The present description relates generally to systems for rebalancing cells for use in redox flow battery systems and methods for operating such rebalancing cells.
Redox flow batteries are suitable for grid-scale storage applications due to their capability for scaling power and capacity independently, as well as for charging and discharging over thousands of cycles with reduced performance losses in comparison to conventional battery technologies. An all-iron hybrid redox flow battery is particularly attractive due to incorporation of low-cost, earth-abundant materials. In general, iron redox flow batteries (IFBs) rely on iron, salt, and water for electrolyte, thus including simple, earth-abundant, and inexpensive materials, and eliminating incorporation of harsh chemicals and reducing an environmental footprint thereof.
The IFB may include a positive (redox) electrode where a redox reaction occurs and a negative (plating) electrode where ferrous iron (Fe2+) in the electrolyte may be reduced and plated. Various side reactions may compete with the Fe2+ reduction, including proton reduction, iron corrosion, and iron plating oxidation:
H++e−↔½H2 (proton reduction) (1)
Fe0+2H+↔Fe2++H2 (iron corrosion) (2)
2Fe3++Fe0↔3Fe2+ (iron plating oxidation) (3)
As most side reactions occur at the plating electrode, IFB cycling capabilities may be limited by available iron plating on the plating electrode. Exemplary attempts to ameliorate iron plating loss have focused on catalytic electrolyte rebalancing to address hydrogen (H2) gas generation from equations (1) and (2) and electrolyte charge imbalances (e.g., excess Fe') from equation (3) and ion crossover via equation (4):
Fe3++½H2→Fe2++H+ (electrolyte rebalancing) (4)
In some examples, electrolyte rebalancing may be realized via a trickle bed or jelly roll reactor setup, wherein the H2 gas and the electrolyte may be contacted at catalyst surfaces for carrying out the electrolyte rebalancing reaction of equation (4). However, lower Fe3+ reduction rates of such setups may be undesirable for higher performance applications. In other examples, a fuel cell setup may similarly contact the H2 gas and the electrolyte at catalyst surfaces while applying a direct current (DC) across positive and negative electrode pairs. However, reliability issues may arise in fuel cells as a result of inadvertent reverse current spikes interrupting DC flow.
In one example, the issues described above may be addressed by a rebalancing cell for a redox flow battery, the rebalancing cell including a cell enclosure and a stack of electrode assemblies enclosed by the cell enclosure, each electrode assembly of the stack of electrode assemblies including a positive electrode interfacing with a flow field plate. A face of the flow field plate interfacing with the positive electrode has a plurality of passages including tapered inlets and outlets and partial channels configured to remove gas from electrolyte flowing therethrough. In some examples, the each electrode assembly of the stack of electrode assemblies may be internally shorted. In this way, electrolyte rebalancing in the rebalancing cell may be driven via internal electrical shorting of interfacing pairs of positive and negative electrodes therein while efficient rebalancing of positive electrolyte is enabled.
Specifically, in some examples, the flow field plate has a flow field, formed of the plurality of passages, integrated into the face of the flow field plate. The flow field may control a pressure across the flow field plate, thereby moderating electrolyte flow through the electrode assembly and enhancing reaction rates at the electrodes. In this way, electrochemical performance may be enhanced in the rebalancing cell relative to a non-internally shorted cell without the flow field plate.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The following description relates to systems and methods for a rebalancing cell driven via internal electrical shorting of electrode assemblies included therein. In an exemplary embodiment, the rebalancing cell may be fluidically coupled to an electrolyte subsystem of a redox flow battery. The redox flow battery is depicted schematically in
In some examples, the redox flow battery may be a hybrid redox flow battery. Hybrid redox flow batteries are redox flow batteries which may be characterized by deposition of one or more electroactive materials as a solid layer on an electrode (e.g., the negative electrode). Hybrid redox flow batteries may, for instance, include a chemical species which may plate via an electrochemical reaction as a solid on a substrate throughout a battery charge process. During battery discharge, the plated species may ionize via a further electrochemical reaction, becoming soluble in the electrolyte. In hybrid redox flow battery systems, a charge capacity (e.g., a maximum amount of energy stored) of the redox flow battery may be limited by an amount of metal plated during battery charge and may accordingly depend on an efficiency of the plating system as well as volume and surface area available for plating.
