1. Technical Field
The present system relates generally to electroluminescent devices including electroluminescent panels, and more specifically, to electroluminescent devices fabricated from materials including light emitting polymers and particles comprising light emitting polymers that have been encapsulated with conductive polymers and/or insulative polymers.
Problem:
The short lifetime of organic light emitting polymers (LEPs) is presently a major impediment to their use in commercial environments. Organic LEPs are unstable when exposed to air and humidity. In addition to oxygen, other contaminants present in air, such as ozone and NII3 also adversely affect the useful lifetime of LEPs.
Heretofore, lamps fabricated from LEPs have been entirely encapsulated, or have had exposed surfaces coated with protective layers to achieve stability. This large-scale encapsulation/coating process is costly, and requires the use of relatively expensive transparent material.
In addition, the phosphors used in previous EL devices require relatively high voltage, typically in range of about 60 to about 300 V AC. What is needed is an electroluminescent device that requires minimal operating voltage and that exhibits long term stability in an environment containing various contaminants, such as outdoors or in industrial facilities.
Solution
The present electroluminescent display device employs organic light emitting polymer (LEP) particles encapsulated with a conductive polymer or thin, insulative polymer to provide LEP stability. The encapsulated particles are formulated into an ink system that can be printed to form a light emitting device.
Devices fabricated from light emitting polymers provide a number of advantages over phosphor electroluminescent devices including higher possible luminosity and low voltage/low current requirements resulting in low power consumption. These electrical characteristics are compatible with low voltage batteries, and allow long life with 9 volt or 1.5 volt “AA” batteries. This low power requirement makes solar powered LEP devices feasible for remote and mobile applications.
In addition, the electroluminescent LEP display device of the present invention is highly resistant to thermal shock and cycling, making it particularly suitable for use outdoors where ambient temperatures often fluctuate by large amounts.
Furthermore, in contrast to existing electroluminescent panels, such characteristics are achieved by the present invention without encapsulating the panel in an expensive material that in turn increases the cost of the panel and limits the freedom of design. The encapsulation of the LEP particles that are used to provide electroluminescence of the present invention provide protection from environmental contaminants, thus prolonging the life span of the panels.
Because of the inherent ability of the present device to function advantageously in weather extremes and also to operate for long periods of time on low voltage batteries, displays fabricated in accordance with the present invention are particularly suited to applications such as bicycle or motorcycle helmets as well as being affixed to various types of vehicles to improve their visibility and the safety of the rider or occupants. Such an illumination system also provides a mechanism for conveying an easily visible message in the form of a design logo or written information, which can be easily used on helmets and vehicles to promote brand awareness.
Panels fabricated in accordance with the present invention may be used in practically any application, indoors or outdoors, where incandescent, fluorescent, or halogen lighting is presently used.
U.S. patent application Ser. No. 09/815,078, filed Mar. 22, 2001, for an “Electroluminescent Multiple Segment Display Device”, discloses a system for fabricating an electroluminescent display device from materials including light emitting polymers (LEPs), the disclosure of which is herein incorporated by reference. The present electroluminescent device may include functional layers which comprise compounds that are organic or inorganic, or combinations thereof. Such a device is termed an organic/inorganic hybrid. The present electroluminescent device further includes an illumination layer comprising light emitting polymers (LEP) or LEP particles which have been encapsulated with a conductive polymer or thin, transparent or semi-transparent insulative polymer (e.g., polyvinylbutyral, Teflon, or polyethylene, etc.).
In operation, an AC electrical potential having a frequency of between approximately 50 Hz and 1 Khz is applied across electron transporting layer 107 and hole transporting layer 108 to cause illumination of device 100.
