The present invention relates to an electroinjector for controlling fuel injection in an internal-combustion engine.
In the engine sector, there is felt the need to make injections of fuel in which the instantaneous flow rate of injected fuel as a function of time comprises at least two stretches with levels that are substantially constant and different from one another, i.e., it can be represented schematically by a curve of the “stepwise” type. In particular, there is felt the need to inject an instantaneous flow of fuel having a plot in time T similar to the one represented by the curve of
In an endeavour to obtain said flow-rate curve, it is known to provide injectors of a dedicated type, in which opening of the injection nozzle is caused by the lifting of two movable open/close pins co-operating with respective springs, or else by the lifting of a single movable open/close pin co-operating with two coaxial springs. In particular, the two springs are differently preloaded with respect to one another, and/or present characteristics of force/displacement that are different from one another, for opening the nozzle with lifts such as to approximate the required flow-rate curve.
The known solutions just described are far from altogether satisfactory in so far as it is somewhat complex to calibrate the springs in an optimal way to obtain a first level or step of flow rate smaller than the maximum flow rate from the nozzle and, hence, to approximate a flow-rate curve like the one of
Furthermore, given the same pressure of supply of the fuel, once the law of lifting of the pins and, hence, the law of opening of the nozzle, has been established, the profile of flow rate of injected fuel is not modifiable as the operating conditions of the engine vary between the various injections performed by the injector.
In addition, it is somewhat difficult to obtain injectors with a profile of flow rate of injected fuel constant for the entire production.
The purpose of the present invention is to provide a method for controlling fuel injection in an internal-combustion engine which will enable the drawbacks set forth above to be overcome in a simple and economically advantageous way.
A method is provided for controlling fuel injection in an internal-combustion engine provided with an electroinjector comprising an electroactuator, and an atomizer, comprising an injection nozzle and a pin, which is movable along an opening stroke and a closing stroke for opening/closing said nozzle under the control of said electroactuator. The electroinjector performs dosage of the fuel by modulating in time opening of the pin of the atomizer according to the pressure of supply of the electroinjector itself.
The method is characterized by supplying to said electroactuator a first electrical command and at least a second electrical command that are sufficiently close to one another as to displace said pin with a profile of motion without any discontinuity in time, and such as to cause said pin to perform a first opening displacement and a second opening displacement, respectively.
For a better understanding of the present invention, there now follows a description of a preferred embodiment, which is provided purely by way of non-limiting example, with reference to the attached drawings, in which:
In
The electroinjector 1 comprises an external structure or shell 2, which extends along a longitudinal axis 3, has a side inlet 4 designed to be connected to a system (not illustrated) for supply of fuel, and ends with a atomizer.
The atomizer comprises a nozzle 5 communicating with the inlet 4 and designed to inject the fuel into a combustion chamber, and an open/close pin 7 or needle, which is movable along an opening stroke and a closing stroke for opening/closing the nozzle 5 under the control of an electrically controlled actuator device 8, or electroactuator. The electroinjector 1 carries out dosage of the fuel by modulating in time opening of the pin 7 of the atomizer according to the pressure of supply of the electroinjector 1 itself, i.e., of the pressure at the inlet 4, as will emerge more clearly from the ensuing description.
The device 8 is preferably of the type comprising: an electromagnet 10; an anchor 11, which is axially slidable in the shell 2 under the action of the electromagnet 10; and a pre-loaded spring 12, which is surrounded by the electromagnet 10 and exerts an action of thrust on the anchor 11 in a direction opposite to the attraction exerted by the electromagnet 10.
The shell 2 has an axial seat 13, which is illustrated with parts removed for reasons of clarity in
The chamber 15 constitutes the end portion of the seat 13b, defines part of a control servo-valve 16 and communicates permanently with the inlet 4 through a passage 18 made in the shell 2 and in the body 13a for receiving fuel under pressure, so that modulation of opening and closing of the pin 7 exerted by the rod 14 is performed according to the pressure of supply of the fuel into the electroinjector 1.
The chamber 15 is axially delimited, on one side, by the rod 14 and, on the other, by an end portion of the body 13a, to which there is then set axially alongside a disk 20, fixed with respect to the shell 2 by means of an appropriate clamping system.
The servo-valve 16 further comprises a passage 22, which defines the outlet of the chamber 15, is substantially symmetrical with respect to the axis 3 and is made in the body 13a, in the disk 20, and in a distribution body 25 set in an intermediate axial position between the disk 20 and the device 8. The body 25 is fixed with respect to the shell 2, is axially coupled in a fluid-tight way to the disk 20 so that it bears thereupon, and ends with a stem or pin 29 delimited by a cylindrical side surface 30, dug into which is an annular chamber 34 in which there gives out the passage 22.