In some examples, electrolytic imbalances in the redox flow battery may result from numerous side reactions competing with desired redox chemistry, including hydrogen (H2) gas generating reactions such as proton reduction and iron corrosion:
H++e−↔½H2 (proton reduction) (1)
Fe0+2H+↔Fe2++H2 (iron corrosion) (2)
and charge imbalances from excess ferric iron (Fe3+) generated during oxidation of iron plating:
2Fe3++Fe0↔3Fe2+ (iron plating oxidation) (3)
The reactions of equations (1) to (3) may limit iron plating and thereby decrease overall battery capacity. To address such imbalances, electrolyte rebalancing may be leveraged to both reduce Fe3+ and eliminate excess H2 gas via a single redox reaction:
Fe3++½H2→Fe2++H+ (electrolyte rebalancing) (4)
As described by embodiments herein, Fe3+ reduction rates sufficient for relatively high performance applications may be reliably achieved via a rebalancing cell, such as the exemplary rebalancing cell of
As shown in
“Anode” refers to an electrode where electroactive material loses electrons and “cathode” refers to an electrode where electroactive material gains electrons. During battery charge, the negative electrolyte gains electrons at the negative electrode 26, and the negative electrode 26 is the cathode of the electrochemical reaction. During battery discharge, the negative electrolyte loses electrons, and the negative electrode 26 is the anode of the electrochemical reaction. Alternatively, during battery discharge, the negative electrolyte and the negative electrode 26 may be respectively referred to as an anolyte and the anode of the electrochemical reaction, while the positive electrolyte and the positive electrode 28 may be respectively referred to as a catholyte and the cathode of the electrochemical reaction. During battery charge, the negative electrolyte and the negative electrode 26 may be respectively referred to as the catholyte and the cathode of the electrochemical reaction, while the positive electrolyte and the positive electrode 28 may be respectively referred to as the anolyte and the anode of the electrochemical reaction. For simplicity, the terms “positive” and “negative” are used herein to refer to the electrodes, electrolytes, and electrode compartments in redox flow battery systems.
One example of a hybrid redox flow battery is an all-iron redox flow battery (IFB), in which the electrolyte includes iron ions in the form of iron salts (e.g., FeCl2, FeCl3, and the like), where the negative electrode 26 includes metal iron. For example, at the negative electrode 26, ferrous iron (Fe2+) gains two electrons and plates as iron metal (Fe0) onto the negative electrode 26 during battery charge, and Fe0 loses two electrons and re-dissolves as Fe2+ during battery discharge. At the positive electrode 28, Fe2+ loses an electron to form ferric iron (Fe3+) during battery charge, and Fe3+ gains an electron to form Fe2+ during battery discharge. The electrochemical reaction is summarized in equations (5) and (6), where the forward reactions (left to right) indicate electrochemical reactions during battery charge, while the reverse reactions (right to left) indicate electrochemical reactions during battery discharge:
Fe2++2e−↔Fe0−0.44 V (negative electrode) (5)
Fe2+↔2Fe3++2e−+0.77 V (positive electrode) (6)
As discussed above, the negative electrolyte used in the IFB may provide a sufficient amount of Fe2+ so that, during battery charge, Fe2+ may accept two electrons from the negative electrode 26 to form Fe0 and plate onto a substrate. During battery discharge, the plated Fe0 may lose two electrons, ionizing into Fe2+ and dissolving back into the electrolyte. An equilibrium potential of the above reaction is −0.44 V and this reaction therefore provides a negative terminal for the desired system. On the positive side of the IFB, the electrolyte may provide Fe2+ during battery charge which loses an electron and oxidizes to Fe3+. During battery discharge, Fe3+ provided by the electrolyte becomes Fe2+ by absorbing an electron provided by the positive electrode 28. An equilibrium potential of this reaction is +0.77 V, creating a positive terminal for the desired system.