LEP Particle Encapsulation Process
Step 205: LEP particles 101 are prepared by micronizing using an air mill or grinding them to an ultimate particle size of approximately 50 microns or less. Note also that small particles are also obtainable directly in the synthetic process for preparation of the polymer. LEPs such as polypyridine, poly(p-phenylenevinylene) or poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] may be used. Additional LEPs include poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]; poly[(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene)-alt-co-(4,4′-biphenylene-vinylene)]; poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(9,10-anthracene)]; poly[9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(4,4′-biphenylene)]; poly[{9,9-dioctyl-2,7-divinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene}]; poly[{9,9-dioctyl-2,7-bis(2-cyanovinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}]; poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylenephenylene)]; poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene}-alt-co-{2,5-bis(N,N′-diphenylamino)-1,4-phenylene}]; poly[9-ethyl-3,6-bis(2-cyanovinylene)carbazolylene)}-alt-co-{2-methoxy-5(2-ethylhexyloxy)-1,4-phenylene}]; poly[9,9-di(2-ethylhexyl)-fluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di-(p-butylphenyl)-1,4-diaminobenzene]; poly[2-(6-cyano-6-methylheptyloxy)-1,4-phenylene); poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[{9,9-dioctylfluorenyl-2,7-diyl}-co-{1,4-(2,5-dimethoxy)benzene}]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-ethylenylbenzene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)]; poly[9,9-dihexylfluorenyl-2,7-divinylenefluorenylene)]; poly[(9,9-dihexyl-2,7-(2-cyanodivinylene)-fluorenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-vinylenephenylene)]; poly[9,9-dioctylfluorenyl-2,7-diyl; poly(9,9-dihexylfluorenyl-2,7-diyl); poly[9,9-di(2-ethylhexyl)-fluorenyl-2,7-diyl]; poly[9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N′-diphenyl)-N,N′-di(p-butyloxyphenyl)-1,4-diaminobenzene)]; poly[9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-diphenyl)-N,N′-di(p-butyloxy-phenyl)1,4-diaminobenzene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadiazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,10-anthracene)]; poly[9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N′-bis{4-butylphenyl}-benzidine-N,N′-{1,4-diphenylene})]; poly[9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}-1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co(9,ethyl-3,6-carbazole)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co(9,9′-spirobifluorene-2,7-diyl]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(2,5-p-xylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(3,5-pyridine)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co(1,4-phenylene)]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9-di{5-pentanyl}-fluorenyl-2′,7′-diyl; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co(6,6′{2,2′-bipyridine})]; poly[(9,9-dihexylfluorenyl-2,7-diyl)-co(6,6′-{2,2′:6′,2″-terpyridine})]; and poly[9,9-dihexylfluorenyl-2,7-diyl)-co-(N,N′bis{p-butylphenyl}-1,4-diaminophenylene)], all of which are commercially available from American Dye Source, Inc.
In an alternative, LEP particles may comprise OLEDs (organic light emitting devices), which includes organic and inorganic complexes, such as tris(8-hydroxyquinolato)aluminum; tetra(2-methyl-8-hydroxyquinolato)boron; lithium salt; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; 9,10-di[(9-ethyl-3-carbazoyl)-vinylenyl)]-anthracene; 4,4′-bis(diphenylvinylenyl)-biphenyl; 1,4-bis(9-ethyl-3-carbazovinylene)-2-methoxy-5-(2-ethylhexyloxy)benzene; tris(benzoylacetonanto)mono(phenanthroline)europium (III); tris(dibenzoylmethane)mono(phenanthroline)europium (III); tris(dibenzoylmethane)mono(5-aminophenanthroline)europium (III); tris(dinapthoylmethane)mono(phenanthroline)europium (III); tris(biphenoylmethane)mono(phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-diphenyl phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dimethyl-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxy-phenanthroline)europium (III); tris(dibenzoylmethane)mono(4,7-dihydroxylox-phenanthroline)europium (III); lithium tetra(2-methyl-8-hydroxyquinolinato)boron; lithium tetra(8-hydroxyquinolinato)boron; 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl; bis(8-hydroxyquinolinato)zinc; bis(2-methyl-8-hydroxyquinolinato)zinc; Iridium (III) tris(2-phenylpyridine); tris(8-hydroxyquinoline)aluminum; and tris[1-phenyl-3-methyl-4-(2,2-dimethylpropan-1-oyl)-pyrazolin-5-one]-terbium, many of which are commercially available from American Dye Source, Inc.
