Electroformed metal diaphragm

Information

  • Patent Grant
  • 6488367
  • Patent Number
    6,488,367
  • Date Filed
    Tuesday, March 14, 2000
    24 years ago
  • Date Issued
    Tuesday, December 3, 2002
    21 years ago
Abstract
An improved diaphragm (34, 56) for drop on demand ink jet print heads and method for manufacturing the same. The present diaphragm (34, 56) includes a support element (42, 62) defining at least a portion of a chamber (14) for holding ink, the support element (42, 62) defining an opening (40) adjacent to the chamber (14), and the diaphragm (34, 56) being electroformed on a surface (26) of the support element (42, 62) around the opening (40) at least substantially covering the opening (40) and enclosing the chamber (14). The diaphragm (34, 56) preferably has a central region (48) disposed generally centrally over the opening (40) and a bellows (58) surrounds the central region (48). The central region (48) of the electroformed diaphragm (34, 56) is disposed in contact with a piezoelectric transducer (20, 82, 84) for effecting reciprocal movement of the diaphragm (34, 56) for alternately contracting and expanding the volume of the ink holding chamber (14), producing uniform pressure or acoustic waves through ink contained in the chamber (14) whereby ink menisci in nozzles of a print head in communication with the chamber (14) are uniformly oscillated.
Description




FIELD OF THE INVENTION




This invention relates generally to a diaphragm fabricated on a substrate such as a silicon wafer or the like, and more particularly, to a metal diaphragm electroformed on a silicon wafer, having utility for a drop-on-demand (DOD) ink jet print head, a capacitive pressure sensor, and other applications wherein a metallic, conductive diaphragm can be used.




BACKGROUND OF THE INVENTION




Currently, in micro electronic mechanical systems (MEMS), diaphragms are commonly fabricated from silicon, silicon oxide, silicon nitride and combinations of those materials. Shortcomings of such materials, however, include less than desired robustness compared to diaphragms fabricated from metals such as nickel. A silicon diaphragm also has cleavage planes and can be cleaved under some applications. Additionally, increasing the thickness of a silicon oxide or silicon nitride diaphragm has been found to increase the occurrence of internal stresses in the material, whereas by simply changing the integrated plating current, the thickness of an electroformed nickel diaphragm can be increased without a significant increase in internal stress.




Ink jet printing has become recognized as a prominent contender in the digitally controlled, electronic printing arena because, e.g., of its non-impact, low noise characteristics, its use of plain paper, and its avoidance of toner transfers and fixing. For these reasons, DOD ink jet printers have achieved commercial success for home and office use. DOD ink jet printers typically operate by subjecting a piezoelectric crystal to a high voltage electrical field, causing the crystal to bend, which in turn applies pressure on a reservoir of ink contained in an ink holding chamber of the print head via a flexible diaphragm, for selectably jetting ink drops on demand through an opposing nozzle or orifice. Typically, piezoelectric DOD printers utilize piezoelectric crystals in a push mode, a shear mode, or a squeeze mode. Piezoelectric DOD printers have achieved commercial success at image resolutions up to 720 dpi for home and office printers.




It is desired to fabricate a DOD print head using MEMS techniques which is operable for applying a pressure or acoustic wave to a reservoir of ink for uniformly lifting, raising or otherwise affecting the ink in an array of nozzles or orifices such that the ink can be selectably ejected through the nozzles or orifices using suitable conventional means, such as electrical impulse heaters or the like associated with the individual nozzles or orifices. However, to provide uniform ink ejection across the nozzles or orifices of the array, it has been found that the ink menisci in the respective nozzles or orifices must be uniformly affected by the pressure or acoustic waves.




It is believed that a primary cause of the inability to produce uniform waves is poor diaphragm function. Essentially, when the known diaphragm constructions are deflected or deformed into the ink holding chamber for lifting the ink, the diaphragms bend or bow across the length and width thereof, instead of moving as a unitary element. The bending or bowing of the diaphragm results in a domed structure with maximum deflection at the center, which does not produce a uniform pressure wave across the diaphragm. If a waveform produced in the ink is non-uniform, the ink menisci will be correspondingly non-uniform resulting in non-uniform ink droplet production.




