Claims
- 1. A luminescent device comprising an electroluminescent phosphor in operative contact with a light-emitting material wherein excitation of the electroluminescent phosphor by an alternating current electrical field causes the emission of light by the light-emitting material.
- 2. The device according to claim 1, wherein the electroluminescent phosphor is present in an insulating layer which is located between a first electrode and a second electrode.
- 3. The device according to claim 2, wherein the first electrode and the second electrode are free of metals and metal oxides.
- 4. The device according to claim 3, wherein the first electrode and the second electrode comprise the same material.
- 5. The device according to claim 2, wherein at least one of the first electrode or the second electrode is transparent.
- 6. The device according to claim 4, wherein the first electrode and the second electrode comprise an intrinsically conductive polymer.
- 7. The device according to claim 6, wherein the first electrode and the second electrode comprise a substituted or unsubstituted intrinsically conductive polymer that is selected from the group consisting of polyaniline, polyacetylene, poly-p-phenylene, poly-m-phenylene, polyphenylene sulfide, polypyrrole, polythiophene, and polycarbazole.
- 8. The device according to claim 7, wherein the first electrode and the second electrode comprise poly(3,4-ethylenedioxythiophene).
- 9. The device according to claim 2, wherein the light-emitting material is located in the insulating layer.
- 10. The device according to claim 2, wherein the electroluminescent phosphor can be excited by an alternating current electric field and can emit light at a first wavelength.
- 11. The device according to claim 1, wherein the electroluminescent phosphor is an inorganic solid.
- 12. The device according to claim 11, wherein the electroluminescent phosphor is selected from the group consisting of:
CdSe; InAs; LaPO4, undoped or doped with one or more of Pr, Nd, Er, or Yb; YOS, undoped or doped with Er; ZnS, undoped, or doped with Ag, Cu, Mn, Tb, TbF, or TbF3; ZnSe; undoped or doped with Mn, or Cu; ZnCdS; MIIAM2III(S, Se)4, where MIIA=Ca, Sr or Ba, and MIII=Al, Ga, In, Y, or is optionally absent, where the compound is undoped, or doped with Eu2+ or Ce3+; and mixtures thereof.
- 13. The device according to claim 11, wherein the electroluminescent phosphor is in the form of particles.
- 14. The device according to claim 13, wherein the electroluminescent phosphor particles have an average nominal size of from about 0.1 nm to about 10 nm.
- 15. The device according to claim 13, wherein the electroluminescent phosphor particles have an average nominal size of from about 0.05 microns to about 50 microns.
- 16. The device according to claim 15, wherein the electroluminescent phosphor particles have an average nominal size of from about 10 microns to about 40 microns.
- 17. The device according to claim 1, wherein the electroluminescent phosphor is an organic material.
- 18. The device according to claim 1, wherein the light-emitting material is a material which is excited when in operative contact with the excited electroluminescent phosphor and which is capable of emitting light of a wavelength that is different than the light emitted by the electroluminescent phosphor.
- 19. The device according to claim 18, wherein the light-emitting material is an inorganic solid.
- 20. The device according to claim 19, wherein the light emitting material is selected from the group consisting of
LaPO4, undoped or doped with one or more of Pr, Nd, Er, or Yb; YOS, undoped or doped with Er; MIIAM2III(S, Se)4, where MIIA=Ca, Sr or Ba, and MIII=Al, Ga, In, Y, or is optionally absent, and where the compound is undoped, or doped with Eu2+ or Ce3+; and mixtures thereof.
- 21. The device according to claim 18, wherein the light-emitting material is an organic material.
