This invention relates to electroluminescent display devices, particularly active matrix display devices having thin film switching transistors associated with each pixel.
Matrix display devices employing electroluminescent, light-emitting, display elements are well known. The display elements may comprise organic thin film electroluminescent elements, for example using polymer materials, or else light emitting diodes (LEDs) using traditional III-V semiconductor compounds. Recent developments in organic electroluminescent materials, particularly polymer materials, have demonstrated their ability to be used practically for video display devices. These materials typically comprise one or more layers of a semiconducting conjugated polymer sandwiched between a pair of electrodes, one of which is transparent and the other of which is of a material suitable for injecting holes or electrons into the polymer layer. The polymer material can be fabricated using a CVD process, or simply by a spin coating technique using a solution of a soluble conjugated polymer. Ink-jet printing may also be used. Organic electroluminescent materials exhibit diode-like I-V properties, so that they are capable of providing both a display function and a switching function, and can therefore be used in passive type displays. Alternatively, these materials may be used for active matrix display devices, with each pixel comprising a display element and a switching device for controlling the current through the display element.
Display devices of this type have current-addressed display elements, so that a conventional, analogue drive scheme involves supplying a controllable current to the display element. It is known to provide a current source transistor as part of the pixel configuration, with the gate voltage supplied to the current source transistor determining the current through the display element. A storage capacitor holds the gate voltage after the addressing phase. However, different transistor characteristics across the substrate give rise to different relationships between the gate voltage and the source-drain current, and artefacts in the displayed image result.
The very low mobility of electrons and the variation of threshold voltages with time has prohibited the use of amorphous silicon TFTs for the active matrix pixels. As a result of this low mobility, amorphous silicon cannot be used to implement PMOS TFTs. The use of NMOS only transistors within the pixel circuit thus limits the use of amorphous silicon.
The development of TFT array technologies has been driven by the widespread use of such arrays in liquid crystal displays. Indeed, there has been much interest in improving arrays of thin film transistors (TFTs) which are used to form the switching elements for flat panel liquid crystal displays.
Hydrogenated amorphous silicon is currently used as the active layer in thin film transistors (TFTs) for active matrix liquid crystal displays. This is because it can be deposited in thin, uniform layers over large areas by plasma enhanced chemical vapour deposition (PECVD). However, the very low carrier mobility mentioned above reduces the switching speed of devices and prevents the use of these transistors in display driver circuitry. Amorphous silicon TFTs are also relatively unstable and are useful for display applications only because the duty cycle is relatively low.
Crystalline silicon is required for the higher speed driver circuitry, which necessitates both a driving circuit panel and a display panel within a display device, with interconnections between these two circuit types.
Microcrystalline silicon TFTs have been suggested as a suitable technology both for liquid crystal driver circuitry and for the pixel transistors. This proposal is driven by the desire to integrate the driver circuitry onto the same substrate as the active plate of the liquid crystal display. However, it is also not possible to form suitable PMOS TFTs from microcrystalline silicon, so that the same limitations apply in the design of pixel circuits.
The electroluminescent display element 2 comprises an organic light emitting diode, represented here as a diode element (LED) and comprising a pair of electrodes between which one or more active layers of organic electroluminescent material is sandwiched. The display elements of the array are carried together with the associated active matrix circuitry on one side of an insulating support. Either the cathodes or the anodes of the display elements are formed of transparent conductive material. The support is of transparent material such as glass and the electrodes of the display elements 2 closest to the substrate may consist of a transparent conductive material such as ITO so that light generated by the electroluminescent layer is transmitted through these electrodes and the support so as to be visible to a viewer at the other side of the support. Typically, the thickness of the organic electroluminescent material layer is between 100 nm and 200 nm. Typical examples of suitable organic electroluminescent materials which can be used for the elements 2 are known and described in EP-A-0 717446. Conjugated polymer materials as described in WO 96/36959 can also be used.
The drive transistor 22 in this circuit is implemented as a PMOS TFT, so that the storage capacitor 24 holds the gate-source voltage fixed. This results in a fixed source-drain current through the transistor, which therefore provides the desired current source operation of the pixel.