Thus, what is required is a diaphragm for DOD ink jet print heads and other applications which moves or deflects as a unitary element so as to provide uniform pressure or acoustic wave generation characteristics.




SUMMARY OF THE INVENTION




An object of the present invention is to provide an improved diaphragm for DOD ink jet print heads and other applications which moves or deflects essentially as a unitary element so as to produce a more uniform pressure or acoustic wave, for example, in a body of ink in contact therewith to facilitate more uniform ink drop production.




With this object in view, the present invention resides in a diaphragm structure which includes a silicon substrate, such as but not limited to a wafer, having a surface and an opening therethrough, with a metal diaphragm electroformed on the surface and extending over the opening.




More particularly, the present invention resides in an ink jet print head including a support element defining at least a portion of a chamber for holding ink, the support element defining an opening adjacent to the chamber, and a diaphragm electroformed on a surface of the support element around the opening at least substantially covering the opening and enclosing the chamber.




According to an exemplary embodiment of the present invention, the diaphragm has a central region disposed generally centrally over the opening of the support element and a bellows surrounding the central region, the central region preferably being of greater cross sectional extent than the bellows such that the central region is substantially rigid and the bellows flexible. The central region of the electroformed diaphragm is disposed in contact with or connected to a piezoelectric transducer or actuator energizable for effecting reciprocal movement of the diaphragm for alternately contracting and expanding the volume of the ink holding chamber, producing uniform pressure or acoustic waves through ink contained in the chamber whereby ink menisci in nozzles of the print head in communication with the chamber are uniformly oscillated, lifted or otherwise affected.




To facilitate uniform wave generation, the central region of the diaphragm can be thickened relative to the bellows, and/or a stiffening member such as a portion of a silicon wafer mounted or attached thereto. Additionally, the diaphragm can be mounted or affixed to or otherwise brought into contact with the piezoelectric transducer or actuator for oscillating or reciprocating movement therewith. The bellows surrounding the central region of the diaphragm can optionally include one or more elliptical or other shape corrugations to facilitate flexure thereof for uniform displacement of the central region.




The present invention also resides in a method for forming a diaphragm for an ink jet print head, including the steps of electroforming at least one metal layer on a predetermined portion of a first surface of an etchable wafer such as a silicon wafer, etch masking a portion of the second surface of the silicon wafer to define an unmasked portion of the wafer underlying a predetermined portion of the at least one metal layer, and etching through the unmasked portion of the wafer to the at least one metal layer.




A feature of the present invention is the provision of a diaphragm of electroformed metal which is thin yet sufficiently rigid so as to oscillate without substantial deformation thereof, for generating substantially uniform waves in a body of ink or other fluid disposed in contact with one surface of the diaphragm.




Another feature of the present invention is the provision of a unitary diaphragm and surrounding bellows wherein the diaphragm is of greater cross sectional extent than the bellows.




Another feature of the present invention is the provision of an electroformed diaphragm including a stiffening member affixed or mounted thereto.




According to another aspect of the present invention at least one ink inlet channel can be electroformed on the surface of the support element in position for communicating with a source of ink external or internal to the print head. Additionally, the electroformed metal layer forming the diaphragm can include one or more openings or perforations therethrough for filtering ink that flows through the at least one ink inlet channel.




An advantage of the present invention is the ability to move the present diaphragm as a unitary element across substantially the entire length and width thereof for generating substantially uniform waves in a body of ink or other fluid disposed in contact with one surface of the diaphragm.




Another advantage of the present invention is the ability to produce a diaphragm in a manner that can be easily incorporated into conventional manufacturing processes for semi-conductor devices and MEMSs using silicon wafers and the like.




Another advantage of the present invention is the ability to form a unitary diaphragm and bellows wherein the diaphragm is of greater cross-sectional extent than the bellows.




Another advantage of the present invention is the capability to produce a diaphragm and at least one ink inlet channel communicating with a chamber for holding ink using some of the same manufacturing steps.




These and other objects, features and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there are shown and described illustrative embodiments of the invention.