- 22. The device according to claim 21, wherein the light-emitting material is selected from the group consisting of: antracene, undoped or doped with tetracene; aluminum tris(8-hydroxyquinolinate); poly-(p-phenylenevinylene) (PPV); poly[2-methoxy-5-(2′-ethyl)hexoxy-1,4-phenylenevinylene] (MEHPPV); poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-co-4,4′-bisphenylenevinylene] (MEH-BP-PPV), poly[2-methoxy-5-(2′-ethylhexyloxy)-1-(cyanovinylene)phenylene (MEH-CN-PPV), poly[1,3-propanedioxy-1,4-phenylene-1,2-ethylene-(2,5-bis(trimethylsilyl)-1,4-phenylene)-1,2-ethylene-1,4-phenylene] (DiSiPV); Tb tris(acetylacetonate); Eu(1,10-phenanthroline)-tris(4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate; Eu tris(dibenzoylmethanato)phenanthroline; Tb tris(acetylacetonate)phenthroline; Eu(4,7-diphenylphenanthroline)-tris(4,4,4-trifluoro)-1-(2-thienyl)-butane-1,3-dionate; Nd(4,7-diphenylphenanthroline)(dibenzoylmethanato)3; Eu(dibenzolmethanato)3-2-(2-pyridyl)benzimidazole; Eu(dibenzolmethanato)2-1-ethyl-2-(2-pyridyl)benzimidazole; Tb-[3-(5-phenyl-1,3,4-oxadiazol-2-yl)-2,4-pentanedionate]3; lanthanide-tris(4-methylbenzoate); lanthanide-tris(4-methoxybenzoate); Tb tris(4-methylbenzoate); Tb tris(4-methoxybenzoylbenzoate); Eu tris(4-methoxybenzoylbenzoate); Tb-tris(tetradecylphethalate)phenantroline; Tb-imidodiphosphinate; Tb1-phenyl-3-methyl-4-(trimethylacetyl)pyrazol-4-one; polypyridine; poly(p-phenylene vinylene); poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]; poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]; poly[(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene)-alt-co-(4,4′-biphenylene-vinylene)]; poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(9,10-anthracene)]; poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(4,4′-biphenylene)]; poly[{9,9-dioctyl-2,7-divinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene}]; poly[{9,9-dioctyl-2,7-bis(2-cyanovinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethyl hexyloxy)-1,4-phenylene}]; poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylenephenylene)]; poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene}-alt-co-{2,5-bis(N, N′-diphenylamino)-1,4-phenylenel}]; poly[{9-ethyl-3,6-bis(2-cyanovinylene)carbazolylene)}-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}]; poly[(9,9-di(2-ethylhexyl)-fluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di-(p-butyl phenyl)-1,4-diaminobenzene]; poly[2-(6-cyano-6-methylheptyloxy)-1,4-phenylene); poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-ethylenylbenzene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)]; poly[(9,9-dihexylfluorenyl-2,7-divinylenefluorenylene)]; poly[(9,9-dihexyl-2,7-(2-cyanodivinylene)-fluorenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly(9,9-dioctylfluorenyl-2,7-diyl; poly(9,9-dihexylfluorenyl-2,7-diyl); poly[9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di(p-butyloxyphenyl)-1,4-diaminobenzene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-diphenyl)-N,N′-di(p-butyloxy-phenyl)-1,4-diaminobenzene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadiazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,10-anthracene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-bis{4-butylphenyl}-benzidine-N,N′-{1,4-diphenylene})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}-1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9′-spirobifluorene-2,7-diyl]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(2,5-p-xylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(3,5-pyridine)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9-di-{5-pentanyl}-fluorenyl-2′,7′-diyl; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(6,6′{2,2′-bipyridine})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(6,6′-{2,2′:6′,2″-terpyridine})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(N,N′bis{p-butylphenyl}-1,4-diamino phenylene)]; 8-hydroxyquinoline; fluorescein; rhodamine; xanthene, substituted or unsubstituted; substituted coumarin; substituted hydroxycoumarin; substituted or unsubstituted tetra-cyanoquinolines; ethidium bromide; propidium iodide; benzoxanthene yellow; bixbenzimide ((2′-[4-hydroxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5′-bi-1H-benzimidazol); (2′-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5′-bi-1H-benzimidazol)); 4,6-diamidino-2-phenylindole (DAPI); lithium tetra(2-methyl-8-hydroxyquinolinato)boron; bis(8-hydroxyquinolinato)zinc; tris(benzoylacetonato)mono(phenanthroline)europium(III); tris(2-phenylpyridine)iridium(III); and