The present invention relates to a sound-emitting device used for an alarm sound generator for informing pedestrians, etc. around an electric moving body of its approaching or presence, and in particular to an electrodynamic sound-emitting device for generating sound using an electrodynamic exciter.
Following the practical development of electric bicycles and carts in recent years, transportation means serving as various kinds of moving bodies, such as electric motorcycles and electric motor vehicles, have begun to be rapidly powered by electricity. Specifically, as the replacement of motor vehicles powered by an internal combustion engine, there have been developed one after another vehicles such as hybrid vehicles powered by both gasoline engine and electric motor, electric vehicles powered by an electric motor driven by an onboard battery that is charged by a household-use power source or by a battery charger installed at gas stations or power supply stations, and fuel cell vehicles that run while generating electricity by a fuel cell using hydrogen and the like as the fuel. The electric motorcycles, hybrid vehicles and electric vehicles have already been put into practical use, and have begun rapidly becoming popular in the domestic market as well.
Since gasoline vehicles, diesel vehicles, motorcycles, etc. powered by the conventional internal combustion engine generate not only exhaust sound and engine sound which their power sources emit but also road noise in running, pedestrians, cyclists, etc. going around town streets can recognize those vehicles approaching by their engine and exhaust sound and the like. However, when running at low speed, the hybrid vehicles do not run powered by the combustion engine, but they are mainly in a running mode powered by the electric motor; therefore, no engine sound nor exhaust sound is generated, and furthermore, as for the electric vehicles and fuel cell vehicles, they run driven by the electric motor over the whole range of driving, which has made them extremely quiet electric moving bodies. However, pedestrians, cyclists, etc. who are in the vicinity of such quiet electric moving bodies as above cannot recognize by sound the approaching of the electric moving bodies, such as hybrid vehicles, electric vehicles and fuel cell vehicles, that run driven by the electric motor that generates little sound and is quiet, which therefore might cause occurrence of accidental contact of the pedestrians, etc. with those quiet electric moving bodies.
Therefore, in order to aim at resolving the foregoing problem in that quietness, which should be the advantage inherent to the hybrid vehicles, electric vehicles and fuel cell vehicles, sometimes become harmful, there have been proposed various systems other than klaxons mounted on conventional vehicles and operating following drivers' intention, that operate independently of the drivers' intention so as to give an alarm about the presence of the vehicles of their own.
For example, an electric vehicle is disclosed in Patent Document 1, which includes a running status detection means that detects and outputs a running status of the vehicle, an alarm sound generation means that emits sound to the outside based on the detected running status, and a control means that takes control of driving the alarm sound generation means, and can emit alarm sound, engine sound and the like so as to inform pedestrians around the vehicle of its approaching, and in which a klaxon and speaker are utilized as the alarm sound generator.
In addition, it is disclosed in Patent Document 2 that a vehicle, when running powered by its own electric motor, emits sound related to an audio signal so as to allow pedestrians to hear the sound and recognize the vehicle approaching. As a sound-emitting device for emitting the sound, there is disclosed a one that utilizes a speaker array made up of general cone speakers (moving magnet type).
Moreover, a piezoelectric speaker is disclosed in Patent Document 3 as a speaker system. This piezoelectric speaker is a high-impedance piezoelectric speaker in which electrodes are formed on both sides of a piezoelectric (piezoelectric element) and a sound signal is applied to the piezoelectric and which incorporates as the basic constituents a frame having a mounting flange, an elastic diaphragm, a piezoelectric diaphragm and a discoid damper. It is also disclosed that not only flat frequency characteristics can be obtained by this speaker system, but also its lower frequency limit and sound-pressure frequency characteristics can be enhanced by configuring a mechanical vibration system, so that a speaker system that also excels in performance can be provided, and so forth.
On the other hand, a vibration actuator that is mounted in mobile communications devices such as a pager (pocket bell) and mobile telephone and provided with a function of generating vibration is disclosed in Patent Document 4. In this vibration actuator, a coil is disposed in an air gap in a magnetic circuit including a permanent magnet that is fixed to its center column retaining an air gap between the damper and itself. In Patent Document 4, it is disclosed that the magnetic circuit is disposed concentrically with respect to the coil so that the coil is movably supported, the center column is provided with a stopper portion extending perpendicularly to axial directions and contacts to the damper, this stopper portion is formed stepwise and contacts to the damper, and the cross-section of which is shaped in an arc.