BRIEF DESCRIPTIONS OF THE DRAWINGS




While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the invention, it is believed the invention will be better understood from the following detailed description when taken in conjunction with the accompanying drawings wherein:





FIG. 1

is a simplified cross-sectional representation of a prior art ink jet print head including a diaphragm shown deformed by a piezoelectric transducer of the print head;





FIG. 2



a


is a simplified cross-sectional representation of a silicon wafer having a strike layer on one surface thereof according to the present invention;





FIG. 2



b


is another simplified sectional representation of the silicon wafer of

FIG. 2



a


showing a portion of the strike layer masked to define a diaphragm region having a layer of metal electroformed thereon for producing a diaphragm according to the invention and an etch mask on an opposite surface of the wafer;





FIG. 2



c


is another simplified sectional representation of the silicon wafer of

FIGS. 2



a


and


2




b


showing the portion of the wafer underlying the diaphragm and the masks removed;





FIG. 3



a


is a simplified sectional view of another silicon wafer including a strike layer and a pattern dry film resist on one surface thereof defining a bellows and a diaphragm region according to the present invention;





FIG. 3



b


is another sectional view of the silicon wafer of

FIG. 3



a


showing the surface of the wafer masked around the bellows and diaphragm region and a metal layer electroformed on the bellows and diaphragm region forming a bellows and diaphragm;





FIG. 3



c


is another sectional view of the silicon wafer of

FIGS. 3



a


and


3




b


showing the mask around the bellows and diaphragm removed and an etch mask applied to an opposite surface of the wafer;





FIG. 3



d


is another sectional view of the silicon wafer of

FIGS. 3



a


and


3




b


after etching therethrough to the bellows and the diaphragm, and the etch mask and resist removed;





FIG. 3



e


is an alternative sectional view of the silicon wafer of

FIGS. 3



a


through


3




c


showing the surface opposite the electroformed layer etch masked to allow etching to the bellows to leave a stiffening member attached to the diaphragm;





FIG. 3



f


is a sectional view of the silicon wafer of

FIG. 3



e


after etching and removal of the etch mask;





FIG. 3



g


is an alternative sectional view of the silicon wafer of

FIGS. 3



a


through


3




c


showing the bellows masked for electroforming an additional metal layer or layers onto the diaphragm;





FIG. 3



h


is a sectional view of the silicon wafer of

FIG. 3



g


after electroforming of the additional metal layer or layers thereon and etching;





FIG. 4



a


is a front view of another silicon wafer including a metal layer electroformed on the front surface therein defining a diaphragm and bellows and elements disposed on an adjacent region of the electroformed layer forming ink flow channels communicating the diaphragm and bellows with a plurality of ink inlet openings through the metal layer according to the present invention;





FIG. 4



b


is a sectional view through the silicon wafer of

FIG. 4



a


showing a piezoelectric transducer mounted to the diaphragm and an orifice plate mounted over the diaphragm and the ink flow channels;





FIG. 5

is a sectional view of a print head constructed according to the present invention including an alternative piezoelectric transducer embodiment associated therewith;





FIG. 6

is a sectional view through a print head according to the present invention showing still another embodiment of a piezoelectric transducer in association therewith; and





FIG. 7

is another sectional view of the print head of

FIG. 6

showing deflection of the diaphragm thereof by the piezoelectric transducer;





FIG. 8

is an enlarged front view of an orifice plate including a closely spaced, offset array of ink ejecting orifices according to the present invention; and





FIG. 9

is a fragmentary sectional view of the silicon wafer of

FIG. 4



a,


including a plurality of ink inlet openings through the metal layer forming a filter according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.