The IFB may provide the ability to charge and recharge electrolytes therein in contrast to other battery types utilizing non-regenerating electrolytes. Charge may be achieved by respectively applying an electric current across the electrodes 26 and 28 via terminals 40 and 42. The negative electrode 26 may be electrically coupled via the terminal 40 to a negative side of a voltage source so that electrons may be delivered to the negative electrolyte via the positive electrode 28 (e.g., as Fe2+ is oxidized to Fe3+ in the positive electrolyte in the positive electrode compartment 22). The electrons provided to the negative electrode 26 may reduce the Fe2+ in the negative electrolyte to form Fe0 at the (plating) substrate, causing the Fe2+ to plate onto the negative electrode 26.
Discharge may be sustained while Fe0 remains available to the negative electrolyte for oxidation and while Fe3+ remains available in the positive electrolyte for reduction. As an example, Fe3+ availability may be maintained by increasing a concentration or a volume of the positive electrolyte in the positive electrode compartment 22 side of the redox flow battery cell 18 to provide additional Fe3+ ions via an external source, such as an external positive electrolyte chamber 52. More commonly, availability of Fe0 during discharge may be an issue in IFB systems, wherein the Fe0 available for discharge may be proportional to a surface area and a volume of the negative electrode substrate, as well as to a plating efficiency. Charge capacity may be dependent on the availability of Fe2+ in the negative electrode compartment 20. As an example, Fe2+ availability may be maintained by providing additional Fe2+ ions via an external source, such as an external negative electrolyte chamber 50 to increase a concentration or a volume of the negative electrolyte to the negative electrode compartment 20 side of the redox flow battery cell 18.
In an IFB, the positive electrolyte may include ferrous iron, ferric iron, ferric complexes, or any combination thereof, while the negative electrolyte may include ferrous iron or ferrous complexes, depending on a state of charge (SOC) of the IFB system. As previously mentioned, utilization of iron ions in both the negative electrolyte and the positive electrolyte may allow for utilization of the same electrolytic species on both sides of the redox flow battery cell 18, which may reduce electrolyte cross-contamination and may increase the efficiency of the IFB system, resulting in less electrolyte replacement as compared to other redox flow battery systems.
Efficiency losses in an IFB may result from electrolyte crossover through a separator 24 (e.g., ion-exchange membrane barrier, microporous membrane, and the like). For example, Fe3+ ions in the positive electrolyte may be driven toward the negative electrolyte by a Fe3+ ion concentration gradient and an electrophoretic force across the separator 24. Subsequently, Fe3+ ions penetrating the separator 24 and crossing over to the negative electrode compartment 20 may result in coulombic efficiency losses. Fe3+ ions crossing over from the low pH redox side (e.g., more acidic positive electrode compartment 22) to the high pH plating side (e.g., less acidic negative electrode compartment 20) may result in precipitation of Fe(OH)3. Precipitation of Fe(OH)3 may degrade the separator 24 and cause permanent battery performance and efficiency losses. For example, Fe(OH)3 precipitate may chemically foul an organic functional group of an ion-exchange membrane or physically clog micropores of the ion-exchange membrane. In either case, due to the Fe(OH)3 precipitate, membrane ohmic resistance may rise over time and battery performance may degrade. Precipitate may be removed by washing the IFB with acid, but constant maintenance and downtime may be disadvantageous for commercial battery applications. Furthermore, washing may be dependent on regular preparation of electrolyte, contributing to additional processing costs and complexity. Alternatively, adding specific organic acids to the positive electrolyte and the negative electrolyte in response to electrolyte pH changes may mitigate precipitate formation during battery charge and discharge cycling without driving up overall costs. Additionally, implementing a membrane barrier that inhibits Fe3+ ion crossover may also mitigate fouling.
