The present application is a Section 371 National Stage Application of International Application No. PCT/CN2020/080378, filed Mar. 20, 2020, entitled “ELECTROLUMINESCENT DISPLAY PANEL AND DISPLAY APPARATUS INCLUDING THE SAME”, which claims the benefit of Chinese Patent Application No. 201910450505.0 filed on May 28, 2019 in the National Intellectual Property Administration of China, the disclosure of which is incorporated herein by reference in entirety.
The present disclosure relates to the field of display technologies, especially to an electroluminescent display panel and a display apparatus including the same.
In the display industry, OLED display panels have the advantages of clear image quality, practicality of forming flexible products, lightness and thinness, etc. Due to the light and thin design of OLED display panels, requirements of encapsulation effects of OLED display panels are relatively high. However, in the related art, edges of OLED display panels are prone to cracks, especially when the edges of OLED display panel suffer impacts, it is easy for water and oxygen to invade, causing failure of the encapsulation of the OLED display panel, thus the service life of the OLED display panel is shortened.
The above information disclosed in this section is only for understanding the background of the present disclosure, thus, the above information may include information that does not constitute the prior art.
In one aspect, an electroluminescent display panel is provided, comprising: a base substrate, the base substrate comprising a display region and a non-display region arranged along a periphery of the display region; an encapsulating structure on the base substrate, the encapsulating structure extending from the display region to the non-display region; and a crack dam structure on the base substrate, the crack dam structure being located at an edge of the non-display region, and being located on a side of the encapsulating structure away from the display region, the crack dam structure comprising: an inorganic layer on the base substrate, the inorganic layer comprising a plurality of dams and a plurality of slots, the plurality of dams and the plurality of grooves being located at an edge of a side of the inorganic layer away from the display region; and an organic layer, the organic layer being disposed on the inorganic layer, covering at least the plurality of dams and filling the plurality of slots, wherein a surface of the organic layer away from the base substrate comprises at least a non-planar structure.
According to some exemplary embodiments, the non-planar structure comprises at least one stress groove, and each stress groove is provided with a groove opening away from the base substrate and a groove bottom close to the base substrate.
According to some exemplary embodiments, an orthographic projection of the non-planar structure on the base substrate falls within an orthographic projection of a combination of the plurality of dams and the plurality of slots on the base substrate.
According to some exemplary embodiments, there are a plurality of stress grooves, and the number of the stress grooves is equal to the number of the slots.
According to some exemplary embodiments, orthographic projections of the groove bottoms of the plurality of stress grooves on the base substrate fall within orthographic projections of the plurality of slots on the base substrate, respectively.
According to some exemplary embodiments, a vertical distance between the groove bottom of each stress groove and the base substrate is greater than a vertical distance between a surface of the dam away from the base substrate and the base substrate.
According to some exemplary embodiments, a width of the stress groove in a radial direction decreases gradually or remains unchanged from the groove opening towards the groove bottom, and the radial direction is a direction from a center of the display panel to an edge of the display panel.
According to some exemplary embodiments, the groove bottom of the stress groove comprises a planar surface, a curved surface, or a combination of a planar surface and a curved surface.
According to some exemplary embodiments, structures of the plurality of stress grooves are the same.
According to some exemplary embodiments, the non-planar structure further comprises at least one stress protrusion, and each stress protrusion comprises a convex roof away from the base substrate.
According to some exemplary embodiments, an orthographic projection of the convex roof of the stress protrusion on the base substrate falls within orthographic projections of the plurality of dams on the base substrate.
According to some exemplary embodiments, each stress groove and/or each stress protrusion extends in a peripheral direction of the display panel.
According to some exemplary embodiments, the plurality of dams and the plurality of slots are arranged alternately in the radial direction, and the radial direction is the direction from the center of the display panel to the edge of the display panel.
According to some exemplary embodiments, each slot penetrates the inorganic layer in a direction perpendicular to the base substrate.
According to some exemplary embodiments, the inorganic layer comprises a gate insulating layer and an interlayer dielectric layer.