Therefore, referring to

FIG. 1

, there is shown a simplified representation of a typical prior art piezoelectric actuated DOD print head


10


. Print head


10


is of laminar construction including a generally planar orifice plate


12


partially defining an ink holding chamber


14


and a plurality of ink ejecting orifices


16


arranged in a linear array communicating with chamber


14


and an orifice


16


. Print head


10


includes a diaphragm


18


disposed opposite orifices


16


enclosing ink holding chamber


14


. Diaphragm


18


is representative of a wide variety of well known diaphragm constructions including, but not limited to, metallic, silicon and polymeric diaphragm constructions. A conventional piezoelectric transducer


20


is disposed adjacent to diaphragm


18


opposite ink holding chamber


14


. Piezoelectric transducer


20


is connected to a source of electrical energy (not shown) in a well known conventional manner and is actuable by the application of an electrical field thereto. When transducer


20


is actuated, diaphragm


18


is alternatingly displaced into ink holding chamber


14


as shown for reducing the interior volume of chamber


14


to effect ejection of ink contained in chamber


14


(not shown) through the orifice


16


in the well known conventional manner.




However, an observed shortcoming of the prior art DOD print heads, as represented by print head


10


, is the non-uniform deformation or deflection of diaphragm


18


into ink holding chamber


14


, which has been found to generate corresponding non-uniform pressure or acoustic waves through the ink, resulting in irregular or non-uniform ink droplet production, as discussed hereinabove. This problem has been observed with a variety of prior known diaphragm constructions, including thin membranes, foils and films of a variety of materials such as metals, silicons, polymers and the like.




In order to overcome the problem of non-uniform wave generation, the present invention resides in a very thin metal diaphragm electroformed directly onto a surface of a rigid support element such as, but not limited to a silicon wafer, a portion of the material underlying a central portion of the diaphragm being removed, for instance, by etching, such that both opposite surfaces of the diaphragm are exposed, the support element then being laminated or otherwise suitably attached to an orifice plate or an intermediate member in communication with an ink holding chamber of a print head.




Referring to

FIG. 2



a,


a substantially rigid planar silicon wafer


22


is prepared for receiving an electroformed nickel diaphragm according to the present invention. First, a conductive strike layer


24


is placed on a surface


26


of silicone wafer


22


. Strike layer


24


should be selected so as to adhere well to surface


26


which may comprise pure silicon or silicone dioxide, and so as to adhere well to the selected metal to be electroformed thereover. The strike layer consists of a vacuum deposited subbing layer of chrome, nickel, titanium or other refractory at a thickness of between about 2.5 and about 50 nm, for instance, about 25 nm is satisfactory. A thicker layer of metal such as nickel is then deposited on top of the subbing layer by physical vapor deposition to produce a layer having a thickness of from about 0.1 to about 0.2 microns. If the film is deposited without a significant amount of internal stress, a thicker layer can be used. The subbing layer serves as an adhesion promoting layer commonly used in thin film technology.




Referring to

FIG. 2



b,


a relatively thick (from about 12.5 to about 75 microns) layer of a dry film photoresist


28


is patterned on strike layer


24


defining a diaphragm region


30


. A metal layer is then electroformed onto the diaphragm region


30


to form a diaphragm


34


. Diaphragm


34


can be electroformed from any metal which provides the desired operational characteristics, such as, but not limited to, nickel. Diaphragm


30


preferably has a thickness of from a few microns to a few tens of microns. An etched mask


36


is then pattern on a surface


38


of silicon wafer


22


opposite surface


26


to define an unmasked region corresponding to a selected portion of diaphragm region


30


. The unmasked portion of surface


38


is then subjected a conventional etching operable for etching silicon wafer


22


until the silicon is removed sufficiently to expose diaphragm


34


. Here, a reason for selecting nickel as the metal for diaphragm


34


becomes apparent, as nickel serves as an etch stop for a variety of etches including alkaline chemical etches such as potassium hydroxide (KOH) based etches, florine based inductively coupled plasma (ICP) etches, and reactive ion etches (RIE). The thickness of diaphragm


34


can be accurately controlled as is well known in the art by controlling plating current and plating time, plating time being the preferred manner of control.