Moreover, in Patent Document 5 is shown a mounting structure of a panel-type speaker that vibrates the panel of a mobile telephone so as to use it as a speaker. In Patent Document 5, it is disclosed that an exciter is attached to the panel, and the panel and the casing are supported by a suspension in which a continuously-foamed material is sandwiched by a thin film, such as PET, and acrylic glue and the like. It is also disclosed that the space between the panel and casing is sealed with a waterproof film in this structure, and moisture is thereby prevented from entering there. Furthermore, it is also described that since the continuously-foamed material is used as the elastic material, sound pressure as the speaker is not lowered.
Patent Document 1: Japanese Laid-Open Patent Publication No. H11-27810
Patent Document 2: Japanese Laid-Open Patent Publication No. 2010-228564
Patent Document 3: Japanese Laid-Open Patent Publication No. 2003-333692
Patent Document 4: Japanese Laid-Open Patent Publication No. 2000-4569
Patent Document 5: Japanese Laid-Open Patent Publication No. 2007-27923
In Patent Documents 1 and 2 described above are disclosed electric moving bodies that can emit sound such as alarm and engine sound, in order to inform pedestrians around the moving bodies of approaching of their vehicles; however it is only disclosed that a conventional klaxon or speaker is used as the sound-emitting device.
Moreover, Patent Document 3 only discloses a structure for enhancing frequency characteristics when a piezoelectric element is used as an indoor-use speaker system; therefore, the speaker system disclosed in Patent Document 3 does not have such a structure as environment resistance being taken into consideration as an alarm sound generator used for the electric moving bodies.
Furthermore, Patent Documents 4 and 5 only describe a speaker system for a mobile device such as a mobile telephone, but do not disclose any structure that enables frequency characteristics suited to generating alarm sound to be obtained while enhancing the environment resistance as an alarm sound generator used for the electric moving bodies.
The present invention has been made to resolve the foregoing problems with a conventional speaker system, and aims at providing an electrodynamic sound-emitting device that is light and thin, excels in environment resistance such as water resistance and has frequency characteristics suited to an onboard sound-emitting device in spite of its simple structure.
An electrodynamic sound-emitting device according to the present invention includes an outer yoke shaped having a bottom and a side wall, a magnetic circuit having a magnet and an inner yoke disposed surrounded by the outer yoke, a coil disposed in a magnetic gap created in the magnetic circuit, a diaphragm to which the coil is fixed, and a first elastic member for elastically joining the diaphragm to the wall of the outer yoke; and the electrodynamic sound-emitting device comprises: a casing for covering the outer yoke, so as to form an acoustic cavity by this casing, the diaphragm and the outer surface of the side wall of the outer yoke; and a second elastic member for joining the outer circumferential edge of the diaphragm to the outer circumferential edge of the casing without any gap therebetween; wherein the second elastic member is provided with pores by foaming and made of a material whose elastic modulus is lower than that of the first elastic member, but is not provided with the pores that communicate through from the back surface of the second elastic member, that is the inner side of the casing, to the front surface that is the opposite side of the back surface.
According to the present invention, an electrodynamic sound-emitting device can be provided that is light and thin, excels in environmental resistance and has frequency characteristics suited to an on-board sound-emitting device in spite of its simple structure.
Embodiment 1
A coil 7 wound on a bobbin 6 is inserted in a magnetic gap 5 that is created between the inner side wall of the outer yoke 1 and the outer circumferential surface of the inner yoke 3 in the magnetic circuit 100 and in which magnetic flux density is high. The bobbin 6 is fixed to a diaphragm 8 by gluing or by integral forming together with the diaphragm 8 using the same material; the diaphragm 8 is elastically supported by means of a first elastic member 9 by the outer yoke 1. A casing 4 is provided so as to house the outer yoke 1 thereinside; a second elastic member 10 is interposed between the diaphragm 8 and the casing 4. The outer yoke 1 is fastened to the casing 4 with a bolt 13; an acoustic cavity 22 is formed by the casing 4, the outer side wall surface of the outer yoke 1 and the diaphragm 8. Here, although the casing 4 that houses the outer yoke 1 thereinside is fixedly screwed to the outer yoke 1 at the bottom, it goes without saying that the casing 4 may be fixed to the outer yoke 1 by methods other than screwing. Moreover, a wire harness 12 for supplying a predetermined electric signal to the coil 7 from the outside is connected to the casing 4.
