET shrink material covering all or none of proximal and distal portions of leg. As with the prior disclosed embodiments, however, central portion 246B, 346B may be configured such that at least a portion of contact region 102 of leg 246, 346 may not be surrounded by a non-conductive material.


With reference back to FIGS. 1 to 3, the plurality of legs 46 include at least one electrode. The at least one electrode may be monopolar or bipolar. The embodiment of FIG. 1 illustrates an energy emitting portion 44 including monopolar electrodes. Accordingly, the embodiment of FIG. 1 further includes a return electrode component 62 configured to complete an electrical energy emission or patient circuit between energy generator 12 and a patient (not shown). Return electrode component 62 may include a conductive pad 24, a proximal coupler 64 and a conductive cable 66 extending between and in electrical communication with conductive pad 24 and proximal coupler 64.


Conductive pad 24 may include a conductive adhesive surface configured to removably stick to a patient's skin. In addition, conductive pad 24 may include a surface area having a sufficient size in order to alleviate burning or other injury to the patient's skin that may occur in the vicinity of the conductive pad 24 during energy emission. Moreover, proximal coupler 64 may be configured to couple to an interface coupler 28 on user interface surface 16. As illustrated in FIG. 1, interface coupler 28 may be disposed adjacent a graphical representation 68 of the electrode return 62 on the user interface surface 16, such that user interface surface 16 may be configured to provide at least a visual indicator in relation to return electrode component 62.


Energy delivery device 18 may further include a handle 36. Handle 36 may be any suitable handle known to those skilled in the art configured to enable a device operator to control movement of energy delivery device 18 through a patient. In addition, in some embodiments, handle 36 may further be configured to control expansion of energy emitting portion 44.


In one embodiment, for example, a push rod, cable, or wire may be located within handle and may extend through elongate member, connecting to a proximal end of energy emitting portion. Actuation of handle may allow for distal movement of push rod, cable, or wire, which may exert a distal force on proximal end of energy emitting portion 44. The force on proximal end of energy emitting portion 44 may cause each of the plurality of legs 46 to bow radially outward, thereby expanding energy emitting portion. Alternatively, as illustrated in FIG. 2, a pull wire, rod, or cable 50 may extend from handle 36 and connect to distal tip 48. Actuation of handle 36 may exert a proximal force of pull wire, rod, or cable 50, thereby causing the plurality of legs 46 to bow outward and expand energy emitting portion 44.


Handle 36 may accordingly include an actuator mechanism, including, but not limited to, a squeeze handle, a foot pedal, a switch, a push button, a thumb wheel, or any other known suitable actuation device. The embodiment of FIG. 1, for example, illustrates that the actuator mechanism may be a sliding actuator 42. Sliding actuator 42 may be connected to pull wire 50 and may be any suitable device known to those skilled in the art configured to move along handle 36 in both the proximal and distal directions. Sliding actuator 42 may additionally include at least one of a stop and/or a locking mechanism. In one embodiment, for example, sliding actuator 42 may be ratcheted. Alternatively, sliding actuator may be configured to slide freely in both the proximal and distal directions until being acted on by one of the stop and/or locking mechanism. A further embodiment of handle 36 may be found in U.S. Patent Application Publication No. 2009/0018538 titled SYSTEMS AND METHODS FOR DELIVERING ENERGY TO PASSAGEWAYS IN A PATIENT, published on Jan. 15, 2009, which is incorporated by reference herein in its entirety.


Energy delivery device 18 may further include at least one sensor (not shown) configured to be in wired or wireless communication with the display and/or indicators on user interface surface 16. In one embodiment, for example, the at least one sensor may include a wire extending through elongate member 34 and handle 36, and being operatively connected to cable 38.


The at least one sensor may be configured to sense tissue temperature and/or impedance level. In one embodiment, for example, energy emitting portion 44 may include at least one temperature sensor in the form of a thermocouple. Embodiments of the thermocouple may be found in U.S. Patent Application Publication No. 2007/0100390 A1 titled MODIFICATION OF AIRWAYS BY APPLICATION OF ENERGY, published May 3, 2007, which is incorporated by reference herein in its entirety.


In addition, the at least one sensor may be configured to sense functionality of the energy delivery device. That is, the at least one sensor may be configured to sense the placement of the energy delivery device within a patient, whether components are properly connected, whether components are properly functioning, and/or whether components have been placed in a desired configuration. In one embodiment, for example, energy emitting portion 44 may include a pressure sensor or strain gauge for sensing the amount of force energy emitting portion 44 exerts on tissue in a cavity and/or passageway in a patient. The pressure sensor may be configured to signal energy emitting portion 44 has been expanded to a desired configuration such that energy emitting portion 44 may be prevented from exerting a damaging force on surrounding tissue or the device 44 (e.g., electrode inversion) or not enough force indicating that improved tissue electrode contact is needed for improved performance. Accordingly, the at least one sensor may be placed on any suitable portion of energy delivery device including, but not limited to, on energy emitting portion 44, elongate member 34, and/or distal tip 48.