Referring to

FIG. 2



c,


after photoresist layer


28


and etch mask


36


are removed, diaphragm


34


is disposed in covering relation to an opening


40


etched through wafer


22


, the remaining portion of wafer


22


surrounding opening


40


providing a substantially rigid support element


42


for diaphragm


34


. Support element


42


can then be bonded, fastened or otherwise suitably mounted to an orifice plate such as orifice plate


12


(

FIG. 1

) with diaphragm


34


located in enclosing relation to an ink holding chamber or reservoir such as chamber


14


, or to a member disposed between the element


42


and the orifice plate. Additionally, as explained in greater detailed below, one or more inlet channels for the passage of ink from an ink source can be formed on adjacent portion of support element


42


, or on the surface of the orifice plate to which support element


42


is to be attached, to provide a pathway for communicating ink to the ink holding chamber or reservoir. Still further, a passage can be etched through support element


42


and holes formed through the metal layer to provide a pathway for communicating with the channels, as will be illustrated hereinafter.




Turning to

FIG. 3



a,


a method for forming another embodiment of an electroformed diaphragm according to the present invention will be described. In

FIG. 3



a,


a dry film or liquid photoresist layer


44


is applied to a surface


26


of a silicon wafer


22


. Photoresist layer


44


consist of a plurality of concentric, progressively larger band shaped elements


46


extending around and defining a central diaphragm region


48


on silicon wafer


22


, successive elements


46


being separated by spaces


50


. Patterned photoresist layer


44


is then heated so as to harden. When heated, the comers of band shaped elements


46


soften and reflow so as to decrease in sharpness, which is desirable as will be explained. A strike layer


52


is applied to surface


26


over band shaped elements


46


of photoresist layer


44


. Strike layer


52


can be similar to the strike layer described above. The preferred method of deposition is physical sputtering, which has been found to provide better sidewall coverage than thermal evaporation. Alternatively, layer


52


can be applied to surface


26


before band shaped elements


46


are applied.




Turning to

FIG. 3



b,


a photoresist layer


28


is then applied to surface


26


in a pattern extending around the outermost band shaped element


46


and a metal layer


54


of nickel or another suitable metal, is electroformed onto central diaphragm region


48


, band shaped elements


46


and spaces


50


therebetween, thereby forming a diaphragm


56


on central diaphragm region


48


and bellows


58


extending around diaphragm


56


. Bellows


58


includes a plurality of concentric elliptical cross-section corrugations


60


, defined by band shaped elements


46


and spaces


50


(

FIG. 3



a


), the rounded comers of band shaped elements


46


contributing to the elliptical shape.




Turning to

FIG. 3



c,


an etch mask


36


is applied to opposite surface


38


of silicon wafer


22


in a pattern so as to define an unmasked region opposite diaphragm


56


and bellows


58


which is then etched by using a plasma or chemical etch, as explained above, through to diaphragm


56


and bellows


58


, the metal thereof acting as an etch stop. The etch mask


36


and photoresist material of band shape elements


46


are then removed singularly or jointly, for instance, using suitable conventional resist stripping steps.




As another step, the strike layer


52


, particularly when not patterned by photoresist layer


44


, can be removed as required using a light etch. Since diaphragm


56


is much thicker than layer


52


, it is not significantly affected by the light etch.





FIG. 3



d


shows the now complete diaphragm


56


and surrounding bellows


58


, the remaining portion of silicon wafer


22


extending therearound providing a support element


62


.




Turning to

FIGS. 3



e


and


3




f,


electroformed diaphragm


56


or diaphragm


34


can be provided with a stiffening member or element for increasing the rigidity thereof. To illustrate using diaphragm


56


, the diaphragm


56


is electroformed as explained above. However, instead of etching away that portion of the silicon wafer underlying the central region of the diaphragm


56


, the portion underlying the central region is masked with etch mask


36


leaving a band shaped unmasked region


64


of surface


38


opposite a circumferential or peripheral portion of diaphragm


56


(here shown opposite bellows


58


), as shown in

FIG. 3



e.


Then, when silicon wafer


22


is etched, only that portion of silicon wafer


22


exposed by unmasked region


64


is removed, leaving support element


62


around bellows


58


and a stiffening member


66


attached to diaphragm


56


.