According to some exemplary embodiments, the organic layer comprises a planarization layer.
In another aspect, a display apparatus is provided, comprising the aforementioned electroluminescent display panel.
The aforementioned and/or additional aspects and advantages of the present disclosure would become apparent and easily understood from the description to the embodiments with reference to the following drawings, wherein:
In the following, embodiments of the present disclosure will be described in more details, examples of the embodiments are shown in the drawings, wherein same or similar reference numerals indicate the same or like elements or elements with the same or similar functions throughout the specification. The embodiments described below with reference to the drawings are exemplary, and are only used for explaining the present disclosure, and should not be construed as limiting the present disclosure.
In the description of the present disclosure, it should be understood that, terms “center”, “transversal”, “length”, “width”, “up”, “down”, “left”, “right”, “top”, “bottom”, “inner”, “outer”, and the like indicating an orientation or a positional relationship based on the orientation or position shown in the drawings, and are only for facilitating describing the present disclosure and simplifying the description, rather than indicating or implying that the indicated device or element must have a particular orientation, be configured and operated in particular orientation, thus they should not be construed as limiting the present disclosure.
It should be noted that, in the following exemplary embodiments, the display panel of embodiments of the present disclosure is described by taking the OLED display panel as an example, however, embodiments of the present disclosure are not limited to this, for example, the display panel of the embodiments of the present disclosure may further comprise other types of electroluminescent display panels including QLED (quantum dot light emitting diode) display panel, or the like.
The OLED display panel 100 according to the embodiments of the present disclosure is described below with reference to
With reference to
Optionally, the OLED display panel 100 may further comprise a buffer layer 14 on the base substrate 11, for example, the buffer layer 14 may be a silicon oxide layer or a silicon nitride layer.
Various structures such as pixel driving circuit, organic light emitting element, encapsulating structure and crack dam structure may be disposed on the buffer layer 14, which will be described in detail below with reference to the drawings.
With reference to
As shown illustratively in
As shown illustratively in
The OLED display panel 100 may further comprise a planarization layer 120c on a side of the source electrode 166 and the drain electrode 168 away from the base substrate 11.
The organic light emitting element 150 comprises an anode 152 and a cathode 156 disposed opposite to each other, and an organic layer 154 is provided between the anode 152 and the cathode 156. The anode 152 is electrically connected to the drain electrode 168 through a via hole which passes through the planarization layer 120c.
The OLED display panel 100 may further comprise an encapsulating structure 140. With reference to
It should be understood that, the encapsulating structure 140 extends from the display region AA to the non-display region NA, so that the organic light emitting element 150 in the interior of the OLED display panel may be protected and avoided from invasion of water and oxygen.
The OLED display panel 100 may further comprise a crack dam structure 1. The crack dam structure 1 is located at an outer edge of the display panel 100, that is, the crack dam structure is located at an edge of the non-display region NA and on a side of the encapsulating structure 140 away from the display region AA. It should be noted that, the crack dam structure 1 is not encapsulated by the encapsulating structure 140, as shown in
With reference to
A plurality of dams 121 and a plurality of slots 122 are provided at an edge of the inorganic layer 12, that is, the plurality of dams 121 and the plurality of slots 122 are located at an edge on a side of the inorganic layer 12 away from the display region AA. The plurality of dams 121 may be arranged in sequence from the outside to the inside. Each dam 121 may extend along an outer edge of the OLED display panel 100 (for example, extend in a direction perpendicular to the principal plane in
It should be noted that, the plan view of the crack dam structure 1 shown in
The inorganic layer 12 may comprise an inorganic layer body 123. The inorganic layer body 123 may be located inside of the plurality of dams 121 and the plurality of slots 122. The plurality of dams 121 and the plurality of slots 122 may be arranged alternately from the outside to the inside, one slot 122 may be defined between two adjacent dams 121, and one dam 121 is formed between two adjacent slots 122. A slot 122 may be defined between the innermost one of the plurality of dams 121 and the inorganic layer body 123. For example, a surface on a side of the inorganic layer 12 away from the base substrate 11 may be recessed towards the base substrate 11 to form the slots 122.