Replacing the drive transistor 22 with an NMOS device (which would be required to enable an amorphous silicon or microcrystalline silicon implementation) does not provide correct operation of the pixel circuit, as the gate-source voltage then depends upon the anode voltage of the display element 2 (which is connected to the NMOS TFT source). The capacitor therefore does not hold the gate-source voltage constant, as required. Furthermore, it is desirable to maintain the circuitry on the anode side of the LED, because it is difficult to pattern the cathode metal. so that it is not appropriate simply to invert the circuit to allow the drive transistor to be implemented as an NMOS device.
According to the invention, there is provided an active matrix electroluminescent display device comprising an array of display pixels, each pixel comprising:
an electroluminescent display element;
an amorphous silicon or microcrystalline silicon first drive NMOS transistor connected between the anode of the display element and a power supply line;
a storage capacitor between the anode of the display element and the gate of the drive transistor; and
an amorphous silicon or microcrystalline silicon second drive NMOS transistor for supplying a holding voltage to the anode of the display element.
This arrangement enables the voltage across the display element to be held while the transistor gate drive voltage is stored on the storage capacitor. As the drive transistor is an NMOS device, the source is connected to the anode of the display element, so that this arrangement has the effect of holding the transistor source voltage to a known level while the drive voltage is stored on the storage capacitor. This enables an accurate current source pixel circuit to be implemented using NMOS transistors.
The second drive transistor is preferably connected between the power supply line and the anode of the display element. In this way, the power supply line can supply both the holding voltage and the drive voltage for driving the display element.
Alternatively, the second drive transistor can be connected between a second power supply line and the anode of the display element. This second power supply line can be shared between pixels in a row of the array.
The gate of the first drive transistor may be coupled to a data signal line, for example a column conductor, through an address transistor driven by a row conductor. A pixel drive signal is thus coupled to the pixel in known manner.
The first and second drive transistors (and all other transistors in the circuit) are preferably microcrystalline silicon TFTs comprising silicon crystallites of size 40 nm-140 nm in an amorphous silicon matrix. These transistors have improved carrier mobility and yet can still be deposited using a PECVD process. If the crystallites are large enough, then extended state conduction is enhanced and the mobility increased, approximately by a factor of 10 compared to amorphous silicon layers.
The invention also provides a method of driving the pixels of an active matrix electroluminescent display device comprising an array of display pixels each having an electroluminescent display element, the method comprising:
holding the voltage across the display element by applying a holding voltage through a first amorphous silicon or microcrystalline silicon NMOS transistor, the holding voltage holding the source voltage of a second amorphous silicon or microcrystalline silicon NMOS transistor;
while holding the voltage across the display element, storing a desired gate-source voltage on a storage capacitor connected between the gate and source of the second transistor, the gate-source voltage corresponding to a desired source-drain current for driving the display element;
removing the holding voltage from the display element; and
driving the desired source-drain current through the electroluminescent display element.
In this method, a holding voltage is applied to the so that the source of the drive transistor is held at a fixed potential, so that a desired gate-source voltage can be accurately stored on a storage capacitor. The desired source-drain current is then driven through the second transistor by applying a first power supply voltage to the second transistor.
The invention will now be described by way of example with reference to the accompanying drawings, in which:
It should be noted that these figures are diagrammatic and not drawn to scale. Relative dimensions and proportions of parts of these figures have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings.
In accordance with the invention, amorphous or microcrystalline silicon transistors are used within the pixel structure. This requires the TFTs to be NMOS devices, as explained above.
In the pixel arrangement of the invention, the drive transistor 22 is implemented as an amorphous silicon or microcrystalline silicon NMOS TFT. The pixel circuitry is provided on a substrate on the anode side of the EL display element 2, and the source of the NMOS drive transistor is thus in electrical contact with anode of the EL display element.