In addition, energy delivery device 18 may include at least one imaging device (not shown) located on one of the energy emitting portion 44, elongate member 34, and/or distal tip 48. The imaging device may include a camera or any other suitable imaging device known to those skilled in the art configured to transmit images to an external display. The energy delivery device may additionally include at least one illumination source. The illumination source may be integrated with the imaging device or controller, or a separate structure attached to one of the energy emitting portion 44, elongate member 34, and/or distal tip 48. The illumination source may provide light at a wavelength for visually aiding the imaging device. Alternatively, or in addition, the illumination source may provide light at a wavelength that allows a device operator to differentiate tissue that has been treated by the energy delivery device from tissue that that not been treated.


Additional embodiments of the imaging or mapping device may be found in U.S. Patent Application Publication Nos. 2006/0247617 A1 titled ENERGY DELIVERY DEVICES AND METHODS, published Nov. 2, 2006; 2007/0123961 A1 titled ENERGY DELIVERY AND ILLUMINATION DEVICES AND METHODS, published May 31, 2007; and 2010/0268222 A1 titled DEVICES AND METHODS FOR TRACKING AN ENERGY DEVICE WHICH TREATS ASTHMA, published Oct. 21, 2010, each of which are incorporated by reference herein in its entirety.


Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.

Claims
  • 1. An energy delivery device, comprising: an elongate member having a proximal end and a distal end; andan energy emitting portion coupled to the distal end of the elongate member, wherein the energy emitting portion is configured to transition between a first, collapsed configuration and a second, expanded configuration;wherein the energy emitting portion includes a plurality of legs forming a basket, wherein a central longitudinal axis passes through a radial center of the basket, and wherein, when the energy emitting portion is in the second, expanded configuration, a central portion of at least one of the plurality of legs includes (a) a first substantially straight section that is positioned at a first distance from the central longitudinal axis when in the second, expanded configuration, and (b) a second substantially straight section that is positioned at a second distance from the central longitudinal axis when in the second, expanded configuration, wherein the first distance and the second distance are different, wherein the central portion of the at least one leg further includes a connecting portion that extends proximally from a distal end of the first substantially straight section to a proximal end of the second substantially straight section, and wherein the first substantially straight section and the second substantially straight section are spaced apart from one another by a third distance in the first, collapsed configuration, and by a fourth distance in the second, expanded configuration, wherein the fourth distance is larger than the third distance.
  • 2. The energy delivery device of claim 1, wherein the central portion of the at least one leg is between proximal and distal portions of the at least one leg, and wherein the central portion is stiffer than each of the proximal and distal portions.
  • 3. The energy delivery device of claim 2, wherein the central portion of the at least one leg includes a modulus of elasticity that is greater than a modulus of elasticity of each of the proximal and distal portions.
  • 4. The energy delivery device of claim 2, wherein the central portion of the at least one leg includes a cross-section dimension that is larger than a corresponding cross-section dimension of each of the proximal and distal portions.
  • 5. The energy delivery device of claim 2, wherein the proximal portion extends distally from the distal end of the elongate member and radially outward from the central longitudinal axis.
  • 6. The energy delivery device of claim 5, wherein the first substantially straight section of the central portion extends distally from a distal end of the proximal portion of the at least one leg.
  • 7. The energy delivery device of claim 1, wherein the central portion includes a folded configuration.
  • 8. The energy delivery device of claim 1, wherein the first substantially straight section is substantially parallel to the second substantially straight section.
  • 9. The energy delivery device of claim 1, wherein a longitudinal axis of the connecting portion is substantially parallel to a longitudinal axis of each of the first substantially straight section and the second substantially straight section in the first, collapsed configuration, and intersects the longitudinal axis of each of the first substantially straight section and the second substantially straight section, in the second, expanded configuration.
  • 10. The energy delivery device of claim 9, wherein the first substantially straight section, the connecting portion, and the second substantially straight section form a z-shape in the second, expanded configuration.