Referring to

FIGS. 3



g


and


3




h,


diaphragm


56


can be further or alternatively stiffened before or after the initial electroforming thereof, by masking bellows


58


with a photoresist layer


68


, then electroforming additional metal onto bellows


56


in the above-described manner, such that diaphragm


56


has a greater cross sectional extent as denoted at X in

FIG. 3



h


than the cross sectional extent of bellows


58


, as denoted at Y. Here, thicker diaphragm


56


is shown in association with stiffening member


66


, it being likewise contemplated that the thicker diaphragm being usable without the stiffening member, as desired.




Referring to

FIG. 4



a,


another silicon wafer


22


includes a front surface


26


having a metal layer


32


electroformed thereon to form a diaphragm


56


and a bellows


58


in the above described manner. Metal layer


32


covers an adjacent portion


68


of front surface


26


, and elements


70


and


72


are disposed on metal layer


32


defining a plurality of ink inlet or flow channels


74


communicating an ink inlet region


76


with diaphragm


56


and bellows


58


. Ink inlet region


76


of metal layer


32


includes a plurality of ink inlet openings


78


therethrough communicating with an ink passage


80


(

FIG. 4



b


) extending through wafer


22


and adapted for connection in fluid communication with a source of ink (not shown). Alternatively, a single ink inlet opening could be provided, the size of the ink inlet opening or openings being determinable based on the ink flow requirements of a particular application. Elements


70


and


72


can be formed of any suitable material so as to extend above metal layer


32


by an extent sufficient to form ink inlet channels


74


of desired size. For instance, elements


70


and


72


can be formed of metal electroformed onto metal layer


32


in a suitable pattern, a polyimide film layer, or the like. Diaphragm


56


is shown including a stiffening member


66


optionally affixed or mounted thereto. Stiffening member


66


can be composed of any desired material, such as, but not limited to, nickel or silicon, as discussed above. Bellows


58


is shown having an elongate or generally elliptical or oval shape with rounded ends. Such a shape facilitates use in association with a longitudinal array of ink ejecting orifices, such as illustrated in

FIGS. 5 and 8

, it being contemplated that that a wide variety of other shapes could be used, for instance a rounded or circular shape, as required or desired for use with a particular orifice or array of orifices. The opening over which diaphragm


56


is mounted can have a rectangular or corresponding rounded shape, as desired, a shape such as an ellipse or oval being preferably formed in silicon by dry etching with an ICP source.




Turning to

FIG. 4



b,


silicon wafer


22


is shown including an orifice plate


12


mounted thereon over elements


70


and


72


, forming an ink holding chamber


14


adjacent to diaphragm


56


and bellows


58


, silicon wafer


22


being masked and etched as explained above in reference to

FIGS. 3



e


and


3




f


to form a stiffening member


66


attached to diaphragm


56


, and wafer


22


being masked and etched in a similar manner to form an ink passage


80


therethrough communicating with ink inlet openings


78


. In this regard, ink inlet openings


78


can be relatively small so as to serve to filter ink flow therethrough en route to ink inlet region


76


. Additionally, a piezoelectric transducer


20


is shown attached or mounted to stiffening member


66


for displacing or deflecting diaphragm


56


to effect ejection of ink contained in chamber


14


through orifices


16


of orifice plate


12


in the above described manner.





FIG. 5

shows a diaphragm


56


constructed in the above described manner including a stiffening member


66


attached thereto, and an alternative piezoelectric transducer


82


, transducer


82


including longitudinally spaced points


84


attached to or in contact with stiffening member


66


. Piezoelectric transducer


82


can be mounted so as to be adjustably rotatable in a plane parallel to the array of orifices


16


of a print head with which diaphragm


56


is used, to allow tuning the displacement or deflection of diaphragm


56


so as to be more closely uniform from end to end.





FIG. 6

shows reinforced diaphragm


56


having yet another alternative piezoelectric transducer


86


in contact with or mounted to stiffening member


66


thereof, transducer


86


having just one point


84


contacting stiffening member


66


at the center thereof to provide uniform displacement of the diaphragm


56


and stiffening member


66


.




Here, in the instance of piezoelectric transducers


82


and


86


, points


84


can be formed of the piezoelectric material itself, or from a separate material attached to the piezoelectric material, as desired. Here it should be additionally understood that the thickness of diaphragm


56


and diaphragm


34


as well as stiffening member


66


can be varied to allow altering or adjusting the resonant frequency of the diaphragm or diaphragm assembly to provide a frequency to give the best performance.