Additional coulombic efficiency losses may be caused by reduction of H+ (e.g., protons) and subsequent formation of H2 gas, and a reaction of protons in the negative electrode compartment 20 with electrons supplied at the plated iron metal of the negative electrode 26 to form H2 gas.
The IFB electrolyte (e.g., FeCl2, FeCl3, FeSO4, Fe2(SO4)3, and the like) may be readily available and may be produced at low costs. In one example, the IFB electrolyte may be formed from ferrous chloride (FeCl2), potassium chloride (KCl), manganese(II) chloride (MnCl2), and boric acid (H3BO3). The IFB electrolyte may offer higher reclamation value because the same electrolyte may be used for the negative electrolyte and the positive electrolyte, consequently reducing cross-contamination issues as compared to other systems. Furthermore, because of iron's electron configuration, iron may solidify into a generally uniform solid structure during plating thereof on the negative electrode substrate. For zinc and other metals commonly used in hybrid redox batteries, solid dendritic structures may form during plating. A stable electrode morphology of the IFB system may increase the efficiency of the battery in comparison to other redox flow batteries. Further still, iron redox flow batteries may reduce the use of toxic raw materials and may operate at a relatively neutral pH as compared to other redox flow battery electrolytes. Accordingly, IFB systems may reduce environmental hazards as compared with all other current advanced redox flow battery systems in production.
Continuing with
The negative electrode compartment 20 may include the negative electrode 26, and the negative electrolyte may include electroactive materials. The positive electrode compartment 22 may include the positive electrode 28, and the positive electrolyte may include electroactive materials. In some examples, multiple redox flow battery cells 18 may be combined in series or in parallel to generate a higher voltage or electric current in the redox flow battery system 10.
Further illustrated in
The redox flow battery system 10 may also include a first bipolar plate 36 and a second bipolar plate 38, each positioned along a rear-facing side, e.g., opposite of a side facing the separator 24, of the negative electrode 26 and the positive electrode 28, respectively. The first bipolar plate 36 may be in contact with the negative electrode 26 and the second bipolar plate 38 may be in contact with the positive electrode 28. In other examples, however, the bipolar plates 36 and 38 may be arranged proximate but spaced away from the electrodes 26 and 28 and housed within the respective electrode compartments 20 and 22. In either case, the bipolar plates 36 and 38 may be electrically coupled to the terminals 40 and 42, respectively, either via direct contact therewith or through the negative and positive electrodes 26 and 28, respectively. The IFB electrolytes may be transported to reaction sites at the negative and positive electrodes 26 and 28 by the first and second bipolar plates 36 and 38, resulting from conductive properties of a material of the bipolar plates 36 and 38. Electrolyte flow may also be assisted by the negative and positive electrolyte pumps 30 and 32, facilitating forced convection through the redox flow battery cell 18. Reacted electrochemical species may also be directed away from the reaction sites by a combination of forced convection and a presence of the first and second bipolar plates 36 and 38.
As illustrated in
The redox flow battery system 10 may further include the integrated multi-chambered electrolyte storage tank 110. The multi-chambered electrolyte storage tank 110 may be divided by a bulkhead 98. The bulkhead 98 may create multiple chambers within the multi-chambered electrolyte storage tank 110 so that both the positive and negative electrolytes may be included within a single tank. The negative electrolyte chamber 50 holds negative electrolyte including the electroactive materials, and the positive electrolyte chamber 52 holds positive electrolyte including the electroactive materials. The bulkhead 98 may be positioned within the multi-chambered electrolyte storage tank 110 to yield a desired volume ratio between the negative electrolyte chamber 50 and the positive electrolyte chamber 52. In one example, the bulkhead 98 may be positioned to set a volume ratio of the negative and positive electrolyte chambers 50 and 52 according to a stoichiometric ratio between the negative and positive redox reactions.
