Electrokinetic flow devices in the prior art employ simple wire or wire mesh electrodes immersed in a fluid. In these prior art devices, gas produced by current flowing through the electrodes must be vented and pH evolution must be tolerated. Therefore, the conductivity of the fluid and hence, the flow rate of the fluid, are limited in order to limit the amount of gas produced and the rate of pH evolution. Some prior art ignores the pH evolution. Moreover, since gas is produced and must be vented, these prior art flow devices cannot operate for extended periods of time in a closed system.
Others, such as U.S. Pat. Nos. 3,923,426; 3,544,237; 2,615,940; 2,644,900; 2,644,902; 2,661,430; 3,143,691; and 3,427,978, teach mitigation of irreversible pH evolution by using a low conductivity fluid so as to draw as little current as possible. Hence, these prior art devices are only successful when operating for a limited amount of time or when operating at a low current and, hence, low flow rate, e.g., 0.1 mL/min.
U.S. Pat. No. 3,923,426 teaches periodic switching of the polarity of the electrodes to prolong the life of an electrokinetic flow device.
Accordingly, there is a need in the art for an electrokinetic pump that is capable of extended operation in a closed system without producing significant gaseous by-products and without significant evolution of the fluid in the pump (“pump fluid”).
Further, and more specifically, there is a need in the art for a high flow rate (e.g. greater than 1 ml/min) electrokinetic pump, and a low flow rate (e.g. in the range of about 25 nL/min to 100 microliters/min) electrokinetic pump that is capable of extended operation (i.e. multiple days to greater than multiple weeks) in a closed system without producing gaseous by-products and without significant evolution of the fluid in the pump.
The present invention provides an electrokinetic device capable of achieving high as well as low flow rates in a closed system without significant evolution of the pump fluid.
The electrokinetic device comprises a pair of electrodes capable of having a voltage drop therebetween and a porous dielectric material between the electrodes. The electrodes are made of a capacitive material having a capacitance of at least 10−4 Farads/cm2 or, more preferably, 10−2 Farads/cm2.
The electrodes preferably are comprised of carbon paper impregnated with carbon aerogel or comprised of a carbon aerogel foam. The porous dielectric material can be organic (e.g. a polymer membrane) or inorganic (e.g. a sintered ceramic). The entire electrokinetic device can be laminated.
The capacitance of the electrodes is preferably charged prior to the occurrence of Faradaic processes in the pump fluid. A method of using the electrokinetic devices comprises the steps of: applying a positive current to the electrodes, thereby charging the capacitance of the electrodes; and applying a negative current to the electrodes, thereby charging the capacitance to the opposite polarity.
The capacitance of the electrodes can be that associated with the electrochemical double-layer at the electrode-liquid interface.
Alternatively, the electrodes can be made of a pseudocapacitive material having a capacitance of at least 10−4 Farads/cm2. For example, the pseudocapacitive material can be a substantially solid redox material, such as ruthenium oxide.
There can be a spacer between the porous dielectric material and the electrodes. The spacer can minimize undesirable effects associated with electrode roughness or irregularities. An electrode-support material can sandwich the electrodes and the porous dielectric material, so that when there is a current flux on the electrodes it is uniform. The flow resistance of the spacer, the support material, and electrodes can be less than that of the porous dielectric material.
The embodiments of pumps described thus far may be included in various pump systems described herein.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Definitions
Double-layer capacitance—capacitance associated with charging of the electrical double layer at an electrode—liquid interface.
Pseudocapacitance—capacitance associated with an electrochemical oxidation or reduction in which the electrochemical potential depends on the extent of conversion of the electrochemically active species. It is often associated with surface processes. Examples of systems exhibiting pseudocapacitance include hydrous oxides (e.g. ruthenium oxide), intercalation of Li ions into a host material, conducting polymers and hydrogen underpotential deposition on metals.
Faradaic process—oxidation or reduction of a bulk material having an electrochemical potential that is (ideally) constant with extent of conversion.
Capacitance per area—the capacitance of an electrode material per unit of surface geometric area (i.e. the surface area calculated from the nominal dimensions of the material), having units Farads/cm2. The geometric area is distinguished from the microscopic surface area. For example, a 1 cm by 1 cm square of aerogel-impregnated carbon paper has a geometric area of 1 cm2, but its microscopic area is much higher. For paper 0.25 mm thick the microscopic area is in excess of 1000 cm.
Capacitive electrodes—electrodes made from a material having a double-layer capacitance per area, pseudocapacitance per area, or a combination of the two of at least 10−4 Farads/cm2 and more preferably, at least 10−2 Farads/cm2.
Pseudocapacitive electrodes—electrodes made from a material having a capacitance of at least 10−4 Farads/cm2 resulting primarily from pseudocapacitance.