As shown in the external view in
The second elastic member 10 is made of flexible foam rubber or flexible foam resin that includes large numbers of pores by foaming processing, and is an elastic member that can be easily deformed by outside force. That is to say, the second elastic member 10 is formed of a material that has an elastic modulus smaller than that of the first elastic member 9. Moreover, the second elastic member 10 is formed in an annular shape; the inner circumferential edge thereof contacts with and supports the entire outer circumferential edge of the diaphragm 8 in a unified manner; and the outer circumferential edge of the second elastic member 10 is clamped and supported by the casing 4 and a fitting portion 11a of the front cover 11.
As shown in
Moreover, in the frequency characteristics shown by the thin solid-line C under the condition that the nylon sheet is laid, the frequency peak at 1600 Hz that seems to be attributable to the self-excited resonance becomes slightly lower, and compared to the dotted-line B in which the gap is present, characteristics in a frequency band between 300 Hz and 600 Hz are slightly raised; however so significant improvement cannot be seen, and from a sound quality point of view, this is not so suited to a vehicle-approach-alarming device for electric vehicles, etc.
Compared to those, the sound pressure level in the frequency band near 500 Hz has been greatly increased in the characteristics shown by the bold solid line A under the condition that the airtight foam rubber according to Embodiment 1 of the invention is used. That is to say, in a wide frequency band from 300 Hz in the low frequency band to 1000 Hz, the sound pressure level has been greatly increased compare to the comparison examples, and even a maximum improvement result of 20 dB can be seen in some frequency ranges. Moreover, the sound pressure level near 1600 Hz, which seems to be attributable to the self-excited resonance, has been greatly attenuated, and does not demonstrate frequency characteristics having any narrow peak. As described above, the frequency characteristics having the frequency peak in the high frequency range have disappeared, as well as the sound pressure level in the low frequency range has been greatly raised, whereby a sound-emitting device whose sound pressure demonstrates almost flat frequency characteristics over a range from 500 Hz to 3000 Hz can be provided.
A sound-emitting device having flat frequency characteristics, capable of generating sound in a constant sound pressure level over from lower to higher frequencies emits very soft quality sound, and the sound easily reaches pedestrians relatively far in the distance. For that reason, the present invention can not only improve the sound quality, but also improve in recognition by pedestrians; therefore, this can provide preferable frequency characteristics as a sound-emitting device used for a vehicle-approach-alarming device for quiet electric vehicles, etc.
According to an electrodynamic sound-emitting device of this Embodiment 1, no gap is created between the diaphragm 8 and the casing 4, so that the acoustic cavity 22 behind the diaphragm 8 can be retained nearly in the airtight state. Therefore, compared to the case in which the gap is present, the cavity behind the diaphragm 8 can act more effectively as an acoustic cavity. Thereby, emitting sound pressure can be enhanced in an acoustic frequency band depending on the acoustic volume of the acoustic cavity 22, so that a more efficient electrodynamic sound-emitting device can be provided.
Furthermore, since some of the large numbers of pores scattered in the second elastic member 10 communicate with neighboring pores, air in certain pores communicates with that in other pores or in the back side of the second elastic member 10. Therefore, when pressed by the diaphragm 8, the second elastic member 10 is compressed and deformed by very small pressing force, so that the elastic modulus of the second elastic member 10 can be made much smaller compared to the first elastic member 9. Thereby, the vibration characteristics of the diaphragm 8 can be set to be determined by the first elastic member 9 without the vibration characteristics of diaphragm 8 being affected by the second elastic member 10, so that the effect of the second elastic member 10 on the vibration amplitude of the diaphragm 8 can be minimized. Moreover, neighboring pores in the second elastic member 10 are partitioned off from one another by soft thin walls that can be easily deformed; therefore, part of air vibration energy transmitted into the pores is consumed as energy for vibrating the thin walls, thereby bringing about sound absorbing effects. Furthermore, since no air passes through between the front surface and back surface of the second elastic member 10, the cavity formed by the back surface of the diaphragm 8 and the casing 4 acoustically acts as the acoustic cavity 22, so that the lower frequency characteristics required for the sound-emitting device can be enhanced. In addition, there are no continuous pores communicating through from the front surface to the back surface of the second elastic member 10 and the airtight state is retained, so that an electrodynamic sound-emitting device having excellent waterproof properties and environment resistance can be provided.
Embodiment 2
Incidentally, the same as Embodiment 1, the second elastic member 10 is made of flexible foam rubber or flexible foam resin including large numbers of pores by the foaming processing, which therefore is an elastic member that can be easily deformed by external force and has no continuous pores communicating through from the front surface to the back surface thereof.