  • 11. An energy delivery device, comprising: an elongate member having a proximal end and a distal end; andan energy emitting portion coupled to the distal end of the elongate member, wherein the energy emitting portion is configured to transition between a first, collapsed configuration and a second, expanded configuration;wherein the energy emitting portion includes a plurality of legs forming a basket, wherein a central longitudinal axis passes through a radial center of the basket, wherein each leg of the plurality of legs includes a proximal portion extending radially outward away from the central longitudinal axis, a central portion extending distally from a distal end of the of the proximal portion, and a distal portion extending distally from the central portion and radially inward toward the central longitudinal axis, wherein the central portion includes a first substantially straight portion, a second substantially straight portion, and third substantially straight portion, wherein the first substantially straight portion is collinear with and spaced apart from the third substantially straight portion, and the second substantially straight portion is substantially parallel to the first and third substantially straight portions, and wherein the central portion is stiffer than each of the proximal and distal portions such that when the energy emitting portion is in the second, expanded configuration the central portion includes a substantially linear configuration, and wherein the first substantially straight portion and the second substantially straight portion are spaced apart from one another by a first distance in the first, collapsed configuration, and by a second distance in the second, expanded configuration, wherein the second distance is larger than the first distance.
  • 12. The energy delivery device of claim 11, wherein the central portion of at least one leg of the plurality of legs includes a cross-section dimension that is larger than a corresponding cross-section dimension of both the proximal and distal portions.
  • 13. The energy delivery device of claim 11, wherein a central portion of each of the plurality of legs includes a substantially straight configuration.
  • 14. The energy delivery device 11, wherein the central portion further includes a first connecting portion that extends proximally from a distal end of the first substantially straight portion and away from the central longitudinal axis, to a proximal end of the second substantially straight portion, and a second connecting portion that extends proximally from a distal end of the second substantially straight portion and toward the central longitudinal axis to a proximal end of the third substantially straight portion, when in the second, expanded configuration.
  • 15. The energy delivery device of claim 14, wherein the second substantially straight portion is disposed further from the central longitudinal axis than the first substantially straight portion and the third substantially straight portion.
  • 16. The energy delivery device of claim 15, wherein: a longitudinal axis of the first connecting portion is substantially parallel to a longitudinal axis of each of the first substantially straight portion and the second substantially straight portion when in the first, collapsed configuration, and intersects the longitudinal axis of each of the first substantially straight portion and the second substantially straight portion, when in the second, expanded configuration, anda longitudinal axis of the second connecting portion is substantially parallel to a longitudinal axis of the third substantially straight portion and the longitudinal axis of the second substantially straight portion when in the first, collapsed configuration, and intersects the longitudinal axis of each of the third substantially straight portion and the second substantially straight portion, when in the second, expanded configuration.
  • 17. The energy delivery device of claim 16, wherein the first substantially straight portion, the first connecting portion, and the second substantially straight portion form a first z-shape, when in the second, expanded configuration, and the second substantially straight portion, the second connecting portion, and the third substantially straight portion form a second z-shape when in the second, expanded configuration, wherein the first z-shape and the second z-shape are mirror images of one another about an axis that is perpendicular to the central longitudinal axis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority from U.S. Provisional Application No. 61/675,244, filed on Jul. 24, 2012, the entirety of which is incorporated by reference herein.