Structure
The present invention is directed to an electrokinetic device capable of achieving high as well as low flow rates in a closed system without significant evolution of the pump fluid. This invention is directed to electrokinetic pumps having a porous dielectric material between a pair of electrodes that provide for conversion of electronic conduction (external to the pump) to ionic conduction (internal to the pump) at the electrode-fluid interface without significant solvent electrolysis, e.g., hydrolysis in aqueous media, and the resultant generation of gas. The electrodes also work well in non-aqueous systems. For example, pumps embodying the invention can be used to pump a propylene carbonate solvent with an appropriate electrolyte, such as tetra(alkyl)ammonium tetrafluoroborate. Through the controlled release and uptake of ions in the pump fluid, the electrodes are designed to evolve the pump fluid in a controlled fashion.
With reference to
Preferably electrical leads 108 are placed in contact with outside surfaces of the electrodes 104a and 104b. The porous dielectric material 102, electrodes 104a and 104b and the leads 108 can be sandwiched between supports 110, each having a hole 112 so that the pump fluid can flow through the porous dielectric material 102 and the electrodes 104a and 104b. The supports 110 help to maintain the planarity of the pump 100. Maintaining the planarity of the pump 100 helps to maintain a uniform current flux on the electrodes 104a and 104b.
The pump 100 is preferably laminated using a bonding material 116 so that the pump and its lamination forms an integrated assembly that may be in the form of a chip-like assembly as described in U.S. patent application entitled Laminated Flow Device invented by Phillip H. Paul, David W. Neyer, and Jason E. Rehm, filed on Jul. 17, 2002, Ser. No. 10/198,223, and incorporated herein by reference. Pump 200 illustrated in
A spacer 214, shown in
In the preferred embodiment, over 85% of the voltage drop between the electrodes 104a and 104b appears across the porous dielectric material 102. To this end, it is preferable that the electrical resistances of the spacers 214 are much less than that of the porous dielectric materials 102.
In
In the preferred embodiment, there is minimal pressure loss due to flow through the spacers 214, the electrodes 104a and 104b, and the electrode-supports 210. To this end, it is preferable that: the flow resistances of the electrode-supports 210 and the electrodes 104a and 104b are much less than that of the spacers 214, and the flow resistances of the spacers are much less than that of the porous dielectric material 102. This can be accomplished by a careful selection of the pore size of each element.
For example, in
As a specific example, if the porous dielectric material to has 0.2 micron pores, a formation factor of 3 and a thickness of 1 mm; the spacers have 3 micron pores, a formation factor of 2 and a thickness of 0.1 mm; the electrodes have 20 micron pores, a formation factor of 3 and a thickness of 2 mm; and the supports have 1 mm pores, a formation factor of 1.2 and a thickness of 3 mm, then the voltage drop across the porous dielectric material is then 88% of the total applied voltage and the flow conductances (i.e. the inverse of the flow resistance) of the porous dielectric, the spacer, the electrode and the support are then about 0.02, 63, 94 and 3900 ml per minute per psi per square cm, respectively.
The diameter of the faces of the pumps 100 and 200, which pump fluid can flow through, are each larger than the thicknesses of the respective pumps so that both pumps resemble a coin, with the flow through the face, as opposed to most low-flow-rate and/or high-pressure designs that are more rod-like with the flow along a longitudinal axis. Pumps embodying the invention do not have to have cylindrical symmetry, but can have any shape.
The area of the pumps 100 and 200 through which fluid can flow is selected to meet flow rate requirements. For example: a pump running at about 3V can achieve an open-load flowrate of about 1.2 mL/min per cm2 thus an open-load flowrate of 10 mL/min can be achieved with a pump having an area of about 8.8 cm2. The same flow rate can be achieved by running in parallel multiple pumps having smaller areas.
A compact parallel multiple element pump 300 is shown in
Supports
The supports 110 can be formed of any material known in the art that provides sufficient mechanical strength and dielectric strength, such as: polyetherimide (PEI, known by the brand name Ultem), polyethersulfone (PES, known by the brand name Victrex), polyethylene terephthalate (PET, known by the brand name Dacron).
The electrode-supports 210 can be a 3-mm thick honeycomb having 1 mm cells, 50-micron cell wall thickness, and a 92% open area, i.e., 92% of the total area of the electrode-support is open, for example.
The type, cell size, and thickness of the electrode-supports 210 are preferably selected to provide the mechanical strength to maintain the necessary degree of planarity of the pump. It is preferable that any flow-induced flexure of the electrodes (and similar flexure of the pump medium sandwiched between the electrodes) be limited to some small fraction (preferably less than ten percent) of the displacement of the liquid per one-half cycle. For example: a pump running at 15 mL/min, with an oscillatory cycle time of 8 seconds and an area of about 12 cm2, gives a liquid displacement of about 0.8 mm per one-half cycle. In this example, it is preferable that the electrodes be supported in a fashion to limit any electrode flexure to less than 0.08 mm.