tris(8-hydroxyquinolinato)gallium(III); tris(8-hydroxyquinolato)aluminum; tetra(2-methyl-8-hydroxyquinolato)boron; lithium salt; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; 9,10-di[(9-ethyl-3-carbazoyl)-vinylenyl)]-anthracene; 4,4′-bis(diphenylvinylenyl)-biphenyl; 1,4-bis(9-ethyl-3-carbazovinylene)-2-methoxy-5-(2-ethylhexyloxy)benzene; tris(benzoylacetonato)mono(phenanthroline)europium (III); tris(dibenzoylmethane)mono(phenanthroline)europium (III); tris(dibenoylmethane)mono(5-amiophenanthroline)europium (III); tris(dinapthoylmethane)mono(phenanthroline)europium (III); tris(biphenoylmethane)mono(phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-diphenylphenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dimethyl-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxy-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxyloxy-phenanthroline)europium (III); lithium tetra(8-hydroxyquinolinato)boron; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; bis(8-hydroxyquinolinato)zinc; bis(2-methyl-8-hydroxyquinolinato)zinc; iridium (III) tris(2-phenylpyridine); tris(8-hydroxyquinoline)aluminum; tris[1-phenyl-3-methyl-4-(2,2-dimethylpropan-1-oyl)-pyrazolin-5-one]-terbium, and mixtures of two or more of any of these.
- 23. The device according to claim 18, wherein the light-emitting material is one that is not excited by an alternating current electrical field.
- 24. The device according to claim 9, wherein the electroluminescent phosphor is in the form of particles which are in direct contact with the light-emitting material.
- 25. The device according to claim 24, wherein the electroluminescent phosphor particles are coated with the light-emitting material.
- 26. The device according to claim 25, wherein the electroluminescent phosphor particles comprise ZnS:Cu which are coated with poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene].
- 27. The device according to claim 18, wherein the wavelength of light emitted by the light-emitting material is in the range of infrared, visible, or ultraviolet.
- 28. The device according to claim 27, wherein the wavelength of light emitted by the light-emitting material comprises infrared light.
- 29. The device according to claim 27, wherein the wavelength of light emitted by the light-emitting material comprises visible light.
- 30. The device according to claim 27, wherein the wavelength of light emitted by the light-emitting material comprises ultraviolet light.
- 31. The device according to claim 1, wherein the ratio of the amount of the electroluminescent phosphor to the light-emitting material is within a range of about 0.00001:1 to about 0.5:1.
- 32. The device according to claim 31, wherein the ratio of the amount of the electroluminescent phosphor to the light-emitting material is within a range of about 0.0005:1 to about 0.1:1.
- 33. The device according to claim 32, wherein the ratio of the amount of the electroluminescent phosphor to the light-emitting material is within a range of about 0.0005:1 to about 0.01:1.
- 34. The device according to claim 1, wherein the wavelength of the light emitted by the electroluminescent phosphor is about the same as the peak excitation wavelength for the light-emitting material.
- 35. The device according to claim 9, wherein one or more dielectric layers that are separate from the insulating layer are present between the first electrode and the second electrode.
- 36. The device according to claim 9, wherein the first electrode or the second electrode is located adjacent a substrate.
- 37. The device according to claim 36, wherein the substrate is a flexible material.
- 38. The device according to claim 37, wherein the substrate is selected from the group consisting of plastic film and fabric.
- 39. The device according to claim 1, wherein at least two separate light-emitting materials are present, at least one of which is excited by excitation of the electroluminescent phosphor and at least one other of which emits light upon being excited by the excitation of a light-emitting material.
- 40. A method of making an electroluminescent device comprising the steps:
placing a phosphor and an insulating layer between a first electrode and a second electrode; and placing a light-emitting material in operative contact with the phosphor.
- 41. The method according to claim 40, wherein the phosphor is in direct contact with the light-emitting material.