Light emitting polymers and OLEDs operate off low voltage and are more readily adaptable to being applied in thin layers than phosphors containing zinc sulfide, which exhibit graininess when applied as a thin coating.
Step 210: LEP particles 101 are then coated with a conductive polymer 102 or, alternatively, a thin, insulative polymer using a fluidized bed coater. In this process, the particles are fluidized in an air or nitrogen stream and material 102 spray coated onto the particles to form encapsulated particles 103.
Step 215: A Printing ink 104 is then formulated by mixing the LEP particles and binder polymers (e.g. poly(methylmethacrylate) or poly(butylmethacrylate) in a suitable solvent. Other suitable binder polymers may be any suitable thermoplastic, including poly(vinylbutyral), poly(vinylalcohol), poly(vinylchloride), polycarbonate, polystyrene, poly(vinylidene chloride), poly(vinylidene fluoride), poly(acrylonitrile), poly(oxyethylene), cellulose esters, cellulose ethers, nylon 6,6, nylon 12, nylon 6,12, poly(ethylene oxide), poly(ethylene-co-vinylacetate), poly(vinylcarbazole), poly(caprolactone), polysulfone, poly(vinylpyrrolidone), poly(4-vinylphenol), poly(methyloctadecylsiloxane), and the like. Other binder systems that may be employed include systems employing thermosetting resins, for example, systems with urethane and epoxies, as well as UV-curable binder systems.
Functional Stack Printing Process
In an exemplary embodiment, a functional electroluminescent device 100 is fabricated as a plurality of layers, called a ‘stack’, in accordance with the following steps:
Step 220: Print rear electrode (REL) (electron transport layer) 107 onto a suitable substrate in a desired pattern.
Step 225: Print LEP ink layer 104 onto the rear electrode patterns 107.
Step 230: Print transparent hole transporting electrode 108 onto LEP layer 104.
Step 235: Print front outlining electrode lead (FOEL) 106 onto hole transporting electrode 108. Print appropriate connection leads (Ag, C, or any suitable conductor) to rear electrode 107 and FOEL 106.
In the present embodiment, the rear electrode (electron transport layer) and transparent electrode (hole transport layer) are fabricated using conductive polymers to provide a totally polymeric system without metals or metallic compounds. It should be noted that although, in the embodiment described above, each of the layers is applied in steps 220 through 235 is applied by a printing process, any of these layers may be applied by any suitable method for depositing the layer material onto the corresponding stack element.
Rear electrode 402 is formed of an electrically conductive material, e.g., silver or carbon particles. Dielectric layer 403 is formed of high dielectric constant material, such as barium titanate. Illumination layer 404 is formed of LEP particles, as described above. Front electrode 406 may be formed of silver particles or other electrically conductive material.
At step 505, rear electrode 402 is applied over a front surface of substrate 401. In an exemplary embodiment, rear electrode 402 is formed of conductive particles, e.g. silver or carbon, dispersed in a polymeric or other binder to form a screen printable ink. In one embodiment, rear electrode 402 may comprise a silver particle ink such as DuPont 7145. Alternatively, rear electrode 402 may comprise a conductive organic polymer such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). In an exemplary embodiment, a carbon rear electrode 402 may have a thickness of between approximately 2×10−4 inches and 6×10−4 inches. It is to be noted that rear electrode layer 402, as well as each of the layers 403-406 that are successively applied in fabricating device 100, may be applied by any appropriate method, including an ink jet process, a stencil, flat coating, brushing, rolling, spraying, etc.
Rear electrode layer 402 may cover the entire substrate 401, but this layer 402 typically covers only the illumination area (the area covered by LEP layer 404, described below).