Although not shown in
Further still, one or more inlet connections may be provided to each of the negative and positive electrolyte chambers 50 and 52 from a field hydration system (not shown). In this way, the field hydration system may facilitate commissioning of the redox flow battery system 10, including installing, filling, and hydrating the redox flow battery system 10, at an end-use location. Furthermore, prior to commissioning the redox flow battery system 10 at the end-use location, the redox flow battery system 10 may be dry-assembled at a battery manufacturing facility different from the end-use location without filling and hydrating the redox flow battery system 10, before delivering the redox flow battery system 10 to the end-use location. In one example, the end-use location may correspond to a location where the redox flow battery system 10 is to be installed and utilized for on-site energy storage. Said another way, the redox flow battery system 10 may be designed such that, once installed and hydrated at the end-use location, a position of the redox flow battery system 10 may become fixed, and the redox flow battery system 10 may no longer be deemed a portable, dry system. Thus, from a perspective of an end-user, the dry, portable redox flow battery system 10 may be delivered on-site, after which the redox flow battery system 10 may be installed, hydrated, and commissioned. Prior to hydration, the redox flow battery system 10 may be referred to as a dry, portable system, the redox flow battery system 10 being free of or without water and wet electrolyte. Once hydrated, the redox flow battery system 10 may be referred to as a wet, non-portable system, the redox flow battery system 10 including wet electrolyte.
Further illustrated in
The electrolyte rebalancing reactors 80 and 82 may be connected in line or in parallel with the recirculating flow paths of the electrolyte at the negative and positive sides of the redox flow battery cell 18, respectively, in the redox flow battery system 10. One or more rebalancing reactors may be connected in-line with the recirculating flow paths of the electrolyte at the negative and positive sides of the battery, and other rebalancing reactors may be connected in parallel, for redundancy (e.g., a rebalancing reactor may be serviced without disrupting battery and rebalancing operations) and for increased rebalancing capacity. In one example, the electrolyte rebalancing reactors 80 and 82 may be placed in a return flow path from the negative and positive electrode compartments 20 and 22 to the negative and positive electrolyte chambers 50 and 52, respectively. The electrolyte rebalancing reactors 80 and 82 may serve to rebalance electrolyte charge imbalances in the redox flow battery system 10 occurring due to side reactions, ion crossover, and the like, as described herein.
In some examples, one or both of the rebalancing reactors 80 and 82 may include trickle bed reactors, where the H2 gas and the (liquid) electrolyte may be contacted at catalyst surfaces in a packed bed for carrying out the electrolyte rebalancing reaction. Additionally or alternatively, one or both of the rebalancing reactors 80 and 82 may have catalyst beds configured in a jelly roll. In additional or alternative examples, one or both of the rebalancing reactors 80 and 82 may include flow-through type reactors that are capable of contacting the H2 gas and the electrolyte and carrying out the electrolyte rebalancing reactions absent a packed catalyst bed. However, lower Fe3+ reduction rates (e.g., on the order of ˜1-3 mol/m2 hr) during electrolyte rebalancing may preclude implementation of such rebalancing reactor configurations in higher performance applications.
In other examples, one or both of the rebalancing reactors 80 and 82 may include fuel cells, where the H2 gas and the electrolyte may be contacted at catalyst surfaces for carrying out the electrolyte rebalancing reaction and where a closed circuit may be formed by directing electric current from the fuel cells through an external load. However, reverse current spikes [e.g., transient increases in reverse electric current, where “reverse electric current” may be used herein to refer to any electric current traveling along an electrical pathway in a direction opposite from expected (that is, opposite from a “forward” direction)] in such fuel cells may be unavoidable in certain circumstances, undermining a reliability of such rebalancing reaction configurations.