US Referenced Citations (529)
Number Name Date Kind
612724 Jonathan Oct 1898 A
1155169 Starkweather Sep 1915 A
1207479 Bisgaard Dec 1916 A
1216183 Swingle Feb 1917 A
2072346 Smith Mar 1937 A
3320957 Sokolik May 1967 A
3568659 Karnegis Mar 1971 A
3667476 Muller Jun 1972 A
3692029 Adair Sep 1972 A
3995617 Watkins et al. Dec 1976 A
4095602 Leveen Jun 1978 A
4116589 Rishton Sep 1978 A
4129129 Amrine Dec 1978 A
4154246 LeVeen May 1979 A
4461283 Doi Jul 1984 A
4502490 Evans et al. Mar 1985 A
4503855 Maslanka Mar 1985 A
4512762 Spears Apr 1985 A
4522212 Gelinas et al. Jun 1985 A
4557272 Carr Dec 1985 A
4565200 Cosman Jan 1986 A
4567882 Heller Feb 1986 A
4584998 McGrail Apr 1986 A
4612934 Borkan Sep 1986 A
4621642 Chen Nov 1986 A
4621882 Krumme Nov 1986 A
4625712 Wampler Dec 1986 A
4643186 Rosen et al. Feb 1987 A
4646737 Hussein et al. Mar 1987 A
4674497 Ogasawara Jun 1987 A
4683890 Hewson Aug 1987 A
4704121 Moise Nov 1987 A
4706688 Don Michael et al. Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4739759 Rexroth et al. Apr 1988 A
4754065 Levenson et al. Jun 1988 A
4754752 Ginsburg et al. Jul 1988 A
4765959 Fukasawa Aug 1988 A
4772112 Zider et al. Sep 1988 A
4773899 Spears Sep 1988 A
4779614 Moise Oct 1988 A
4784135 Blum et al. Nov 1988 A
4790305 Zoltan et al. Dec 1988 A
4799479 Spears Jan 1989 A
4802492 Grunstein Feb 1989 A
4817586 Wampler Apr 1989 A
4825871 Cansell May 1989 A
4827935 Geddes et al. May 1989 A
4846152 Wampler et al. Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4895557 Moise et al. Jan 1990 A
4906229 Wampler Mar 1990 A
4907589 Cosman Mar 1990 A
4908012 Moise et al. Mar 1990 A
4920978 Colvin May 1990 A
4944722 Carriker et al. Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4967765 Turner et al. Nov 1990 A
4969865 Hwang et al. Nov 1990 A
4976709 Sand Dec 1990 A
4985014 Orejola Jan 1991 A
4991603 Cohen et al. Feb 1991 A
5009636 Wortley et al. Apr 1991 A
5009936 Yamanaka et al. Apr 1991 A
5010892 Colvin et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5027829 Larsen Jul 1991 A
5030645 Kollonitsch Jul 1991 A
5036848 Hewson Aug 1991 A
5053033 Clarke Oct 1991 A
5056519 Vince Oct 1991 A
5074860 Gregory et al. Dec 1991 A
5078716 Doll Jan 1992 A
5084044 Quint Jan 1992 A
5096916 Skupin Mar 1992 A
5100388 Behl et al. Mar 1992 A
5100423 Fearnot Mar 1992 A
5103804 Abele et al. Apr 1992 A
5105826 Smits et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5107830 Younes Apr 1992 A
5114423 Kasprzyk et al. May 1992 A
5116864 March et al. May 1992 A
5117828 Metzger et al. Jun 1992 A
5135517 McCoy Aug 1992 A
5152286 Sitko et al. Oct 1992 A
5165420 Strickland Nov 1992 A
5167223 Koros et al. Dec 1992 A
5170803 Hewson et al. Dec 1992 A
5174288 Bardy et al. Dec 1992 A
5188602 Nichols Feb 1993 A
5191883 Lennox et al. Mar 1993 A
5213576 Abiuso et al. May 1993 A
5215103 Desai Jun 1993 A
5231996 Bardy et al. Aug 1993 A
5232444 Just et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5254088 Lundquist et al. Oct 1993 A
5255678 Deslauriers et al. Oct 1993 A
5255679 Imran Oct 1993 A
5265604 Vince Nov 1993 A
5269758 Taheri Dec 1993 A
5281218 Imran Jan 1994 A
5292331 Boneau Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5311866 Kagan et al. May 1994 A
5313943 Houser et al. May 1994 A
5324284 Imran Jun 1994 A
5343936 Beatenbough et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374287 Rubin Dec 1994 A
5383917 Desai et al. Jan 1995 A
5393207 Maher et al. Feb 1995 A
5394880 Atlee, III Mar 1995 A
5396887 Imran Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5411025 Webster May 1995 A
5415166 Imran May 1995 A
5415656 Tihon et al. May 1995 A
5417687 Nardella et al. May 1995 A
5422362 Vincent et al. Jun 1995 A
5423744 Gencheff et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425023 Haraguchi et al. Jun 1995 A
5425703 Feiring Jun 1995 A
5425811 Mashita Jun 1995 A
5431696 Atlee, III Jul 1995 A
5433730 Alt Jul 1995 A
5437665 Munro Aug 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5456667 Ham et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5496271 Burton et al. Mar 1996 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5500011 Desai Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507791 Sit'ko Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5545161 Imran Aug 1996 A
5545193 Fleischman et al. Aug 1996 A
5547469 Rowland et al. Aug 1996 A
5549559 Eshel Aug 1996 A
5549655 Erickson Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5558073 Pomeranz et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5571074 Buckman et al. Nov 1996 A
5571088 Lennox et al. Nov 1996 A
5574059 Regunathan et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578072 Barone et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5588812 Taylor et al. Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5601088 Swanson et al. Feb 1997 A