- 42. The method according to claim 41, wherein the phosphor is in particulate form and is coated with the light-emitting material to form light-emitting particles.
- 43. The method according to claim 42, wherein the light-emitting particles are mixed with a dielectric material to form a light-emitting layer.
- 44. The method according to claim 43, wherein the first electrode is located adjacent a substrate.
- 45. The method according to claim 44, wherein a dielectric layer is placed between the first electrode and the light-emitting layer.
- 46. The method according to claim 40, wherein the first electrode and the second electrode comprise an intrinsically conductive polymer.
- 47. The method according to claim 46, wherein the phosphor comprises a material that is selected from the group consisting of
LaPO4, undoped or doped with one or more of Pr, Nd, Er, or Yb; YOS, undoped or doped with Er; MIIAM2III(S, Se)4, where MIIA=Ca, Sr or Ba and MIII=Al, Ga, In, or Y, undoped, or doped with Eu2+ or Ce3+; and mixtures thereof.
- 48. The device according to claim 40, wherein the light-emitting material is an organic material.
- 49. The device according to claim 48, wherein the light-emitting material is selected from the group consisting of: antracene, undoped or doped with tetracene; aluminum tris(8-hydroxyquinolinate); poly-(p-phenylenevinylene) (PPV); poly[2-methoxy-5-(2′-ethyl)hexoxy-1,4-phenylenevinylene] (MEHPPV); poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-co-4,4′-bisphenylenevinylene] (MEH-BP-PPV), poly[2-methoxy-5-(2′-ethylhexyloxy)-1-(cyanovinylene)phenylene (MEH-CN-PPV), poly[1,3-propanedioxy-1,4-phenylene-1,2-ethylene-(2,5-bis(trimethylsilyl)-1,4-phenylene)-1,2-ethylene-1,4-phenylene] (DiSiPV); Tb tris(acetylacetonate); Eu(1,10-phenanthroline)-tris(4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate; Eu tris(dibenzoylmethanato)phenanthroline; Tb tris(acetylacetonate)phenthroline; Eu(4,7-diphenyl phenanthroline)-tris(4,4,4-trifluoro)-1-(2-thienyl)-butane-1,3-dionate; Nd(4,7-diphenylphenanthroline)(dibenzoylmethanato)3; Eu(dibenzolmethanato)3-2-(2-pyridyl)benzimidazole; Eu(dibenzolmethanato)2-1-ethyl-2-(2-pyridyl)benzimidazole; Tb-[3-(5-phenyl-1,3,4-oxadiazol-2-yl)-2,4-pentanedionate]3; lanthanide-tris(4-methylbenzoate); lanthanide-tris(4-methoxybenzoate); Tb tris(4-methylbenzoate); Tb tris(4-methoxybenzoylbenzoate); Eu tris(4-methoxybenzoylbenzoate); Tb-tris(tetradecylphethalate)phenantroline; Tb-imidodiphosphinate; Tb 1-phenyl-3-methyl-4-(trimethylacetyl)pyrazol-4-one; polypyridine; poly(p-phenylene vinylene); poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]; poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]; poly[(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene)-alt-co-(4,4′-biphenylene-vinylene)]; poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(9,10-anthracene)]; poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(4,4′-biphenylene)]; poly[{9,9-dioctyl-2,7-divinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene}]; poly[{9,9-dioctyl-2,7-bis(2-cyanovinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethyl hexyloxy)-1,4-phenylene}]; poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylenephenylene)]; poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene}-alt-co-{2,5-bis(N, N′-diphenylamino)-1,4-phenylene}]; poly[{9-ethyl-3,6-bis(2-cyanovinylene)carbazolylene)}-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}]; poly[(9,9-di(2-ethylhexyl)-fluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di-(p-butyl