It should be note that, the direction “outside” indicates a direction away from the center of the OLED display panel 100, whose opposite direction is defined as “inside”. An expression “radial direction” in the present disclosure may indicate a direction from the center of the display panel 100 to the edge of the display panel 100, that is the left-right direction in
The crack dam structure 1 may further comprise an organic layer 13. The organic layer 13 may be disposed on the inorganic layer 12, and the organic layer 13 covers at least the plurality of dams 121 and fills the plurality of slots 122. The organic layer 13 may cover only the plurality of dams 12, or the organic layer 13 may cover both the plurality of dams 121 and a part of the inorganic layer body 123. The organic layer 13 may be disposed on the edge of the inorganic layer 12. A plurality of protruding portions 133 may be formed on the organic layer 133, and the plurality of protruding portions 133 may fit into the plurality of slots 122 respectively to fill the plurality of slots 122. Thus, the organic layer 13 may absorb and disperse stress well. In this way, when the outer edge of the display panel 100 suffers an impact, for example, when the OLED display panel 100 falls onto the ground, the organic layer 13 may buffer to a certain extent, thereby the stress concentration may be reduced to a certain extent, cracks may be avoided from generating and entering AA region (effective display region). Water and oxygen may be avoided from intruding along the cracks, that is, the generation of water and oxygen intrusion path may be avoided, thus the encapsulating reliability of the OLED is ensured in a certain extent.
The organic layer 13 covers a plurality of dams 121 and fills a plurality of slots 122, it may be understood that from the appearance of the OLED display panel, the plurality of dams 121 and the plurality of slots 122 cannot be seen directly.
As shown in
Compared with the surface on the side of the organic layer 13 away from the inorganic layer 12 having a planar structure, the non-planar structure in the present disclosure may disperse the stress well when the outer edge of the OLED display panel 100 suffers an impact, thereby further preventing the stress from being too concentrated. In other words, in the embodiments of the present disclosure, the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with a non-planar structure, thereby the stress of the impact could be dispersed well, the cracks may be effectively prevented from generating, and a transmission of the cracks may be avoided, thus the encapsulating reliability of the OLED display panel 100 may be increased.
It should be noted that, an expression “planar” may indicate that connecting lines of any two points in the plane fall within the plane, and an expression “non-planar” may indicate that connecting lines of at least two points do not fall within the plane.
In the OLED display panel 100 according to the embodiments of the present disclosure, the organic layer 13 is provided, and the surface on the side of the organic layer 13 away from the inorganic layer 12 has the non-planar structure. Further, an orthographic projection of the non-planar structure on the base substrate 11 falls within an orthographic projection of a combination of the plurality of dams 121 and the plurality of slots 122 on the base substrate 11. When the outer edge of the OLED display panel 100 suffers an impact, the organic layer 13 may effectively disperse the stress generated due to the impact, thereby preventing the outer edge of the OLED display panel 100 from generating cracks. In this way, the anti-impact capacity of the OLED display panel 100 is increased, the encapsulating reliability of the OLED display panel 100 is increased, the service life of the OLED display panel 100 is increased, and the performance of the product is improved.
In some optional embodiments of the present disclosure, the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with at least one stress groove 131, that is, the non-planar structure comprises at least one stress groove 131. The surface of the organic layer 13 away from the base substrate 11 (for example, the upper surface in
Specifically, when there is one stress groove, the stress groove 131 may extend along the outer edge of the OLED display panel 100 to form an elongated structure; when there are a plurality of stress grooves 131, the plurality of stress grooves 131 may be arranged in sequence from the outside to the inside, each stress groove 131 may extend along the outer edge of the OLED display panel 100 to form an elongated structure. That is to say, each stress groove 131 may extend in a peripheral direction of the OLED display panel 100, as shown in
For example, in examples of
In some other optional embodiments of the present disclosure, the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with at least one stress protrusion 132, that is, the non-planar structure further comprises a stress protrusion 132. The surface of the organic layer 13 away from the base substrate 11 (for example, the upper surface in
Specifically, when there is one stress protrusion 132, the stress protrusion 132 may extend along the outer edge of the OLED display panel 100 to form an elongated structure; when there are a plurality of stress protrusions 132, and the plurality of stress protrusions 132 may be arranged in sequence from the outside to the inside. Each stress protrusion 132 may extend along the outer edge of the OLED display panel 100 to form an elongated structure. That is to say, each stress protrusion 132 may extend along the periphery of the display panel 100.