5605157 Panescu et al. Feb 1997 A
5607419 Amplatz et al. Mar 1997 A
5607462 Imran Mar 1997 A
5620438 Amplatz et al. Apr 1997 A
5623940 Daikuzono Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5626618 Ward et al. May 1997 A
5630425 Panescu et al. May 1997 A
5630794 Lax et al. May 1997 A
5634471 Fairfax et al. Jun 1997 A
5641326 Adams Jun 1997 A
5647870 Kordis et al. Jul 1997 A
5660175 Dayal Aug 1997 A
5678535 DiMarco Oct 1997 A
5680860 Imran Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693078 Desai et al. Dec 1997 A
5694934 Edelman Dec 1997 A
5695471 Wampler Dec 1997 A
5699799 Xu et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5707218 Maher et al. Jan 1998 A
5707336 Rubin Jan 1998 A
5707352 Sekins et al. Jan 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5722416 Swanson et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5727569 Benetti et al. Mar 1998 A
5728094 Edwards Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5730704 Avitall Mar 1998 A
5730726 Klingenstein Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5752518 McGee et al. May 1998 A
5755714 Murphy-Chutorian May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton May 1998 A
5759158 Swanson Jun 1998 A
5765568 Sweezer et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5772590 Webster Jun 1998 A
5779669 Haissaguerre et al. Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782239 Webster Jul 1998 A
5782797 Schweich et al. Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782848 Lennox Jul 1998 A
5782899 Imran Jul 1998 A
5792064 Panescu et al. Aug 1998 A
5795303 Swanson et al. Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810757 Sweezer et al. Sep 1998 A
5810807 Ganz et al. Sep 1998 A
5817028 Anderson Oct 1998 A
5817073 Krespi Oct 1998 A
5820554 Davis et al. Oct 1998 A
5823189 Kordis Oct 1998 A
5827277 Edwards Oct 1998 A
5833651 Donovan et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5843075 Taylor Dec 1998 A
5843077 Edwards Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5849026 Zhou et al. Dec 1998 A
5855577 Murphy-Chutorian et al. Jan 1999 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871443 Edwards et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5873852 Vigil et al. Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5876399 Chia et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5893847 Kordis Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904711 Flom et al. May 1999 A
5906636 Casscells, III et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5908446 Imran Jun 1999 A
5908839 Levitt et al. Jun 1999 A
5911218 DiMarco Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919147 Jain Jul 1999 A
5919172 Golba Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5931835 Mackey Aug 1999 A
5935079 Swanson et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5951494 Wang et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5954662 Swanson et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5964753 Edwards Oct 1999 A
5964796 Imran Oct 1999 A
5971983 Lesh Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5976175 Hirano et al. Nov 1999 A
5976709 Kageyama et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5980563 Tu et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992419 Sterzer et al. Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997534 Tu et al. Dec 1999 A
5999855 DiMarco Dec 1999 A
6001054 Regulla et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6008211 Robinson et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010500 Sherman et al. Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6029091 de la Rama et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6042580 Simpson Mar 2000 A
6045549 Smethers et al. Apr 2000 A
6045550 Simpson et al. Apr 2000 A
6050992 Nichols Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6056744 Edwards May 2000 A
6056769 Epstein et al. May 2000 A
6063078 Wittkampf May 2000 A
6071280 Edwards et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6083255 Laufer et al. Jul 2000 A
6090104 Webster Jul 2000 A
6092528 Edwards Jul 2000 A
6102886 Lundquist et al. Aug 2000 A
6106522 Fleischman et al. Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6139571 Fuller et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6143013 Samson et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152143 Edwards Nov 2000 A
6152899 Farley et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6179833 Taylor Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200332 Del Giglio Mar 2001 B1
6200333 Laufer Mar 2001 B1
6210367 Carr Apr 2001 B1
6212433 Behl Apr 2001 B1