Incidentally, in the diaphragm assembly 50 shown in
According to the electrodynamic sound-emitting device of this Embodiment 2, the outer wall of the axially-extending flange 8a along the outer circumferential edge of the diaphragm 8 contacts with the inner wall of the annular second elastic member 10 without any gap. In addition, the outer circumferential edge of the annular second elastic member 10 is pressingly retained by the casing 4 and the front cover 11; therefore air flow between the acoustic cavity 22 behind the diaphragm 8 and the atmosphere can be easily blocked off. Moreover, when the sound-emitting device is assembled, the diaphragm assembly 50 is assembled to the casing 4 with the second elastic member 10 glued to the diaphragm 8 and retained, and after that the front cover is fitted on, whereby the second elastic member 10 disposed at the circumferential edge of the diaphragm assembly 50 can be pressingly retained easily and securely. Therefore, assembling of the second elastic member 10 becomes very easy, so that productivity in assembling the sound-emitting device can be greatly enhanced.
Embodiment 3
Incidentally, the second elastic member 10, the same as Embodiments 1 and 2, is made of flexible foam rubber or flexible foam resin including large numbers of pores by the foaming processing, which is therefore an elastic member that can be easily deformed by external force.
The coil 7 wound on the bobbin 6 is fixed and supported by the outer yoke 1 or the first elastic member 9 and the like, passes therethrough in this state, and in most cases connected via the casing 4 to an external control unit by the wire harness 12 or a not shown connector and the like, which is not shown in the figure. In addition, since a thin wire with a diameter of some 0.5 mm is often used for the coil 7, if the vibration amplitude of the diaphragm 8 becomes greater exceeding a predetermined value, disconnection failure is likely to occur at the connecting and fixing points of the coil 7.
Therefore, when the diaphragm 8 is displaced axially exceeding the predetermined value from any cause, a structure is required that enables the axial end surface of the flange 8a to contact with the casing 4 so as to restrict occurrence of the displacement exceeding the predetermined value. Specifically saying, when the diaphragm 8 directly undergoes vehicle running wind from the front cover 11 side, for example, if a pressure exceeding the withstanding strength of the first elastic member 9 that elastically supports the diaphragm 8 is exerted, the whole of the diaphragm 8 is displaced in the axial direction, and if the pressure by the running wind further increases so that the diaphragm 8 is displaced by the distance L shown in the figure, the diaphragm contacts with the casing 4.
Therefore, if an excessive pressure is applied from any cause to the diaphragm 8 from the front cover 11 side, the diaphragm is displaced by the maximum distance of L and then contacts with the casing, and after that, its further displacement can be prevented. As a result, the coil 7 wound on the bobbin 6 is not displaced to such an extent as leading to wire disconnection, so that failure due to disconnection of the coil 7 can be prevented.
The portion at which the outer diameter of the flange extending in the axial direction along the circumferential edge of the diaphragm is set greater than the inner diameter of the casing 4 does not need to extend over the whole of the circumference, but this dimensional relation only has to be maintained in part of the circumference. The reason for that is as follows: part of the flange 8a contacts with the casing 4, whereby the diaphragm 8 is not displaced any longer, and thereby the amount of displacement of the diaphragm 8 can be limited.
However, in the structure described in
In the electrodynamic sound-emitting device structured shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/068114 | 8/9/2011 | WO | 00 | 3/21/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/021455 | 2/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2840177 | Schoengold | Jun 1958 | A |
4939783 | Dunning | Jul 1990 | A |
5319718 | Yocum | Jun 1994 | A |
6095280 | Proni | Aug 2000 | A |
6543574 | Mizone et al. | Apr 2003 | B1 |
6934399 | Kam | Aug 2005 | B2 |
20050271226 | Tanabu et al. | Dec 2005 | A1 |
20080232635 | Corynen | Sep 2008 | A1 |
20100245069 | Noro | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2 233 373 | Sep 2010 | EP |
68-059697 | Apr 1983 | JP |
11-027810 | Jan 1999 | JP |
2000-004569 | Jan 2000 | JP |
2003-333692 | Nov 2003 | JP |
3163061 | Jul 2004 | JP |
2007-027923 | Feb 2007 | JP |
2008-515326 | May 2008 | JP |
2009-094914 | Apr 2009 | JP |
2010-228564 | Oct 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20130039526 A1 | Feb 2013 | US |