Leads
Preferably, the electrical contacts to the electrodes are formed from a metal, preferably platinum, that is electrochemically stable (i.e. not subject to redox reactions) under the electrochemical conditions encountered within the pump liquid environment. The electrical contacts may be in the form of a wire lead that may also serve as a flying lead, or a foil or as a thin layer deposited on an insulating support. Flying leads that are connected to the electrode contacting leads and do not contact the liquid may be of any type common in electrical components and wiring.
Spacers
The spacer 214 can be formed of any large pore dielectric material, such as acrylic copolymer foam membrane or polypropylene. Preferably the thickness of the spacer 214 is as small as possible but greater than one half of the scale of any irregularities in the electrodes 104a and 104b, e.g. slightly thicker than one half of the wire diameter for a wire mesh electrode. For example, the spacer can have 5-10 micron pores, a formation factor of 1.7 and a 50 micron thickness.
Electrodes
Preferably 25% and, more preferably 50% of the total area of the electrodes 104a and 104b is open and the electrodes have a flow through design that covers an entire face of the porous dielectric material 102 and a geometric structure that provides good fluid exchange at all the current carrying surfaces to facilitate the replenishment of the ions at the electrodes. In the flow-through design the electrode geometric area preferably matches the geometric area of the pump medium. For example, in a case where the pump medium has a disc of diameter 13 mm, electrodes with 11 mm diameters have been used. Further, the electrodes 104a and 104b are preferably free of sharp edges and points so as to support without puncturing the porous dielectric material 102 and to provide a uniform current flux. The electrodes can be in the form of carbon paper, carbon foam, perforated plates, porous frits, porous membranes, or wire mesh, for example.
The electrodes 104a and 104b preferably are made from a material having a double-layer capacitance of at least 10−4 Farads/cm2, more preferably, at least 10−2 Farads/cm2, as these electrodes can function with a wide range of pump fluids, i.e., any fluid having a pH value and an ionic content compatible with the porous dielectric material 104, whereas pseudocapacitive electrodes can function with a limited range of pump fluids as they need to be supplied reactants in order to avoid electrolysis of the pump fluid.
Carbon paper impregnated with carbon aerogel is the most preferable electrode material as it has a substantial double-layer capacitance and is free of sharp edges and points. The high capacitance of this material arises from its large microscopic surface area for a given geometric surface area. At high currents, (e.g. 1 mA per square cm) the double layer capacitance is about 10 mF/cm2 and at low currents, (e.g. 1 microamp per square cm) the double-layer capacitance is about 1 F/cm2.
Many other forms of carbon also have very large microscopic surface areas for a given geometric surface area and hence exhibit high double-layer capacitance. For example, carbon mesh, carbon fiber (e.g., pyrolized poly(acrylonitrile) or cellulose fiber), carbon black and carbon nanotubes all have significant double layer capacitance. Capacitive electrodes can be formed of materials other than carbon, even though carbon is preferred as it is an inert element and therefore reactions are slow when the voltage applied to the electrodes accidentally exceeds the electrolysis threshold. Capacitive electrodes can be formed of any conductor having a high microscopic surface area, such as sintered metal.
When pseudocapacitive electrodes are used, the electrode chemistry is arranged to minimize any irreversible electro-chemical reactions that might alter the pump fluid and provide for conversion from electronic conduction to ionic conduction at the electrode-fluid interface, so that gaseous products are not produced and irreversible alteration of the pump fluid or electrode materials are not involved. This is accomplished by limiting the rate of unwanted chemical reactions at the electrodes 104a and 104b by careful optimization of the combination of: the pump fluid, electrode material, the porous dielectric material 102, physical geometry of the pump, the applied potential, and the current flux density at the electrodes 104a and 104b.
Examples of possible pseudocapacitive electrode-fluid combinations include:
1. Electrode Material or Coating that Represents a Solid Redox Couple
This can be iridium-, vanadium-, or ruthenium-oxides. These oxides are relatively insoluble in water and many other solvents. Advantage is taken of the multiple oxidation states of the metals but the redox reaction takes place in the solid phase and the charge can be carried as OH− or H+ ions in the fluid.
2. A Solid Redox Host Material that Dispenses or Inserts a Soluble Ion
This is commonly termed de-intercalation and intercalation, respectively. For example, Li+ ions may be inserted into solids like titanium, molybdenum di-sulfides, certain polymers or carbon. Redox reactions in the solid results in dispensing or uptake of the Li+ ions to or from the fluid. These ions are stable when stored in the solid and solids with intercalated ions are stable when exposed to the transport fluid, although some are reactive with H2O.