6214002 Fleischman et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6235024 Tu May 2001 B1
6241727 Tu et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264653 Falwell Jul 2001 B1
6269813 Fitzgerald et al. Aug 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6273907 Laufer Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6338727 Noda et al. Jan 2002 B1
6338836 Kuth et al. Jan 2002 B1
6346104 Daly et al. Feb 2002 B2
6355031 Edwards et al. Mar 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6409723 Edwards Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6416511 Lesh et al. Jul 2002 B1
6416740 Unger Jul 2002 B1
6423105 Iijima et al. Jul 2002 B1
6425895 Swanson et al. Jul 2002 B1
6440129 Simpson Aug 2002 B1
6442435 King et al. Aug 2002 B2
6458121 Rosenstock et al. Oct 2002 B1
6460545 Kordis Oct 2002 B2
6488673 Laufer et al. Dec 2002 B1
6488679 Swanson et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6494880 Swanson et al. Dec 2002 B1
6496738 Carr Dec 2002 B2
6514246 Swanson et al. Feb 2003 B1
6514247 McGaffigan et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6529756 Phan et al. Mar 2003 B1
6544226 Gaiser et al. Apr 2003 B1
6544262 Fleischman Apr 2003 B2
6547788 Maguire et al. Apr 2003 B1
6558378 Sherman et al. May 2003 B2
6572612 Stewart et al. Jun 2003 B2
6575623 Werneth Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582430 Hall Jun 2003 B2
6589235 Wong et al. Jul 2003 B2
6610054 Edwards et al. Aug 2003 B1
6620159 Hegde Sep 2003 B2
6626903 McGuckin et al. Sep 2003 B2
6634363 Danek et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6638273 Farley et al. Oct 2003 B1
6640120 Swanson et al. Oct 2003 B1
6645200 Koblish et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6669693 Friedman Dec 2003 B2
6673068 Berube Jan 2004 B1
6692492 Simpson et al. Feb 2004 B2
6699243 West et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6743197 Edwards Jun 2004 B1
6749604 Eggers et al. Jun 2004 B1
6749606 Keast et al. Jun 2004 B2
6767347 Sharkey et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6802843 Truckai et al. Oct 2004 B2
6805131 Kordis Oct 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6852110 Roy et al. Feb 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6881213 Ryan et al. Apr 2005 B2
6893436 Woodard et al. May 2005 B2
6893439 Fleischman May 2005 B2
6895267 Panescu et al. May 2005 B2
6904303 Phan et al. Jun 2005 B2
6917834 Koblish et al. Jul 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6954977 Maguire et al. Oct 2005 B2
7027869 Danek et al. Apr 2006 B2
7043307 Zelickson et al. May 2006 B1
7104987 Biggs et al. Sep 2006 B2
7104990 Jenkins et al. Sep 2006 B2
7118568 Hassett et al. Oct 2006 B2
7122033 Wood Oct 2006 B2
7131445 Amoah Nov 2006 B2
7186251 Malecki et al. Mar 2007 B2
7198635 Danek et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7241295 Maguire Jul 2007 B2
7255693 Johnston et al. Aug 2007 B1
7264002 Danek et al. Sep 2007 B2
7266414 Cornelius et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7425212 Danek et al. Sep 2008 B1
7542802 Biggs et al. Jun 2009 B2
7556624 Laufer et al. Jul 2009 B2
7740017 Danek et al. Jun 2010 B2
7949407 Kaplan et al. May 2011 B2
8161978 Danek et al. Apr 2012 B2
8465486 Danek et al. Jun 2013 B2
8584681 Danek et al. Nov 2013 B2
20030050631 Mody et al. Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030187430 Vorisek Oct 2003 A1
20030236455 Swanson et al. Dec 2003 A1
20040153056 Muller et al. Aug 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20050010270 Laufer Jan 2005 A1
20050096644 Hall et al. May 2005 A1
20050096647 Steinke May 2005 A1
20050171396 Pankratov et al. Aug 2005 A1
20050193279 Daners Sep 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050251128 Amoah Nov 2005 A1
20060062808 Laufer et al. Mar 2006 A1
20060079887 Buysse et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060135953 Kania et al. Jun 2006 A1
20060137698 Danek et al. Jun 2006 A1
20060247617 Danek et al. Nov 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247726 Biggs et al. Nov 2006 A1
20060247727 Biggs et al. Nov 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060254600 Danek et al. Nov 2006 A1
20060278243 Danek et al. Dec 2006 A1
20060278244 Danek et al. Dec 2006 A1
20060282071 Utley et al. Dec 2006 A1
20070074719 Danek et al. Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070083197 Danek et al. Apr 2007 A1
20070102011 Danek et al. May 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106296 Laufer et al. May 2007 A1
20070106348 Laufer May 2007 A1
20070118184 Danek et al. May 2007 A1
20070118190 Danek et al. May 2007 A1
20070123958 Laufer May 2007 A1