At step 510, optional dielectric layer 403 is applied over rear electrode layer 402. In an exemplary embodiment, dielectric layer 403 comprises a high dielectric constant inorganic material, such as barium titanate dispersed in a polymeric binder to form a screen printable ink. In one embodiment, the dielectric may be an ink such as DuPont 7153. Dielectric layer 403 may cover substrate 401 either entirely, or may alternatively cover only the illumination area. Alternatively, dielectric layer 403 may include a high dielectric constant inorganic material such as alumina oxide dispersed in a polymeric binder. The alumina oxide layer is applied over rear electrode 402 and cured by exposure to UV light. In an exemplary embodiment, dielectric layer 403 may have a thickness of between approximately 6×10−4 inches and 1.5×10−3 inches.
In accordance with one embodiment, dielectric layer 403 has substantially the same shape as the illumination area, but extends approximately 1/16″ to ⅛″ beyond the illumination area. Alternatively, dielectric layer 403 may cover substantially all of substrate 401.
At step 515, illumination layer 404 is applied over dielectric layer 403. Illumination layer 404 is formulation in accordance with the process described above with respect to
At step 520, conductive layer 405 is printed over LEP layer 404, extending about 1/16″ to ⅛″ beyond LEP area 404. The distance beyond the Illumination layer to which conductive layer 405 extends is a function of the size of the device. Accordingly, the extension of conductive layer 405 beyond Illumination area 404 may advantageously be between approximately 2 percent and 10 percent of the width of Illumination layer 404. In an exemplary embodiment, conductive layer 405 comprises an inorganic compound such as indium tin oxide (ITO) particles in the form of a screen printable ink such as DuPont 7160. In an alternative embodiment, conductive layer is non-metallic and is translucent or transparent, and comprises an organic conductive polymer, such as polyaniline, pyrrole, or poly(3,4-ethylenedioxythiophene). In an exemplary embodiment, an ITO conductive layer 405 may have a thickness of between approximately 2×10−4 inches and 5×10−4 inches.
At step 525, a front electrode, or more specifically, a front outlining electrode layer 406, comprising a conductive material such as silver or carbon, is applied onto the outer perimeter of conductive layer 405 to transport energy thereto. Front electrode 406 is typically 1/16″ to ⅛″ wide strip, approximately 2 percent to 20 percent of the width of conductive layer 405, depending on the current drawn by device 100 and the length of the device from the controller or power source. For example, front electrode 406 may be approximately ⅛″ wide for a 50″ wide run from the controller.
Front electrode leads may be screen printed onto substrate 401, or may be fabricated as interconnect tabs extending beyond the substrate to facilitate connection to a power source or controller. In one embodiment, front outlining electrode layer 406 contacts substantially the entire outer perimeter of conductive layer 405 and does not overlap rear electrode 402. In an alternative embodiment, front electrode 406 contacts only about 25% of the outer perimeter of conductive layer 405. The front electrode may be fabricated to contact any amount of the outer perimeter of conductive layer 405 from about 25% to about 100%. Front outlining electrode 406 may, for example, comprise silver particles that form a screen printable ink such as DuPont 7145. In an alternative embodiment, front outlining electrode 406 is non-metallic and is translucent or transparent, and comprises an organic conductive polymer, such as polyaniline, polypyrrole, or poly(3,4-ethylenedioxythiophene). Fabricating front and rear electrodes 406/402 with polymers such as the aforementioned compounds would make device 100 more flexible, as well as more durable and corrosion resistant. In an exemplary embodiment, a silver front outlining electrode layer 406 may have a thickness of between approximately 8×10−4 and 1.1×10−3 inches.
This application is a divisional of U.S. patent application Ser. No. 10/135,599, filed Apr. 30, 2002, which was a nonprovisional of U.S. Patent Application No. 60/287,321, filed Apr. 30, 2001, entitled “Electroluminescent Device Fabricated With Encapsulated Light Emitting Polymer Particles”, and U.S. Patent Application No. 60/287,612, filed Apr. 30, 2001, entitled “Electroluminescent Device Fabricated With Encapsulated Light Emitting Polymer Particles”, each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60287321 | Apr 2001 | US | |
60287612 | Apr 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10135599 | Apr 2002 | US |
Child | 11260738 | Oct 2005 | US |