Porous Dielectric Materials
Preferably, inorganic porous dielectric materials are used and more preferably, Anopore® membranes, are employed as the porous dielectric pump material 102 in order to provide both a thin pump (e.g. 60 to 2000 microns), and therefore low drive voltage, and narrow pore size distribution, as well as the capability to have both positive and negative zeta potentials. A narrow pore size distribution is desirable as it makes the pump 100 more efficient. Large pores cause the pump 100 to have reduced pressure performance and pores that are too narrow cause increased charge layer overlap, which decreases the flow rate. Anapore® membranes are composed of a high purity alumina that is highly porous, where the pores are in the form of a substantially close-packed hexagonal array with a pore diameter of approximately 200 nm. Alternatively, packed silica beads or organic materials can be used as the porous dielectric material 102. Whatever material is used, the pores preferably have a diameter in the range of 50-500 nm because it is desirable that the pores be as small as possible to achieve high pump stall pressure but still be large enough to avoid substantial double-layer overlap.
Additives to the fluid that provide polyvalent ions having a charge sign opposite to that of the zeta potential of the porous dielectric material are preferably avoided. For example, when the porous dielectric material 102 is comprised of a positive zeta potential material, phosphates, borates and citrates preferably are avoided. For a negative zeta potential material, barium and calcium preferably are avoided.
Use of Electrokinetic Pumps Embodying the Invention
The desired strategy is to apply a current to the electrodes 104a and 104b to produce a desired flow rate while charging the double-layer capacitance of the electrodes during the first half of the pump cycle. The polarity of the applied field is then changed before Faradaic processes begin, thereby discharging the double-layer capacitance of the electrodes 104a and 104b and then recharging the electrodes with the opposite polarity causing the pump fluid to flow in the opposite direction during the second half of the pump cycle. This alternation of polarity is referred to here as “AC” operation.
For example, an applied current (I) of 1 mA and a capacitance (C) of 0.3 F results in a voltage rise (dV/dt) of 3.3 mV/sec. At this rate it takes about 5 minutes to increase 1 V. At low enough currents, the time between required polarity changes may be very long and the pump 100 can effectively operate in “DC” mode for some operations.
It is desirable that the electrodes 104a and 104b supply the current required, even for high flow rates, e.g., greater than 1 mL/min, without significant electrolysis of the pump fluid or significant evolution of the pH of the pump fluid. Avoidance of significant pH evolution of the pump fluid can be accomplished by not allowing the voltage drop between the electrodes 104a and 104b and the liquid to exceed the threshold for Faradaic electrochemical reactions, which start at approximately 1.2V for water.
The double-layer capacitance or the pseudocapacitance of the electrodes 104a and 104b preferably is charged prior to the beginning of bulk Faradaic processes. Typical values of double layer capacitance of a plane metal surface (e.g. a drawn metal wire) are 20 to 30 micro Farads/cm2. This value can be substantially increased using methods well-known in the electrochemical arts (e.g. surface roughening, surface etching, platinization of platinum). The double-layer capacitance of the electrodes 104a and 104b is preferably at least 10−4 Farads/cm2 and more preferably at least 10−2 Farads/cm2.
When current flows through pseudocapacitive electrodes, reactants are consumed at the electrodes. When all of the reactants are consumed, gas is produced and the pump fluid may be irreversibly altered. Therefore, preferably the reactants are replenished or current stops flowing through the electrodes before all of the reactants are consumed. The rate that the reactants are supplied to the electrodes 104a and 104b preferably is high enough to provide for the charge transfer rate required by the applied current. Otherwise, the potential at the electrodes 104a and 104b will increase until some other electrode reaction occurs that provides for the charge transfer rate required by the current. This reaction may not be reversible.
Thus, when using pseudocapacitive electrodes, the current that can be drawn, hence the electrokinetic flow rate is limited by the transport rate of limiting ionic reactants to or from the electrodes 104a and 104b. The design of the pump 100 when pseudocapacitive electrodes are used is thus a careful balance between: increasing ionic concentration to support reversible electrode reactions and decreasing ionic concentration to draw less current to prevent irreversible evolution of the pump fluid.
When pseudocapacitive electrodes are used in the pump 100, their electrochemical potential depends on the extent of conversion of the reactants. The dependence of the electrochemical potential on a reaction gives rise to current (I) and voltage (V) characteristics that are nearly described by the equations that characterize the capacitance processes. That is, although the electrodes technically depend on Faradaic processes, they appear to behave as a capacitor.
