This invention relates generally to devices used to prevent elongation and stress loading of sensitive components of a downhole tool such as, but not limited to, the electronic components of electrical submersible pump (“ESP”) gauges and to maintain sensitive component integrity under high tensile loads and large thermal expansions. The sensitive component is typically the electronics associated with a gauge, but could be any component where high tensile loading is undesirable (e.g., the choke assembly of the gauge). The following disclosure uses an ESP gauge as an exemplar downhole tool to which has sensitive components.
Prior art shows ESP gauges use a fixed connection between the outer housing and the electronics on both ends of the gauge. Other gauges use a spring design inside the outer housing to allow for tolerance stack up and minimal thermal expansion. Both designs do not completely isolate the electronics from load transferred by the outer housing.
If a gauge with the fixed connection is introduced to high tensile load or has significant varied thermal expansion occur between different materials (or both high tensile load and varied thermal expansion), load is transferred between the outer housing and the electronics and the choke assembly. Gauges using a spring connection are not completely free of induced loading, as the spring itself can transfer load from the outer housing to the electronics and the choke assembly. In the spring connection design the electronics are not supported as well radially about the gauge as in the fixed connection design.
Because the fixed- and spring-connection designs transfer load to the electronics, neither design is ideal when the gauge is required to carry high tensile loads. Therefore, a need exists for a system and method of attaching an electronics module and choke assembly to the outer housing of a downhole pressure gauge to allow for high tensile loading of the housing (e.g., typically about 10,000 lbs and above) without transferring the load to the sensitive components. The system and method will also eliminate extra stress on the sensitive components produced by the outer housing due to dissimilar heat expansion of the metals.
A mount made according to this invention for use with a downhole tool such as, but not limited to, an electrical submersible pump (“ESP”) gauge includes a mounting to means that does not use a fixed- or spring-connection but rather makes use of a sliding joint. The sliding joint is configured at one end to receive the electronics module or the choke assembly of the downhole tool and the other end is in communication with a head (or base) of the downhole tool.
The sliding joint is arranged relative to the gauge so that a radial movement of the sliding joint is restricted (i.e., head of the downhole tool, the sliding joint, and gauge are kept centered relative to one another) and an axial movement of the sliding joint is permitted. Unlike the prior art designs, the sliding joint isolates the electronics module and the choke assembly from an axial load when the gauge is in use.
Objects of this invention are to provide mounting means for a downhole tool which (1) allows for independent axial elongation of the outer housing and sensitive components while still supporting the radial load and without inducing stress into the sensitive components; (2) can be used in retrofit applications; (3) in the case of ESP applications, can be used with an inverted ESP motor setup (i.e., gauge mounted above the motor); and (4) can be used to reduce or eliminate the negative effects of thermal expansion.
15 Outer housing
17 Inside diameter
20 Mounting means
25 Sliding joint
30 Choke adapter
33 Tapered portion
35 Outside diameter
37 O-ring groove
39 O-ring
50 Head adapter
53 Tapered portion
55 Counterbore
70 Head
71 Screw holes
75 Tapered portion
77 Inside diameter
80 Choke assembly
85 Choke insulator
87 Choke end (combined choke adapter 30 and choke insulator 85)
90 Head end (combined head 70 and head adapter 50)
97 Inside diameter wall surface
Referring to
In a preferred embodiment, which is intended primarily for retrofit applications, the sliding joint 25 includes a choke adaptor 30 and a head adapter 50. Preferably, the head adapter 50 is configured so that it may be affixed to prior art heads 70 by using the existing screw holes 71 in the head 70 Similarly, the choke adapter 30 is configured so that it mounts to the choke assembly 80 using the existing screw holes (not shown) of the choke assembly 80
The outside diameter 35 of the choke adapter 30 includes an O-ring groove 37 for receiving an O-ring 39 (see
The relationship between the head 70, head adapter 50, and the choke adapter 30 is such that it self-aligns for ease of assembly. The relationship also restricts movement in the radial direction but, because of the choke adapter 30, permits movement in an axial direction, thereby relieving the sensitive components of any tensile load or stress. Preferably, movement in the radial direction is restricted to no more than 1/16 of an inch (˜1.58 mm) and, more preferably, to no more than 1/32 of an inch (˜0.79 mm) In one embodiment, movement in the radial direction is no greater than 1/64 of an inch (˜0.40 mm). The sliding joint 25 can be solidly mounted at either end of the choke assembly 80 or the electronics module, thereby making it useful as a mounting means 20 in ESP applications where the gauge is mounted above the ESP motor.
The head 70 includes a tapered portion 75 that receives a complementary tapered portion 53 of the head adapter 50 (see
In an alternate embodiment (see
The above embodiment, which uses a head adapter 50, is intended to allow for existing components to be retrofitted with this design. For new designs, there are alternative concepts which eliminate the need for the head adapter 50 and use a single piece head 90 (see
For example, in an alternate embodiment of the mounting means 20, the O-ring 39 slides on the inside diameter 17 of the outer housing 15 without the need for the head adapter 50 (see
In another alternate embodiment of the mounting means 20, the head 70 and head adapter 50 are combined into a single piece head end 90. The inside diameter 97 of the head end 90 is configured so that the O-ring 39 slides on the inside diameter 97 of the head end 90 without the need for the head adapter 50 (see e.g.,
In yet another preferred embodiment, the head 70 and head adapter 50 are combined into a single piece head end 90, as is the choke insulator 85 and choke adapter 30 which are combined to form choke end 87 (see
While preferred embodiments of a mounting means for an ESP gauge have been described, certain modifications can be made by persons of ordinary skill in the art by making use of equivalent elements to those recited in the following claims and without those modifications, or the modified design, departing from the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
1208940.5 | May 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB13/51111 | 4/30/2013 | WO | 00 |