For example, in the example of
In some optional embodiments of the present disclosure, the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with at least one stress groove 131 and at least one stress protrusion 132, that is, the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with one stress groove 13 and one stress protrusion 132, or the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with one stress groove 131 and a plurality of stress protrusions 132, or the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with a plurality of stress grooves 131 and one stress protrusion 132, or the surface on the side of the organic layer 13 away from the inorganic layer 12 is provide with a plurality of stress grooves 131 and a plurality of stress protrusions 132. In this way, the surface on the side of the organic layer 13 away from the inorganic layer 12 is formed into the non-planar structure, thereby ensuring that the organic layer 13 may effectively disperse the stress.
Specifically, when there is one stress groove 131 and one stress protrusion 132, the stress groove 131 and the stress protrusion 132 may be arranged from the outside to the inside, the stress groove 131 may be located outside or inside of the stress protrusion 132; when there is one stress groove 131 and there are a plurality of stress protrusions 132, the stress groove 131 and the plurality of stress protrusions 132 may be arranged from the outside to the inside, the stress groove 131 may be located outside or inside of the plurality of stress protrusions 132, or the stress groove 131 may be located between the plurality of stress protrusions 132; when there are a plurality of stress grooves 131 and there is one stress protrusion 132, the stress protrusion 132 and the plurality of stress grooves 131 may be arranged from the outside to the inside, the stress protrusion 132 may be located outside or inside of the plurality of stress grooves 131, or the stress protrusion 132 may be located between the plurality of stress grooves 131; when there are a plurality of stress grooves 131 and there are a plurality of stress protrusions 132, the plurality of stress grooves 131 and the plurality of stress protrusions 132 may be arranged from the outside to the inside, the plurality of stress grooves 131 and the plurality of stress protrusions 132 may be arranged alternately, but the embodiments are not limited thereto, and the plurality of stress grooves 131 and the plurality of stress protrusions 132 may be arranged flexibly.
It should be understood that, the stress groove 131 and the stress protrusion 132 may be distinguished by taking the surface on the side of the organic layer 13 away from the inorganic layer 12 as a base plane, the groove bottom of the stress groove 131 may be below the base plane, and the uppermost point of the stress protrusion 131 (that is, a convex roof) may be above the base plane.
In some embodiments of the present disclosure, as shown in
It should be understood that, when there are a plurality of stress grooves 131, the number of the stress grooves 131 and the number of the slots 122 may be different, so as to facilitate the flexible design of the OLED display panel 100.
Moreover, when the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with stress protrusions 132, the number of the stress protrusions 132 may be equal to or may be different from (as shown in
In the embodiments of the present disclosure, an orthographic projection of the non-planar structure on the base substrate 11 falls within the orthographic projection of the combination of the plurality of dams 121 and the plurality of slots 122 on the base substrate 11.