An example of the current versus voltage behavior (a cyclic voltammogram) of a ruthenium oxide (RuO2) pseudocapacitive electrode is given in
Pseudocapacitive electrodes, which operate using a surface Faradaic electrochemical process, sacrifice some of the chemical universality of capacitive electrodes, which can be charged by almost any ion. Pseudocapacitance is usually centered on the uptake and release of a specific ion, H+ for RuO2 and Li+ for intercalation, for example. Therefore, pseudocapacitive electrodes are compatible with a smaller number of liquids as RuO2 systems are usually run under acidic conditions and many Li+ intercalation compounds are unstable in water.
In general, electrokinetic pumps embodying the invention can be controlled with either voltage or current programming. The simplest scheme is constant current operation. Under these conditions the electrode-liquid potential ramps linearly in time. The charge transferred on each half of the cycle is preferably balanced. This is to avoid the net charging of the electrodes 104a and 104b. Equal transfer of charge on each half of the cycle can be accomplished by driving the pump 100 with a symmetric constant-current square wave. Alternatively, if the pump 100 is driven with unequal current on each half of the cycle, then the time of each half of the cycle preferably is adjusted so that the current-time product is equal on both halves of the cycle.
More complex driving schemes are possible. For example, the pump 100 can be driven with a constant voltage for a fixed time period on the first half of the cycle. During the first half of the cycle, the current is integrated to measure the total charge transferred. Then, in the second half of the cycle, the reverse current is integrated. The second half of the cycle preferably continues until the integrated current of the second half equals that of the first half of the cycle. This mode of operation may give more precise delivery of the pump fluid. Even more complex tailored waveforms, controlled current or controlled voltage, are possible. Alternatively, an appropriate voltage waveform can be applied, a voltage step followed by a voltage ramp, for example. A number of other voltage- or current-programmed control strategies are possible.
When the potential is reversed at fixed periods, a constant current power supply can be used to provide power to the electrodes. Methods of providing a constant current are well-known in the electrical arts and include, for example, an operational amplifier current regulator or a JFET current limiter. The power supply can be connected to the flying leads 218 via a timed double-pole/double-throw switch that reverses the potential at fixed intervals. Using a more sophisticated circuit, which adds the ability to vary the regulated current, will provide the capacity to vary the flow rate in response to a control signal.
Alternatively, the potential is reversed when the total charge reaches a fixed limit. A time-integrated signal from a current shunt or a signal from a charge integrator preferably is employed to monitor the charge supplied to the pump 100. Once the charge reaches a preset level, the polarity is reversed and integrated signal from the current shunt or charge integrator is reset. Then the process is repeated.
Using either type of power supply configuration, the pump flow rate and pressure can be modulated by varying the electrical input. The electrical input can be varied manually or by a feedback loop. It may be desirable to vary the flow rate and/or the pressure, for example: to vary a heat transfer rate or stabilize a temperature in response to a measured temperature or heat flux; to provide a given flow rate or stabilize a flow rate in response to the signal from a flowmeter; to provide a given pressure or stabilize a pressure in response to a signal from a pressure gauge; to provide a given actuator displacement or stabilize an actuator in response to a signal from displacement transducer, velocity meter, or accelerometer.
Any of the embodiments of the high flow rate electrokinetic pump can be stacked, arranged in several different configurations and used in conjunction with one or more check valves to fit a specific application. The examples given here list some of the different types of pumps, pump configurations, check valve configurations and types of heat transfer cycles.
Types of Pumps:
Single Element Pump
Single element pumps are illustrated in
Dual Element Pump
Dual element pumps 1000, illustrated in
It is also possible to have multi-element pumps having a plurality of sheets of porous dielectric materials and a plurality of electrodes, one electrode being located between every two adjacent sheets. The value of the zeta potential of each sheet of porous dielectric material has a sign opposite to that of any adjacent sheet of porous dielectric material.
Pump Configurations:
Direct Pump
The porous dielectric material in a direct pump pumps the fluid in the flow path directly. For example, see
Indirect Pump
Indirect pumps, such as those illustrated in
Check Valve Configurations:
No Check Valves
In some cases no flow limiting devices, e.g., check valves, are needed. In these instances the pump operates in its natural oscillating mode. See, for example,
Two Check Valves
Configurations with two check valves give unidirectional flow, but only pump fluid on one half of the pump cycle, there is no flow on the other half, see for example,
Four Check Valves
Configurations with four check valves give unidirectional flow and utilize the pump on both halves of the pump cycle, see, for example,
Types of Heat Transfer Cycles
Single-Phase
Single-phase heat exchangers circulate liquid to carry heat away. See
Two-Phase
Two-phase heat exchangers rely on a phase change such as evaporation to remove heat. When a direct pump is used in a two-phase heat exchange system, the entire system is preferably configured to recycle the concentrated electrolyte deposited during the evaporation process. This can be done, for example, by using a volatile ionic species, e.g. acetic acid in water. Use of an indirect pump separates the pump liquid, which generally contains added ions, from the heat-transfer liquid.