To increase the Fe3+ reduction rate without sacrificing an overall reliability of the rebalancing reactors 80 and 82, embodiments of the present disclosure provide a rebalancing cell, such as the rebalancing cell of
To realize the internally shorted circuit, each electrode assembly of the stack of internally shorted electrode assemblies may include an interfacing pair of positive and negative electrodes (e.g., configured in face-sharing contact with one another so as to be continuously electrically conductive). As used herein, a pair of first and second components (e.g., positive and negative electrodes of an electrode assembly) may be described as “interfacing” with one another when the first component is arranged adjacent to the second component such that the first and second components are in face-sharing contact with one another (where “adjacent” is used herein to refer to any two components having no intervening components therebetween). Further, as used herein, “continuously” when describing electrical conductivity of multiple electrodes may refer to an electrical pathway therethrough having effectively or practically zero resistance at any face-sharing interfaces of the multiple electrodes.
In an exemplary embodiment, the (positive) rebalancing reactor 82 may be the rebalancing cell including the stack of internally shorted electrode assemblies. Higher Fe3+ reduction rates may be desirable to rebalance the positive electrolyte, as significant amounts of Fe3+ may be generated at the positive electrode 28 during battery charging (see equation (6)). In additional or alternative embodiments, the (negative) rebalancing reactor 80 may be of like configuration [Fe3+ may be generated at the negative electrode 26 during iron plating oxidation (see equation (3))].
During operation of the redox flow battery system 10, sensors and probes may monitor and control chemical properties of the electrolyte such as electrolyte pH, concentration, SOC, and the like. For example, as illustrated in
For example, a sensor may be positioned in an external acid tank (not shown) to monitor acid volume or pH of the external acid tank, wherein acid from the external acid tank may be supplied via an external pump (not shown) to the redox flow battery system 10 in order to reduce precipitate formation in the electrolytes. Additional external tanks and sensors may be installed for supplying other additives to the redox flow battery system 10. For example, various sensors including, temperature, conductivity, and level sensors of a field hydration system may transmit signals to the controller 88. Furthermore, the controller 88 may send signals to actuators such as valves and pumps of the field hydration system during hydration of the redox flow battery system 10. Sensor information may be transmitted to the controller 88 which may in turn actuate the pumps 30 and 32 to control electrolyte flow through the redox flow battery cell 18, or to perform other control functions, as an example. In this manner, the controller 88 may be responsive to one or a combination of sensors and probes.
The redox flow battery system 10 may further include a source of H2 gas. In one example, the source of H2 gas may include a separate dedicated hydrogen gas storage tank. In the example of
For example, an increase in pH of the negative electrolyte chamber 50, or the negative electrode compartment 20, may indicate that H2 gas is leaking from the redox flow battery system 10 and/or that the reaction rate is too slow with the available hydrogen partial pressure, and the controller 88, in response to the pH increase, may increase a supply of H2 gas from the integrated multi-chambered electrolyte storage tank 110 to the redox flow battery system 10. As a further example, the controller 88 may supply H2 gas from the integrated multi-chambered electrolyte storage tank 110 in response to a pH change, wherein the pH increases beyond a first threshold pH or decreases beyond a second threshold pH. In the case of an IFB, the controller 88 may supply additional H2 gas to increase a rate of reduction of Fe3+ ions and a rate of production of protons, thereby reducing the pH of the positive electrolyte. Furthermore, the pH of the negative electrolyte may be lowered by hydrogen reduction of Fe3+ ions crossing over from the positive electrolyte to the negative electrolyte or by protons, generated at the positive side, crossing over to the negative electrolyte due to a proton concentration gradient and electrophoretic forces. In this manner, the pH of the negative electrolyte may be maintained within a stable region, while reducing the risk of precipitation of Fe3+ ions (crossing over from the positive electrode compartment 22) as Fe(OH)3.