phenyl)-1,4-diaminobenzene]; poly[2-(6-cyano-6-methylheptyloxy)-1,4-phenylene); poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-ethylenylbenzene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)]; poly[(9,9-dihexylfluorenyl-2,7-divinylenefluorenylene)]; poly[(9,9-dihexyl-2,7-(2-cyanodivinylene)-fluorenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly(9,9-dioctylfluorenyl-2,7-diyl; poly(9,9-dihexylfluorenyl-2,7-diyl); poly[9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di(p-butyloxyphenyl)-1,4-diaminobenzene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-diphenyl)-N,N′-di(p-butyloxy-phenyl)-1,4-diaminobenzene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadiazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,10-anthracene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-bis{4-butylphenyl}-benzidine- N,N′-{1,4-diphenylene})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}-1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9′-spirobifluorene-2,7-diyl]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(2,5-p-xylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(3,5-pyridine)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9-di-{5-pentanyl}-fluorenyl-2′,7′-diyl; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(6,6′{2,2′-bipyridine})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(6,6′-{2,2′:6′,2″-terpyridine})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(N,N′bis{p-butylphenyl}-1,4-diamino phenylene)]; 8-hydroxyquinoline; fluorescein; rhodamine; xanthene, substituted or unsubstituted; substituted coumarin; substituted hydroxycoumarin; substituted or unsubstituted tetra-cyanoquinolines; ethidium bromide; propidium iodide; benzoxanthene yellow; bixbenzimide ((2′-[4-hydroxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5′-bi-1H-benzimidazol); (2′-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5′-bi-1H-benzimidazol)); 4,6-diamidino-2-phenylindole (DAPI); lithium tetra (2-methyl-8-hydroxyquinolinato)boron; bis(8-hydroxyquinolinato)zinc; tris(benzoylacetonato)mono(phenanthroline)europium(III); tris(2-phenylpyridine)iridium(III); and tris(8-hydroxyquinolinato)gallium(III); tris(8-hydroxyquinolato)aluminum; tetra(2-methyl-8-hydroxyquinolato)boron; lithium salt; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; 9,10-di[(9-ethyl-3-carbazoyl)-vinylenyl)]-anthracene; 4,4′-bis(diphenylvinylenyl)-biphenyl; 1,4-bis(9-ethyl-3-carbazovinylene)-2-methoxy-5-(2-ethylhexyloxy)benzene; tris(benzoylacetonato)mono(phenanthroline) europium (III); tris(dibenzoylmethane)mono(phenanthroline) europium (III); tris(dibenzoylmethane)mono(5-aminophenanthroline)europium (III); tris(dinapthoylmethane)mono(phenanthroline) europium (III); tris(biphenoylmethane)mono(phenanthroline) europium (III); tris(dibenzoylmethane)mono(4,7-diphenylphenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dimethyl-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxy-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxyloxy-phenanthroline)europium (III); lithium tetra(8-hydroxyquinolinato)boron; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; bis(8-hydroxyquinolinato)zinc; bis(2-methyl-8-hydroxyquinolinato)zinc; iridium (III) tris(2-phenylpyridine); tris(8-hydroxyquinoline)aluminum; tris[1-phenyl-3-methyl-4-(2,2-dimethylpropan-1-oyl)-pyrazolin-5-one]-terbium, and mixtures of two or more of any of these.
- 50. The method according to claim 40, wherein all steps are carried out under ambient conditions of temperature and atmosphere.
- 51. An electroluminescent display comprising
an electroluminescent phosphor in operative contact with a light-emitting material wherein excitation of the electroluminescent phosphor by an alternating current electrical field causes the emission of light by the light-emitting material; and a first electrode and a second electrode, between which is located the electroluminescent phosphor and an insulating layer.
- 52. The electroluminescent display according to claim 51, wherein the first electrode and the second electrode are connected to a source of alternating current.
CROSS REFERENCE TO RELATED PATENTS AND PATENT APPLICATIONS
[0001] The subject matter of the present invention is related to and claims the benefit of copending and commonly assigned U.S. patent application Ser. No. 10/207,576, filed Jul. 29, 2002, which is relied on herein and incorporated herein by reference in its entirety.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
10207576 |
Jul 2002 |
US |
Child |
10352476 |
Jan 2003 |
US |