To illustrate an advantage of the present invention,

FIG. 7

shows deflection or displacement of diaphragm


56


of the present invention by piezoelectric transducer


86


, diaphragm


56


remaining substantially planar while bellows


58


is flexed, so as to produce uniform pressure waves throughout ink contained in ink holding chamber


14


and ink menisci in nozzles


16


, as desired.




To illustrate another advantage of the present invention,

FIG. 8

shows a segment of a front surface of an alternative orifice plate


12


constructed according to the invention including a plurality of orifices


16


arranged in a closely spaced offset array, each orifice


16


including an electrical impulse heater


88


therearound adapted for connection in electrical communication with a source of electrical energy through a control device (both not shown) by conductive paths


90


and


92


. Diaphragms constructed according to the teachings of the present invention such as diaphragms


34


and


56


described hereinabove, facilitate the placement of orifices in closely spaced arrangements such as, but not limited to, that shown, such that a relatively large number of orifices can be provided in a small space.




To illustrate another advantage of the present invention,

FIG. 9

shows a silicon wafer


22


constructed similarly to that of

FIG. 4



b,


including a plurality of ink inlet openings


78


etched through metal layer


32


communicating ink inlet region


76


and a ink inlet channel


74


with ink passage


80


, forming a filter


94


. Openings


78


of filter


94


are large enough to allow a desired flow rate of ink to pass into region


76


but small enough to trap particulates that can clog the ink ejecting orifices. Filter


94


can also serve as a fluidic resistive element. That is, the grid-like pattern of openings


78


can regulate or resist ink flow into region


76


, thereby increasing the efficiency of the pumping of ink into the ink holding chamber. Here, it should be notified that the number and/or the size of openings


78


can be varied to achieve a desired balance of filtration and fluidic resistance. For instance, opening


78


about the same size as the ink ejecting orifices have been found satisfactory.




To illustrate a further advantage of the present invention, it should be apparent from the description hereinabove that the diaphragms and ink flow channels according to the invention can be produced using standard CMOS manufacturing techniques and apparatus.




Therefore, what is provided is several diaphragm structures and methods of manufacture thereof, operable for producing uniform acoustic or pressure waves through a body of ink in a DOD print head




The foregoing describes a number of preferred embodiments of the present invention. Modifications, obvious to those skilled in the art, can be made thereto without departing from the scope of the invention.