Optionally, the groove bottoms of the plurality of stress grooves 131 are respectively disposed opposite to the plurality of slots 122, that is, orthographic projections of the groove bottoms of the plurality of stress grooves 131 on the base substrate 11 fall within orthographic projections of the plurality of slots 122 on the base substrate 11, respectively, so as to further effectively reduce the impact force transmitted from the organic layer 13 to the plurality of dams 121. For example, in the examples of
It should be noted that, the groove bottoms of the plurality of stress grooves 131 and the plurality of slots 122 are disposed opposite to each other, respectively, which may include the following cases: the groove bottom of each stress groove 131 and the corresponding slot 122 are just opposite to each other, in this case, the groove bottom of each stress groove 131 is disposed opposite to a center of the corresponding slot 122 in the thickness direction of the OLED display panel 100, but is not limited to this. For example, when the groove bottoms of the plurality of stress grooves 131 and the plurality of slots 122 are disposed opposite to each other, respectively, the stress groove of each stress groove 131 may be offset from the center of the corresponding slot 122, so that the groove bottoms of the plurality of stress grooves 131 and the plurality of dams 121 are in a staggered arrangement in inside-outside direction (for example, left-right direction in
In some optional embodiments of the present disclosure, as shown in
It should be understood that, the structures of the plurality of stress grooves 131 may not be totally the same, and the structure of at least one stress groove 131 of the plurality of stress grooves 131 is different from structures of other stress grooves 131, so that the design of the non-planar structure is flexible, and a diverse design of the OLED display panel 100 is realized, thus the OLED display panel 100 has a good practicability and applicability.
In some embodiments of the present disclosure, as shown in
In some specific embodiments of the present disclosure, a width of a section of the stress groove 131 decreases gradually or remains unchanged from top to bottom, that is, a width of the stress groove 131 in the radial direction (that is the left-right direction in
For example, in the example of
It should be understood that, when the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with the stress protrusions 132, a width of a section of the stress protrusion 132 may increase gradually or remain unchanged from top to bottom, but is not limited to this.
Optionally, the bottom of the stress groove 131 comprises a planar surface, a curved surface, or a combination of different planar surfaces, or a combination of a planar surface and a non-planar surface, so that the design of the stress groove 131 is diverse, which facilitates the flexible design of the OLED display panel 100.
For example, in the example of
It should be understood that, when the surface on the side of the organic layer 13 away from the inorganic layer 12 is provided with stress protrusions 132, the top surface of the stress protrusion 132 may be planar surface, or curved surface (as shown in
As shown in
Optionally, in the examples of
With reference to
With reference to
The display apparatus according to some embodiments of the present disclosure may comprise the OLED display panel 100 according to the above embodiments of the present disclosure. For example, the display apparatus may comprise a housing, and the OLED display panel 100 is disposed in the housing.
In the display apparatus according to the present disclosure, by using the above OLED display panel 100, the service life of the display apparatus is ensured.
The OLED display panel 100 according to the embodiments of the present disclosure will be described below in detail in four specific embodiments with reference to
As shown in
For example, the buffer layer 14 is disposed on the upper surface of the base substrate 11, the inorganic layer 12 is disposed on the upper surface of the buffer layer 14, the inorganic layer 12 comprises an inorganic layer body 123, five dams 121 and five slots 122, the five dams 121 and the five slots 122 are located at the edge of the inorganic layer 12, and the five dams 121 and the five slots 122 are arranged alternately from the outside to the inside, a slot 122 is defined between two adjacent dams 121, a dam 121 is defined between two adjacent slots 122, and a slot 122 is defined between the innermost one of the five dams 121 and the inorganic layer body 123. Wherein, each dam 121 extends along the outer edge of the OLED display panel 100 (for example, extend in a direction perpendicular to the principal plane in
The inorganic layer 12 comprises a first inorganic layer 120a and a second inorganic layer 120b stacked in sequence. The first inorganic layer 120a is an interlayer dielectric layer, the second inorganic layer 120b is a gate insulating layer, and the second inorganic layer 120b is located between the first inorganic layer 120a and the buffer layer 14. Each slot 122 penetrates the first inorganic layer 120a and the second inorganic layer 120a in the up-down direction, so that the five dams 121 are disposed at intervals. Wherein, the first inorganic layer 120a may be a silicon nitride layer, and the second inorganic layer 120b may be a silicon oxide layer.