20070123961 Danek et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080097424 Wizeman et al. Apr 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20090018538 Webster et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090043301 Jarrard et al. Feb 2009 A1
20090069797 Danek et al. Mar 2009 A1
20090112203 Danek et al. Apr 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090143776 Danek et al. Jun 2009 A1
20090192505 Askew et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20100160906 Jarrard Jun 2010 A1
20110118726 De La Rama et al. May 2011 A1
Foreign Referenced Citations (56)
Number Date Country
1078595 Nov 1993 CN
19529634 Feb 1997 DE
189329 Jun 1987 EP
286145 Oct 1988 EP
286145 Oct 1990 EP
282225 Jun 1992 EP
280225 Aug 1998 EP
0873710 Oct 1998 EP
908713 Apr 1999 EP
908150 May 2003 EP
768091 Jul 2003 EP
1297795 Aug 2005 EP
2170459 Feb 2014 EP
2659240 Jul 1997 FR
2233293 Jan 1991 GB
2233293 Feb 1994 GB
59167707 Sep 1984 JP
7289557 Nov 1995 JP
9047518 Feb 1997 JP
9243837 Sep 1997 JP
10026709 Jan 1998 JP
2053814 Feb 1996 RU
2091054 Sep 1997 RU
545358 Feb 1977 SU
WO-8911311 Nov 1989 WO
WO-9304734 Mar 1993 WO
WO-9502370 Mar 1995 WO
WO-9510322 Apr 1995 WO
WO-9604860 Feb 1996 WO
WO-9610961 Apr 1996 WO
WO-9732532 Sep 1997 WO
WO-9733715 Sep 1997 WO
WO-9737715 Oct 1997 WO
WO-9740751 Nov 1997 WO
WO-9844854 Oct 1998 WO
WO-9852480 Nov 1998 WO
WO-9856234 Dec 1998 WO
WO-9856324 Dec 1998 WO
WO-9903413 Jan 1999 WO
WO-9858681 Mar 1999 WO
WO-9913779 Mar 1999 WO
WO-9932040 Jul 1999 WO
WO-9934741 Jul 1999 WO
WO-9944506 Sep 1999 WO
WO-9945855 Sep 1999 WO
WO-9964109 Dec 1999 WO
WO-0051510 Sep 2000 WO
WO-0062699 Oct 2000 WO
WO-0103642 Jan 2001 WO
WO-0232333 Apr 2002 WO
WO-0232334 Apr 2002 WO
WO-2006007284 Jan 2006 WO
WO-2006044581 Apr 2006 WO
WO-2008051706 May 2008 WO
WO-2009082433 Jul 2009 WO
WO-2009137819 Nov 2009 WO
Non-Patent Literature Citations (57)
Entry
An S.S., et al., “Airway Smooth Muscle Dynamics: A Common Pathway of Airway Obstruction in Asthma,” European Respiratory Journal, 2007, 29 (5), 834-860.
Brown R.H., et al., “Effect of Bronchial Thermoplasty on Airway Distensibility,” European Respiratory Journal, 2005, 26 (2), 277-282.
Chhajed P.N., et al., “Will there be a Role for Bronchoscopic Radiofrequency Ablation”, Journal of Bronchology, 2005, 12 (3), 184-186.
Cox G., et al., “Asthma Control during the Year after Bronchial Thermoplasty,” New England journal of medicine, 2007, 356 (13), 1327-1337.
Cox G., et al., “Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173 (9), 965-969.
Cox G., et al., “Impact of Bronchial Thermoplasty on Asthma Status: Interim Results from the Air Trial,” 2006, 1 page.
Cox G., et al., “Radiofrequency Ablation of Airways Smooth Muscle for Sustained Treatment of Asthma: Preliminary Investigations,” European Respiratory Journal, 2004, 24 (4), 659-663.
Danek C.J., et al., “Reduction in Airway Hyperresponsiveness to Methacholine by the Application of RF Energy in Dogs,” Journal of Applied Physiology, 2004, 97 (5), 1946-1953.
International Search Report for Application No. PCT/US00/05412, mailed on Jun. 20, 2000, 2 pages.
International Search Report for Application No. PCT/US00/18197, mailed on Oct. 3, 2000, 1 page.
International Search Report for Application No. PCT/US00/28745, mailed on Mar. 28, 2001, 6 pages.
International Search Report for Application No. PCT/US01/32321, mailed on Jan. 18, 2002, 2 pages.
International Search Report for Application No. PCT/US98/03759, mailed on Jul. 30, 1998, 1 page.
International Search Report for Application No. PCT/US98/26227, mailed on Mar. 25, 1999, 1 page.
International Search Report for Application No. PCT/US99/00232, mailed on Mar. 4, 1999, 1 page.
International Search Report for Application No. PCT/US99/12986, mailed on Sep. 29, 1999, 1 page.
Ivanyuta O.M., et al., “Effect of Low-Power Laser Irradiation of Bronchial Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, 6, 26-29.
Johnson S. R., et al., “Synthetic Functions of Airways Smooth Muscle in Asthma,” Trends Pharmacol. Sci., 1997, 18 (8), 288-292.
Kitamura S., “Color Atlas of Clinical Application of Fiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, 2 pages.
Lim E.C., et al., “Botulinum Toxin: A Novel Therapeutic Option for Bronchial Asthma”, Medical Hypotheses, 2006, 66 (5), 915-919.
Mitzner W., “Airway Smooth Muscle the Appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, 169 (7), 787-790.
Notice of final Rejection, Japanese Patent Application No. 2000-553172, dated Sep. 2, 2008, 5 pages.
Provotorov V.M., et al., “The Clinical Efficacy of Treating Patients with Nonspecific Lung Diseases Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration,” Terapevticheskii Arkhiv, 1991, 62 (12), 18-23.
Solway J., et al., “Airway Smooth Muscle as a Target for Asthma Therapy,” New England Journal of medicine, 2007, 356 (13), 1367-1369.