Pump 100 operates in an AC mode. During the first half-cycle the pump 100 pushes liquid 1220 from liquid transfer line 1210 to the condenser 1240 and through the liquid transfer line 1310 to evaporator 1270 and also draws liquid (and possibly some vapor) from evaporator 1270 through transfer line 1320 to condenser 1250. On the second half cycle this process is reversed.
The condenser wicks 1260 are made of a porous material that is selected to provide a substantially high resistance to pressure driven liquid flow relative to that of liquid transfer lines 1320 and 1310. Thus the primary result of operation of the pump is displacement of liquid through the transfer lines 1310 and 1320.
The amount of liquid displaced by the pump per half-cycle preferably is greater than the amount of evaporator liquid 1220 vaporized per pump half-cycle. In this manner some liquid is continuously present in the evaporator. Further, the amount of liquid displaced by the pump per half-cycle preferably is sufficient so that fresh liquid from a condenser fully refills the evaporator and so that remaining liquid in the evaporator is fully discharged into a condenser. That is the amount of liquid dispensed per pump half-cycle should exceed the volume of liquid within transfer lines 1310 and 1320 plus the volume of liquid evaporated per half-cycle plus the amount of liquid remaining in the evaporator per half-cycle. In this manner any concentrate, which can result from concentration of any electrolyte as a consequence of distillation of liquid in the evaporator, will be transported by liquid convection and re-diluted in the condensers.
It is preferable to operate this system of evaporator and condensers at the vapor pressure of the operating liquid. Thus the entire system is preferably vacuum leak tight. Prior to operation, the system pressure is reduced to the vapor pressure of the liquid by a vacuum pump or other means known in the arts and then sealed using a seal-off valve or other means known in the arts.
The source of heat input to any of the heat transfer systems disclosed could be, for example, an electronic circuit, such as a computer CPU or a microwave amplifier, that can be directly mounted on or integrated to the evaporators or primary heat exchangers. The removal of heat from the condensers or secondary heat exchangers can be via a passively or actively cooled fin or by any other means known in the arts of heat transfer.
Any combination of pump type, pump configuration, check valve configuration and type of heat transfer cycle can be used with a pump utilizing capacitive, Faradaic or pseudocapacitive electrodes. Other specific applications of electrokinetic pumps embodying the invention aside from heat transfer include, but are not limited to, drug delivery, glucose monitors, fuel cells, actuators, and liquid dispensers.
A high flow rate electrokinetic pump having features of the present invention can be used in liquid dispensing applications that require precise delivery of a given volume of fluid. Often, the application requires contactless dispensing. That is, the volume of fluid is ejected from a dispenser into a receptacle without the nozzle of the dispenser touching fluid in the receptacle vessel. In which case, the configuration of an electrokinetic pump having two check valves, shown in
Upon charging the electrodes, the pump 100 withdraws fluid 1006 from a reservoir 1008. The fluid 1006 then passes through a first check valve 610. Upon discharging and recharging the electrodes with the opposite charge, the pump 100 then reverses direction and pushes fluid through the second check valve 611 and out of the nozzle 1010 into a receiving vessel 1012. Precise programmable contactless fluid dispensing across the 10-80 μL range using 0.5 to 2 sec dispense times has been demonstrated.
This embodiment can be a stand-alone component of a dispensing system or can be configured to fit in the bottom of a chemical reagent container. In the later case, the conduits of the electrokinetic pump can be comprised of channels in a plastic plate. The nozzle 1010 can be directly mounted on the plate, and low-profile (e.g. “umbrella” type) check valves can be utilized.
In contactless dispensing applications, the electrokinetic pump must produce sufficient liquid velocity, hence sufficient pressure, at the nozzle tip to eject a well-defined stream from the nozzle. There are other dispensing applications where contactless operation is not needed. Electrokinetic pumps embodying the present invention can be used in these applications as well.
Low-flow-rate pumps in accordance with the present invention can be used in a glucose monitor that delivers 100 nL/min. At this flow rate, electrodes having an area of approximately 1.4 cm2 can run for approximately 7 days before the direction of the current must be changed.
A design for a low-flow-rate pump that could be used as a glucose monitor pump 1100 is shown in
Advantages of electrokinetic pumps embodying the invention include: gas-free operation, the ability to draw very high current densities (in excess of 20 mA/cm2)and the ability to cycle many times (in excess of 10 million cycles with no apparent change in operating characteristics). Electrokinetic pumps embodying the invention and using capacitive electrodes have the additional advantage of compatibility with a nearly unlimited number of chemical systems.