The radial outlet of the passage 22, defined by the chamber 34, is designed to be opened/closed by an open/close element defined by a sleeve 35, which is fitted on the stem 29 and is axially slidable under the action of the device 8 for varying the pressure present in the chamber 15 and, hence, for opening/closing the nozzle 5.
It is evident that, when the sleeve 35 closes the chamber 34, it is subjected to a resultant of pressure that is zero along the axis 3 by the fuel, with consequent advantages from the standpoint of stability of dynamic behaviour of the movable parts of the injector 1.
In particular, displacement of the pin 7 along the opening stroke, i.e., during lifting, and along the closing stroke is practically constant between one injection and the next in response to a given electrical command sent to the device 8. In other words, it is possible to correlate in a biunique and repeatable manner the position of the pin 7 with the electrical commands supplied to the device 8. The position of the pin 7 along the opening and closing strokes in response to an electrical command can be known via theoretical calculation, as a function of constructional parameters of the injector 1 (for example sections of passage of the servo-valve 16) and as a function of known operating parameters (for example, pressure of supply of the fuel into the inlet 4), or else experimentally by means of a “sample” injector on which appropriate sensors are mounted. At the same time, the opening section of the nozzle 5 and, hence, the instantaneous flow-rate pattern of the fuel can be determined in a unique way as a function of the axial displacement of the pin 7, in particular on the basis of the dimensions of the passages of the nozzle 5 itself and on the basis of the pressure of supply of the fuel.
Each of
In
For reasons of clarity, by the term “command” is meant, in the present description and in the annexed claims, an electrical signal having a curve C that initially has a trailing edge or ramp R with a relatively fast initial increase. In the particular examples illustrated, the device 8 receives signals of electric current, the curve C of which presents, after the trailing edge R, a stretch M of holding around a maximum value, a stretch D of decrease down to an intermediate value, a stretch N of holding around said intermediate value, and a stretch E of final decrease.
According to the method of the present invention, to obtain a fuel injection, supplied to the device 8 are a first electrical command and at least a second electrical command, which are sufficiently close to one another as to displace the pin 7 with a profile P of motion without any discontinuity in time and such as to cause the pin 7 to perform a first and, respectively, a second opening displacement, or lifts, which are defined in the profile P by respective stretches A, increase up to relative-maximum values H, and are followed by respective closing displacements defined by decreasing stretches B of the profile P.
With reference to the example of
The curve C1 causes displacement of the pin 7 with a profile P comprising the increasing stretch A1, up to the value H1, and the decreasing stretch B1. A second command is supplied at an instant T2 such as to start the second lift, i.e., the stretch A2, in a point Q1 of the stretch B1, before the pin 7 has reached the position of end-of-closing stroke of the nozzle 5. In particular, the instant T2 is smaller than the theoretical instant in which the first command represented by the curve C1 would reach a zero value. The curve C2 has a stretch N2 of duration longer than the stretch N1, so that the lift of the pin 7 reaches a value H2 greater than H1, causing a degree or section of opening of the nozzle 5 greater than that reached at the end of the stretch A1.
There then follows a closing displacement defined by the stretch B2 up to complete closing of the nozzle 5, after which the pin 7 remains stationary until the subsequent injection.
The curve F of the instantaneous flow rate obtained approximates in a satisfactory manner the desired curve of instantaneous flow rate illustrated in
According to the example of
According to the example of
The values H5-H7 (relative-maximum values) reached by the pin 7 at the end of the first three lifts are substantially equal to one another, so that the relative maximum opening sections of the nozzle 5 are substantially the same as one another. The value H8 reached at the end of the fourth and last lift (stretch A8) is greater and causes a greater degree or section of opening, in so far as the stretch N8 has a duration longer than the stretches N5-N7.
There is consequently obtained a curve F″ of flow rate which approximates the desired flow-rate curve of
According to variants (not illustrated), it is possible to approximate curves of instantaneous flow rate of the “stepwise” type, in which there are present more than two levels, by causing the pin 7 to be displaced with more than two consecutive lifts up to values H that are different from one another, and/or to approximate curves of instantaneous flow rate, in which a level is followed by a lower level (instead of the levels L1 and L2 illustrated by way of example), by supplying electrical commands having appropriate durations and magnitudes.