The storage capacitor 24 is provided between the anode of the display element 2 and the gate of the drive transistor 22 and is thereby charged to the gate-source voltage of the drive transistor 22 when it is addressed. As the source is connected to the EL display element, which will not have a constant voltage drop across it, the potential of the source may vary so that a given voltage from the column conductor 6 will not necessarily result in the same gate-source voltage stored on the storage capacitor 24. To ensure that a voltage on the column conductor has a known one-to-one relationship with the resulting gate-source voltage, it is necessary to hold the voltage of the EL display element anode.
To achieve this, the pixel circuit of the invention includes a second drive NMOS transistor 30 for supplying a holding voltage to the anode of the display element 2. This holding voltage is supplied when the gate-source voltage is being transferred to the storage capacitor 24.
In the example of
During an addressing phase, the second drive transistor 30 is turned on to hold the anode of the EL display element to the voltage on the second power supply line (less any source-drain voltage drop). The signal data voltage on the column conductor 6 then charges the storage capacitor 24 to a known gate-source voltage which corresponds to the desired source-drain current of the first drive transistor 22, which in turn corresponds to the desired level of illumination of the EL display element 2. At the end of the addressing phase, the row conductor 4 is brought low to turn off the address transistor 16, and subsequently the gate line 34 is brought low, thereby allowing potential on the EL display element anode to vary. As this potential varies, the gate voltage varies as the gate-source voltage is preserved by the storage capacitor 24.
This circuit requires the transistor 30 to be large so that all current from the drive transistor 22 can be directed to the second power supply line 32 without any voltage drop. A large additional transistor can use pixel aperture, and
In
In an addressing phase of this pixel circuit, the power supply line 26 is held at a low potential so that the first drive transistor 22 does not conduct. Thus, the second drive transistor 30 is required only to discharge any residual charge on the EL display element 2 and to provide a charging path for the storage capacitor 24. The power supply line 26 is held low while all pixels are addressed. When addressing is finished, all address lines (row conductor 4 and gate lines 34) are brought low and the power supply line 26 is then brought high so that the LEDs light up. The flashing of the power supply line 26 will have the advantage of reduced sample and hold for motion blur reduction.
In this circuit, the row conductors 4 and the gate lines 34 may be connected together so that no increase in the number of row conductors is required. The power supply line 26 can be modulated on a row-by-row basis or on an image-by-image basis.
In the two circuits above, all transistors are NMOS transistors, which may be formed from amorphous silicon. However, a preferred technology is microcrystalline silicon TFTs. These comprise silicon crystallites of size 40 nm-140 nm in an amorphous silicon matrix. The EL display element may be any known organic EL display element, including polymer EL display elements.
These pixel layouts are addressed using a method by which a voltage across the display element is held during an addressing phase, which in turn holds the source voltage of the drive transistor. While this source voltage is held, a desired gate-source voltage is stored on the storage capacitor corresponding to a desired source-drain current for driving the display element. The holding voltage is then removed from the display element and the desired source-drain current is driven through the electroluminescent display element.
Whilst two examples of circuits have been given showing how the invention can be implemented, various other possibilities exist and are intended to fall within the scope of the claims. The various modifications will be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
0218170.9 | Aug 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/03202 | 7/22/2003 | WO | 00 | 12/14/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/015667 | 2/19/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6548960 | Inukai | Apr 2003 | B2 |
6734636 | Sanford et al. | May 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
7623098 | Yamazaki et al. | Nov 2009 | B2 |
20010002703 | Koyama | Jun 2001 | A1 |
20010019327 | Kim et al. | Sep 2001 | A1 |
20020105040 | Yamazaki et al. | Aug 2002 | A1 |
20020113760 | Kimura | Aug 2002 | A1 |
20020180671 | Inukai | Dec 2002 | A1 |
20030030382 | Koyama | Feb 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030095087 | Libsch et al. | May 2003 | A1 |
20030111964 | Childs | Jun 2003 | A1 |
20030146912 | Sung et al. | Aug 2003 | A1 |
20040100430 | Fruehauf | May 2004 | A1 |
20040227709 | Lih et al. | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060113919 A1 | Jun 2006 | US |