Other control schemes for controlling a supply rate of H2 gas from the integrated multi-chambered electrolyte storage tank 110 responsive to a change in an electrolyte pH or to a change in an electrolyte SOC, detected by other sensors such as an oxygen-reduction potential (ORP) meter or an optical sensor, may be implemented. Further still, the change in pH or SOC triggering action of the controller 88 may be based on a rate of change or a change measured over a time period. The time period for the rate of change may be predetermined or adjusted based on time constants for the redox flow battery system 10. For example, the time period may be reduced if a recirculation rate is high, and local changes in concentration (e.g., due to side reactions or gas leaks) may quickly be measured since the time constants may be small.
The controller 88 may further execute control schemes based on an operating mode of the redox flow battery system 10. For example, and as discussed in detail below with reference to
As another example, the controller 88 may further control charging and discharging of the redox flow battery cell 18 so as to cause iron preformation at the negative electrode 26 during system conditioning (where system conditioning may include an operating mode employed to optimize electrochemical performance of the redox flow battery system 10 outside of battery cycling). That is, during system conditioning, the controller 88 may adjust one or more operating conditions of the redox flow battery system 10 to plate iron metal on the negative electrode 26 to improve a battery charge capacity during subsequent battery cycling (thus, the iron metal may be preformed for battery cycling). In this way, preforming iron at the negative electrode 26 and running electrolyte rebalancing during the system conditioning may increase an overall capacity of the redox flow battery cell 18 during battery cycling by mitigating iron plating loss. As used herein, battery cycling (also referred to as “charge cycling”) may include alternating between a charging mode and a discharging mode of the redox flow battery system 10.
It will be appreciated that all components apart from the sensors 60 and 62 and the integrated multi-chambered electrolyte storage tank 110 (and components included therein) may be considered as being included in a power module 120. As such, the redox flow battery system 10 may be described as including the power module 120 fluidly coupled to the integrated multi-chambered electrolyte storage tank 110 and communicably coupled to the sensors 60 and 62. In some examples, each of the power module 120 and the multi-chambered electrolyte storage tank 110 may be included in a single housing or packaging (not shown), such that the redox flow battery system 10 may be contained as a single unit in a single location. It will further be appreciated the positive electrolyte, the negative electrolyte, the sensors 60 and 62, the electrolyte rebalancing reactors 80 and 82, and the integrated multi-chambered electrolyte storage tank 110 (and components included therein) may be considered as being included in an electrolyte subsystem 130. As such, the electrolyte subsystem 130 may supply one or more electrolytes to the redox flow battery cell 18 (and components included therein).
Referring now to
A number of rebalancing cells 202 included in the redox flow battery system and a number of electrode assemblies included in the stack of internally shorted electrode assemblies are not particularly limited and may increase to accommodate correspondingly higher performance applications. For example, a 75 kW redox flow battery system may include two rebalancing cells 202 including a stack of 20 electrode assemblies (e.g., a stack of 19 bipolar assemblies with 2 end plates positioned at opposite ends of the stack).
As shown, the stack of internally shorted electrode assemblies may be removably enclosed within an external cell enclosure (e.g., housing) 204. Accordingly, in some examples, the cell enclosure 204 may include a top cover removably affixed to an enclosure base, such that the top cover may be temporarily removed to replace or diagnose one or more electrode assemblies of the stack of internally shorted electrode assemblies. In additional or alternative examples, the cell enclosure 204, depicted in
The cell enclosure 204 may further be configured to include openings or cavities for interfacial components of the rebalancing cell 202. For example, the cell enclosure 204 may include a plurality of inlet and outlet ports configured to fluidically couple to other components of the redox flow battery system. In one example, and as shown, the plurality of inlet and outlet ports may include polypropylene (PP) flange fittings fusion welded to PP plumbing.
In an exemplary embodiment, the plurality of inlet and outlet ports may include an electrolyte inlet port 206 for flowing the electrolyte into the cell enclosure 204 and an electrolyte outlet port 208 for expelling the electrolyte from the cell enclosure 204. In one example, the electrolyte inlet port 206 may be positioned on an upper half of the cell enclosure 204 and the electrolyte outlet port 208 may be positioned on a lower half of the cell enclosure 204 (where the upper half and the lower half of the cell enclosure 204 are separated along the z-axis by a plane parallel with each of the x- and y-axes). Accordingly, the electrolyte outlet port 208 may be positioned lower than the electrolyte inlet port 206 with respect to the direction of gravity (e.g., along the axis g).