The organic layer 13 may be disposed on the inorganic layer 12, and the organic layer 13 covers the plurality of dams 121 and a portion of the inorganic layer body 123, and fills the plurality of slots 122. The outer edges of the base substrate 11 and the buffer layer 14 are both located on the outside of the inorganic layer 12. An outer edge of the organic layer 13 is disposed on the upper surface of the buffer layer 14, and an inner edge of the organic layer 13 is disposed on the upper surface of the inorganic layer 12. The organic layer 13 is provided with five protruding portions 133, and the five protruding portions 133 fit into the five slots 122 to fill the corresponding slots 122, respectively, so each protruding portion 133 may be formed by extending a portion of a lower surface of the organic layer 13 downwardly to the buffer layer 14. Wherein, the material of the organic layer 13 may include polyimide.
The surface on the side of the organic layer 13 away from the inorganic layer 12 (for example, the upper side of
The OLED display panel 100 according to the embodiments of the present disclosure has a simple structure, and is convenient for processing, and the periphery of the OLED display panel 100 may be effectively prevented from generating cracks, thereby the encapsulating reliability is increased.
As shown in
As shown in
As shown in
In the description of this specification, the description with reference to terms “one embodiment”, “some embodiments”, “exemplary embodiments”, “examples”, “specific examples”, or “some examples” or the like means that the specific features, structures, materials or characteristics described in conjunction with the embodiments or examples are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms do not necessarily indicate the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
Although the embodiments of the present disclosure have been shown and described, those of ordinary skill in the art can understand that various changes, modifications, substitutions, and variations may be made to these embodiments without departing from the principle and purpose of the present disclosure. The scope of the present disclosure shall be defined by the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201910450505.0 | May 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/080378 | 3/20/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/238355 | 12/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9634287 | Shin | Apr 2017 | B1 |
10319308 | Lee et al. | Jun 2019 | B2 |
10396310 | Choi et al. | Aug 2019 | B2 |
10572056 | Gwon | Feb 2020 | B2 |
10629845 | Kim | Apr 2020 | B2 |
10692953 | Yoon et al. | Jun 2020 | B2 |
11342532 | Liu | May 2022 | B2 |
20160204373 | Park | Jul 2016 | A1 |
20160285038 | Kim | Sep 2016 | A1 |
20160336541 | Kim | Nov 2016 | A1 |
20170033312 | Kim | Feb 2017 | A1 |
20170047541 | Ishii et al. | Feb 2017 | A1 |
20170069873 | Kim | Mar 2017 | A1 |
20170077456 | Chung | Mar 2017 | A1 |
20180006256 | Tojo | Jan 2018 | A1 |
20180047802 | Yoon et al. | Feb 2018 | A1 |
20180102502 | Kim | Apr 2018 | A1 |
20180159077 | Lee | Jun 2018 | A1 |
20180166019 | Lee | Jun 2018 | A1 |
20180226612 | Choi et al. | Aug 2018 | A1 |
20180366520 | Gwon | Dec 2018 | A1 |
20190013374 | Park | Jan 2019 | A1 |
20190214587 | Kim | Jul 2019 | A1 |
20190295475 | Lee et al. | Sep 2019 | A1 |
20190312226 | Huang | Oct 2019 | A1 |
20200006461 | Cho | Jan 2020 | A1 |
20200273944 | Yoon et al. | Aug 2020 | A1 |
20200279902 | Xiong | Sep 2020 | A1 |
20210066650 | Yu et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
106653818 | May 2017 | CN |
107731869 | Feb 2018 | CN |
108010921 | May 2018 | CN |
108231791 | Jun 2018 | CN |
207719213 | Aug 2018 | CN |
110120465 | Aug 2019 | CN |
110400891 | Nov 2019 | CN |
110416273 | Nov 2019 | CN |
3333896 | Jun 2018 | EP |
3333896 | May 2021 | EP |
20180091987 | Aug 2018 | KR |
Entry |
---|
First Chinese Office Action dated Jul. 17, 2020 for Chinese Patent Application No. 201910450505.0, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20210265594 A1 | Aug 2021 | US |