Sterk P.J., et al., “Heterogeneity of Airway Hyperresponsiveness: Time for Unconventional, But Traditional, Studies,” Journal of Applied Physiology, 2004, 96 (6), 2017-2018.
Toma T.P., et al., “Brave New World for Interventional Bronchoscopy,” Thorax, 2005, 60 (3), 180-181.
Trow T.K., “Clinical Year in Review I: Diagnostic Imaging, Asthma, Lung Transplantation, and Interventional Pulmonology,” Proceedings of the American Thoracic Society, 2006, 3 (7), 553-556.
Vorotnev A.I., et al., “The Treatment of Patients with Chronic Obstructive Bronchitis by Using a Low-power Laser at a General Rehabilitation Center,” Terapevticheskii Arkhiv, 1997, 69 (3), 17-19.
Wiggs B.R., et al., “On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” Journal of Applied Physiology, 1997, 83 (6), 1814-1821.
Wilson S.R., et al., “Global Assessment after Bronchial Thermoplasty: The Patients Perspective,” Journal of Outcomes Research, 2006, 10, 37-46.
Bel E.H., ““Hot stuff”: Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173 (9), 941-943.
Brown R.H., et al., “In Vivo evaluation of the Effectiveness of Bronchial Thermoplasty with Computed Tomography,” Journal of Applied Physiology, 2005, 98 (5), 1603-1606.
Abandoned U.S. Appl. No. 09/095,323, filed Jun. 10, 1998, 29 pages.
Abandoned U.S. Appl. No. 09/244,173, filed Feb. 4, 1999, 47 pages.
Cox G., et al., “Asthma Intervention Research (AIR) Trial Evaluating Bronchial Thermoplasty: Early Results,” American Thoracic Society Annual Meeting, 2002, 1 page.
Cox G., et al., “Bronchial Thermoplasty: Long-Term Follow-Up and Patient Satisfaction,” Chest, 2004, 126 (4), 822s.
Cox G., et al., “Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, A313.
Cox G., et al., “Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma,” Chest, 2003, 124, 106S.
Cox G., et al., “Development of a Novel Bronchoscopic Therapy for Asthma,” Journal of Allergy and Clinical Immunology, 2003, 113 (2), S33.
Cox G., et al., “Early Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1068.
Danek C.J., et al., “Bronchial Thermoplasty Reduces Canine Airway Responsiveness to Local Methacholine Challenge,” American Thoracic Society Annual Meeting, 2002, 1 page.
Dierkesmann R., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, 168, 1095-1102.
Hogg J. C., “The Pathology of Asthma,” APMIS, 1997, 105 (10), 735-745.
James A.L., et al., “The Mechanics of Airway Narrowing in Asthma,” American Review of Respiratory Diseases, 1989, 139 (1), pp. 242-246.
Laviolette M., et al., “Asthma Intervention Research (Air) Trial: Early Safety Assessment of Bronchial Thermoplasty,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, A314.
Leff A., et al., “Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs: A Possible Procedure for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1 page.
Lombard C.M., et al., “Histologic Effects of Bronchial Thermoplasty of Canine and Human Airways,”American Thoracic Society Annual Meeting, 2002, 1 page.
Macklem P. T., “Mechanical Factors Determining Maximum Bronchoconstriction,” European Respiratory Journal, 1989, 6, 516s-519s.
Mayse M.L., et al., “Clinical Pearls for Bronchial Thermoplasty,” Journal of Bronchology, 2007, 14 (2), 115-123.
Miller J.D., et al., “A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway,” Chest, 2005, 127 (6), 1999-2006.
Miller J.D., et al., “Bronchial Thermoplasty is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy,” American Thoracic Society Annual Meeting, 2002, 1 page.
Netter F.H., “Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases,In the CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jerse,” 1979, 7, 119-135.
Rubin A., et al., “Bronchial Thermoplasty Improves Asthma Status of Moderate to Severe Perisstent Asthmatics Over and Above Current Standard-of-Care,” American College of Chest Physicians, 2006, 2 pages.
Shesterina M.V., et al., “Effect of Laser Therapy on Immunity in Patients with Bronchial Asthma and Pulmonary Tuberculosis,” Problemy Tuberkuleza, 1994, 5, 23-26.
Vasilotta P.L., et al., “I-R Laser: A New Therapy in Rhino-Sino-Nasal Bronchial Syndrome with Asthmatic Component,” American Society for Laser Medicine and Surgery Abstracts, p. 74, 1993, 1 page.
Wizeman W., et al., “A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery,” American Thoracic Society Annual Meeting, 2007, 1 page.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2013/041190, mailed Sep. 6, 2013, 11 pages.
Related Publications (1)
Number Date Country
20140031816 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61675244 Jul 2012 US