The pump 100 illustrated in
The pump illustrated in
The carbon aerogel/Durapore® membrane sandwiched pump was operated in two additional manners. In the second manner of operation, an asymmetric driving current was used to achieve pulsed operation. 0.2 mA was applied for 9.5 seconds and then −3.8 mA was applied for 0.5 seconds. For the first part of the cycle, fluid was drawn slowly backward through the pump. In the second part of the cycle, fluid was pushed forward, delivering 3 microliters. This is the type of action that can be used for dispensing a liquid.
In a third manner of operation, energy stored in the capacitance of the electrode was used to drive the pump. One volt was applied to the electrodes using an external power supply to charge the double-layer capacitance. The power supply was then disconnected. When the external leads were shorted together, fluid flowed in the pump, converting electrical energy stored in the electrodes into fluid flow. If the current had been controlled in an external circuit, the flow rate of the pump could have been programmed, thereby creating a “self-powered” electrokinetic metering pump. The potential applications of such a device include drug delivery.
The process of charging the pump electrodes, either in the case of the self-powered electrokinetic pump or in the normal charge-discharge cycle of the AC mode, has been described above as being done by means of running the pump in reverse. Another path not through the pump can be provided to charge the electrodes with ions. This involves a high conductivity ionic path and a charging electrode for each pump electrode.
The pump illustrated in
Although the emphasis here is on pumps and systems built from discrete components, many of the components presented here apply equally to integrated and/or microfabricated structures.
Although the present invention has been described in considerable detail with reference to preferred versions thereof, other versions are possible. For example: an electrokinetic pump having features of the present invention can include three or more porous dielectric pump elements. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
All features disclosed in the specification, including the claims, abstracts, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means” for performing a specified function or “step” for performing a specified function should not be interpreted as a “means” for “step” clause as specified in 35 U.S.C. § 112.
Number | Name | Date | Kind |
---|---|---|---|
1063204 | Kraft | Jun 1913 | A |
2615940 | Williams | Oct 1952 | A |
2644900 | Hardway | Jul 1953 | A |
2644902 | Hardway | Jul 1953 | A |
2661430 | Hardway | Dec 1953 | A |
2995714 | Hannah | Aug 1961 | A |
3143691 | Hurd | Aug 1964 | A |
3209255 | Estes et al. | Sep 1965 | A |
3298789 | Mast et al. | Jan 1967 | A |
3427978 | Hanneman et al. | Feb 1969 | A |
3544237 | Walz | Dec 1970 | A |
3630957 | Rey et al. | Dec 1971 | A |
3682239 | Abu-Romia | Aug 1972 | A |
3923426 | Theeuwes | Dec 1975 | A |
4383265 | Kohashi | May 1983 | A |
4396925 | Kohashi | Aug 1983 | A |
4402817 | Maget | Sep 1983 | A |
4999069 | Brackett et al. | Mar 1991 | A |
5037457 | Goldsmith et al. | Aug 1991 | A |
5041181 | Brackett et al. | Aug 1991 | A |
5087338 | Perry et al. | Feb 1992 | A |
5126022 | Soane et al. | Jun 1992 | A |
5534328 | Ashmead et al. | Jul 1996 | A |
5573651 | Dasgupta et al. | Nov 1996 | A |
5581438 | Halliop | Dec 1996 | A |
5683443 | Munshi et al. | Nov 1997 | A |
5858193 | Zanzucchi et al. | Jan 1999 | A |
5888390 | Craig | Mar 1999 | A |
5942093 | Rakestraw et al. | Aug 1999 | A |
5958203 | Parce et al. | Sep 1999 | A |
RE36350 | Swedberg | Oct 1999 | E |
5961800 | McBride et al. | Oct 1999 | A |
5964997 | McBride | Oct 1999 | A |
5989402 | Chow et al. | Nov 1999 | A |
5997708 | Craig | Dec 1999 | A |