Furthermore, according to the method of the present invention, for at least one injection, at least one of the following quantities is determined as a function of operating parameters of the engine:
duration of at least one of the electrical commands to be supplied to the device 8;
number of the electrical commands to be supplied to the device 8; and
distance in time between the start of the electrical commands to be supplied to the device 8.
In particular, between one injection and the next, at least one among the following quantities is varied as a function of operating parameters of the engine, in particular as a function of the load:
duration of at least one of the electrical commands;
number of the electrical commands; and
distance in time between the electrical commands.
In this way, it is possible to modulate the curve of the instantaneous flow rate between the various injections by varying the amplitude and/or duration and/or the number of the substantially constant levels of flow rate that it is desired to approximate.
From the foregoing description it is evident how it is possible to inject an instantaneous flow rate that approximates in an optimal manner flow-rate curves of the “stepwise” type and how this is obtained in a relatively simple way.
In fact, the control of injection according to the method described above does not require any calibration of mechanical components and/or injectors made in a dedicated manner.
Furthermore, the curve of the flow injected can be easily varied between one injection and the next so as to approximate as well as possible the desired flow-rate curve and optimize the efficiency of the engine according to the specific point of operation of the engine itself.
From the foregoing description, it is evident how the control method described can undergo modifications and variations that do not depart from the sphere of protection of the present invention.
In particular, the control method could be implemented with injectors that are different from the electroinjector 1 illustrated by way of example, but in which the displacement of the open/close pin of the nozzle is always performed as a function of the pressure of supply of the fuel and is repeatable in response to given electrical commands.
Furthermore, the device 8 could comprise a piezoelectric actuator, instead of an electromagnet.
Furthermore, the pin 7 could be displaced during lifting in one and the same injection for a number of times and/or by amounts different from those indicated by way of example.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
04425841 | Nov 2004 | EM | regional |
This application is a continuation of prior U.S. patent application Ser. No. 11/109,789, filed Apr. 20, 2005 now U.S. Pat. No. 7,131,428, the entire disclosure of which is incorporated herein by reference. This application also claims the priority of European Application No. 04425841.6, filed Nov. 12, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4688536 | Mitsuyasu et al. | Aug 1987 | A |
4704999 | Hashikawa et al. | Nov 1987 | A |
4732129 | Takigawa et al. | Mar 1988 | A |
4776518 | Yamamoto | Oct 1988 | A |
4852808 | Yamamoto | Aug 1989 | A |
4958610 | Yamamoto et al. | Sep 1990 | A |
5101797 | Stürz et al. | Apr 1992 | A |
5893350 | Timms | Apr 1999 | A |
6059204 | Augustin | May 2000 | A |
6415762 | Hafner et al. | Jul 2002 | B1 |
6422209 | Mattes | Jul 2002 | B1 |
6491016 | Buratti | Dec 2002 | B1 |
6761325 | Baker et al. | Jul 2004 | B2 |
7059295 | Blessing et al. | Jun 2006 | B2 |
7124959 | Baker et al. | Oct 2006 | B2 |
7131428 | Ricco et al. | Nov 2006 | B2 |
20030089333 | Duffy et al. | May 2003 | A1 |
20040103874 | Takahashi | Jun 2004 | A1 |
20040237930 | Kawamura et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
4310984 | Mar 1993 | DE |
0570986 | Nov 1993 | EP |
0570986 | Nov 1993 | EP |
0916842 | May 1999 | EP |
1657422 | May 2006 | EP |
2761113 | Sep 1998 | FR |
2761113 | Sep 1998 | FR |
63-277841 | Nov 1988 | JP |
5-1609 | Jan 1993 | JP |
5-321732 | Dec 1993 | JP |
11-200932 | Jul 1999 | JP |
WO0220956 | Mar 2002 | WO |
Entry |
---|
European Search Report dated Apr. 25, 2005. |
Characteristics of a Common Rail Diesel Injection System under Pilot and Post Injection Modes, Henein et al., SAE Technical Paper Series, 2002-01-0218, Detroit, Michigan, Mar. 2002, pp. 1-14, and title page. |
Diesel-engine Management, Common Rail, 2nd Edition, Riesenberg et al., Robert Bosch GmbH, Stuttgart, Germany, 1999, pp. 1-2, 256-257, 264-270, 274-279. |
Number | Date | Country | |
---|---|---|---|
Parent | 11109789 | Apr 2005 | US |
Child | 11452391 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11452391 | Jun 2006 | US |
Child | 12763479 | US |