Parts Lists






10


print head






12


orifice plate






14


ink holding chamber






16


ink ejecting orifice






18


diaphragm






20


piezoelectric transducer






22


silicon wafer






24


strike layer






26


surface






28


photoresist layer






30


diaphragm region






32


metal layer






34


diaphragm






36


etch mask






38


surface






40


opening






42


support element






44


photoresist layer






46


band shaped element






48


central diaphragm region






50


space






52


strike layer






54


metal layer






56


diaphragm






58


bellows






60


corrugation






62


support element






64


unmasked region






66


stiffening member






68


adjacent portion






70


element






72


element






74


ink inlet channel






76


ink inlet region






78


ink inlet opening






80


ink passage






82


piezoelectric transducer






84


point






86


piezoelectric transducer






88


electrical impulse heater






90


conductive path






92


conductive path






94


filter



Claims
  • 1. An inkjet print head, comprising;a support element defining at least a portion of a chamber for holding ink, the support element defining an opening adjacent to the chamber, and a diaphragm electroformed on a surface of the support element at least substantially covering the opening and enclosing the chamber, wherein the diaphragm comprises a central region portion disposed generally centrally over the opening and a bellows portion surrounding the central region portion, the bellows portion and the central region portion being both electroformed and wherein the bellows portion comprises at least one corrugation of oval configuration.
  • 2. The ink jet print head of claim 1, wherein the diaphragm has a first surface in communication with the chamber for holding ink, an opposite second surface, and a cross sectional extent as measured between the first surface and the second surface, the cross sectional extent of the central portion of the diaphragm being greater than the cross sectional extent of the bellows portion.
  • 3. The ink jet print head of claim 1, wherein the central region portion of the diaphragm includes a stiffening member mounted thereto.
  • 4. The ink jet print head of claim 1, wherein the diaphragm comprises at least one electroformed metal layer comprised of nickel.
  • 5. The ink jet print head of claim 1, further comprising a structure electroformed on the surface of the support element defining at least one ink inlet channel communicating with the chamber for holding ink.
  • 6. The ink jet print head of claim 5, further comprising a filter for filtering ink that passes through the at least one ink channel.
  • 7. The ink jet print head of claim 1 wherein the support element comprises a silicon wafer.
  • 8. The ink jet print head of claim 1 and wherein the central region portion is disposed in contact with or connected to a piezo electric transducer or actuator that is energizable for effecting reciprocal movement of the diaphragm for alternately contracting and expanding the volume of the ink holding chamber.
  • 9. The inkjet printhead of claim 8 and wherein the central region portion is thicker than the bellows portion.
  • 10. The ink jet print head of claim 8 and wherein the diaphragm is formed on a silicon wafer.
  • 11. The ink jet print head of claim 8 and wherein the ink jet print head is a drop on demand inkjet print head wherein the diaphragm provides a pressure or acoustic wave to the reservoir of the ink for affecting the ink in an array of nozzles.
  • 12. An inkjet print head, comprising;an orifice plate having a front surface, an opposite back surface at least partially defining an ink holding chamber, and a plurality of ink ejecting orifices extending therethrough between the front surface and the ink holding chamber; and a diaphragm support element having a first surface laminated to the orifice plate and an etched portion defining an opening through the support element in alignment with the ink holding chamber, the first surface having a metal diaphragm electroformed thereon and extending over the opening enclosing the ink holding chamber, wherein the diaphragm comprises a central region portion disposed generally centrally over the opening and a bellows portion surrounding the central region, and the bellows portion and the central region portion being both electroformed and wherein the bellows portion comprises at least one corrugation of oval configuration.
  • 13. The ink jet print head of claim 12, wherein the central region of the diaphragm includes a stiffening member mounted thereto.
  • 14. The ink jet print head of claim 12, further comprising a structure electroformed on the surface of the support element defining at least one ink inlet channel communicating with the ink holding chamber.
  • 15. The ink jet print head of claim 14, further comprising an array of openings for filtering ink passing into the ink channel.
  • 16. The ink jet print head of claim 12, wherein the orifice plate and the support element comprise silicon wafers.
  • 17. The inkjet print head of claim 12, wherein the central region portion of the diaphragm includes a stiffening member mounted thereto.
  • 18. For use in an inkjet printer a structure, comprising:a silicon substrate having a surface and an opening therethrough; and a metal diaphragm electroformed to overlie the surface of the silicon substrate and extending over the opening, wherein the metal diaphragm comprises a central region portion disposed generally centrally over the opening and a bellows portion surrounding the central region portion, and the bellows portion and the central region portion being both electroformed and wherein the bellows portion comprises at least one corrugation of oval configuration.
  • 19. The diaphragm structure of claim 18, wherein the metal comprises nickel.
  • 20. The diaphragm structure of claim 19, wherein the central region of the diaphragm includes a stiffening member mounted thereto.
  • 21. The diaphragm structure of claim 20, wherein the stiffening member comprises a silicon member.
  • 22. The diaphragm structure of claim 18, wherein the metal diaphragm comprises a central region having a stiffening member attached thereto.
US Referenced Citations (8)
Number Name Date Kind
4380018 Andoh et al. Apr 1983 A
5375326 Usui et al. Dec 1994 A
5424769 Sakai et al. Jun 1995 A
5604522 Miura et al. Feb 1997 A
5764257 Miyazawa et al. Jun 1998 A
5767612 Takeuchi et al. Jun 1998 A
6254223 Kim et al. Jul 2001 B1
6296344 Sharma et al. Oct 2001 B1
Foreign Referenced Citations (4)
Number Date Country
52-88549 Jul 1977 JP
61-96098 May 1986 JP
9-27433 Jan 1997 JP
410100405 Apr 1998 JP