6007690 | Nelson et al. | Dec 1999 | A |
6012902 | Parce | Jan 2000 | A |
6013164 | Paul et al. | Jan 2000 | A |
6019882 | Paul et al. | Feb 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6068243 | Hoggan | May 2000 | A |
6068767 | Garguilo et al. | May 2000 | A |
6074725 | Kennedy | Jun 2000 | A |
6080295 | Parce et al. | Jun 2000 | A |
6086243 | Paul et al. | Jul 2000 | A |
6100107 | Lei et al. | Aug 2000 | A |
6106685 | McBride et al. | Aug 2000 | A |
6126723 | Drost et al. | Oct 2000 | A |
6129973 | Martin et al. | Oct 2000 | A |
6156273 | Regnier et al. | Dec 2000 | A |
6171067 | Parce | Jan 2001 | B1 |
6176962 | Soane et al. | Jan 2001 | B1 |
6210986 | Arnold et al. | Apr 2001 | B1 |
6224728 | Oborny et al. | May 2001 | B1 |
6255551 | Shapiro et al. | Jul 2001 | B1 |
6267858 | Parce et al. | Jul 2001 | B1 |
6277257 | Paul et al. | Aug 2001 | B1 |
6287440 | Arnold et al. | Sep 2001 | B1 |
6290909 | Paul et al. | Sep 2001 | B1 |
6320160 | Eidsnes et al. | Nov 2001 | B1 |
6344145 | Garguilo et al. | Feb 2002 | B1 |
6352577 | Martin et al. | Mar 2002 | B1 |
6406605 | Moles | Jun 2002 | B1 |
6409698 | Robinson et al. | Jun 2002 | B1 |
6418968 | Pezzuto et al. | Jul 2002 | B1 |
6444150 | Arnold | Sep 2002 | B1 |
6460420 | Paul et al. | Oct 2002 | B1 |
6472443 | Shepodd | Oct 2002 | B1 |
6477410 | Henley et al. | Nov 2002 | B1 |
6495015 | Schoeniger et al. | Dec 2002 | B1 |
6529377 | Nelson et al. | Mar 2003 | B1 |
6689373 | Johnson et al. | Feb 2004 | B2 |
6719535 | Rakestraw et al. | Apr 2004 | B2 |
6729352 | O'Connor et al. | May 2004 | B2 |
6755211 | O'Connor et al. | Jun 2004 | B1 |
6770182 | Griffiths et al. | Aug 2004 | B1 |
6814859 | Koehler et al. | Nov 2004 | B2 |
20010008212 | Shepodd et al. | Jul 2001 | A1 |
20020048425 | McBride et al. | Apr 2002 | A1 |
20020056639 | Lackritz et al. | May 2002 | A1 |
20020059869 | Martin et al. | May 2002 | A1 |
20020066639 | Taylor et al. | Jun 2002 | A1 |
20020070116 | Ohkawa | Jun 2002 | A1 |
20020089807 | Bluvstein et al. | Jul 2002 | A1 |
20020125134 | Santiago et al. | Sep 2002 | A1 |
20020166592 | Liu et al. | Nov 2002 | A1 |
20020185184 | O'Connor et al. | Dec 2002 | A1 |
20020187074 | O'Connor et al. | Dec 2002 | A1 |
20020187557 | Hobbs et al. | Dec 2002 | A1 |
20020189947 | Paul et al. | Dec 2002 | A1 |
20020195344 | Neyer et al. | Dec 2002 | A1 |
20030052007 | Paul et al. | Mar 2003 | A1 |
20030061687 | Hansen et al. | Apr 2003 | A1 |
20030116738 | O'Connor et al. | Jun 2003 | A1 |
20030143081 | Rakestraw et al. | Jul 2003 | A1 |
20030150792 | Koehler et al. | Aug 2003 | A1 |
20030198130 | Karp et al. | Oct 2003 | A1 |
20030198576 | Coyne et al. | Oct 2003 | A1 |
20030206806 | Paul et al. | Nov 2003 | A1 |
20030226754 | Le Febre et al. | Dec 2003 | A1 |
20040011648 | Paul et al. | Jan 2004 | A1 |
20040074784 | Anex et al. | Apr 2004 | A1 |
20040087033 | Schembri | May 2004 | A1 |
20040101421 | Kenny et al. | May 2004 | A1 |
20040115731 | Hansen et al. | Jun 2004 | A1 |
20040118189 | Karp et al. | Jun 2004 | A1 |
20040129568 | Seul et al. | Jul 2004 | A1 |
20040163957 | Neyer et al. | Aug 2004 | A1 |
20040182709 | Griffiths et al. | Sep 2004 | A1 |
20040238052 | Karp et al. | Dec 2004 | A1 |
20040241004 | Goodson et al. | Dec 2004 | A1 |
20040241006 | Taboryski et al. | Dec 2004 | A1 |
20040247450 | Kutchinski et al. | Dec 2004 | A1 |
20050247558 | Anex et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
2286429 | Jul 1998 | CN |
0421234 | Oct 1991 | EP |
1063204 | Dec 2000 | EP |
03-087659 | Apr 1991 | JP |
WO 9639252 | Dec 1996 | WO |
WO 9916162 | Apr 1999 | WO |
WO 2004027535 | Apr 1999 | WO |
WO 0004832 | Mar 2000 | WO |
WO 0055502 | Sep 2000 | WO |
WO 0079131 | Dec 2000 | WO |
WO 0125138 | Apr 2001 | WO |
WO 02068821 | Sep 2002 | WO |
WO 02086332 | Oct 2002 | WO |
WO 2004007348 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040074768 A1 | Apr 2004 | US |