Specifically, upon the electrolyte entering the cell enclosure 204 via the electrolyte inlet port 206, the electrolyte may be distributed across the stack of internally shorted electrode assemblies, gravity fed through the stack of electrode assemblies, wicked up (e.g., against the direction of gravity) through positive electrodes of the stack of internally shorted electrode assemblies to react at the catalytic surfaces of the negative electrodes in a cathodic half reaction, and expelled out of the cell enclosure 204 via the electrolyte outlet port 208. To assist in the gravity feeding of the electrolyte and increase a pressure drop thereof, the rebalancing cell 202 may further be tilted or inclined with respect to the direction of gravity via a sloped support 220 coupled to the cell enclosure 204. In some examples, tilting of the cell enclosure 204 in this way may further assist in electrolyte draining of the rebalancing cell 202 (e.g., during an idle mode of the redox flow battery system) and keep the catalytic surfaces relatively dry (as the catalytic surfaces may corrode after being soaked in the electrolyte for a sufficient duration, in some examples).
As shown, the sloped support 220 may tilt the cell enclosure 204 at an angle 222 such that planes of electrode sheets of the stack of internally shorted electrode assemblies are inclined with respect to a lower surface (not shown) on which the sloped support 220 rests, at the angle 222. In some examples, the angle 222 (e.g., of the cell enclosure 204 with respect to the lower surface) may be between 0° and 30°. In embodiments wherein the angle 222 is substantially 0°, the rebalancing cell 202 may still function, though tilting the cell enclosure 204 by an angle greater than 0° may allow the pressure drop to be greater and for electrolyte crossover to the negative electrodes to be reduced. In some examples, the angle 222 may be between 2° and 30°. In some examples, the angle 222 may be between 2° and 20°. In one example, the angle 222 may be about 8°. Accordingly, the pressure drop of the electrolyte upon entering the cell enclosure 204, e.g., through the electrolyte inlet port 206, may be increased by increasing the angle 222 and decreased by decreasing the angle 222. Further aspects of the sloped support 220 are described in greater detail below with reference to
Additionally or alternatively, one or more support rails 224 may be coupled to the upper half of the cell enclosure 204 (e.g., opposite from the sloped support 220). In some examples, and as shown in the perspective view 200 of
As further shown, the electrolyte outlet port 208 may include a plurality of openings in the cell enclosure 204 configured to expel at least a portion of the electrolyte (each of the plurality of openings including the PP flange fitting fusion welded to PP plumbing). For instance, in
The electrolyte inlet port 206 and the electrolyte outlet port 208 may be positioned on the cell enclosure 204 based on a flow path of the electrolyte through the stack of internally shorted electrode assemblies (e.g., from the electrolyte inlet port 206 to the electrolyte outlet port 208 and inclusive of channels, passages, plenums, wells, etc. within the cell enclosure 204 fluidically coupled to the electrolyte inlet port 206 and the electrolyte outlet port 208). In some examples, and as shown, the electrolyte inlet port 206 and the electrolyte outlet port 208 may be positioned on adjacent sides of the cell enclosure 204 (e.g., faces of the cell enclosure 204 sharing a common edge). In other examples, the electrolyte inlet port 206 and the electrolyte outlet port 208 may be positioned on opposite sides of the cell enclosure 204. In other examples, the electrolyte inlet port 206 and the electrolyte outlet port 208 may be positioned on the same side of the cell enclosure 204.
In some examples, the electrolyte inlet port 206 may be positioned on a face of the cell enclosure 204 facing a negative direction of the x-axis. In additional or alternative examples, the electrolyte inlet port 206 may be positioned on a face of the cell enclosure 204 facing a positive direction of the x-axis. In one example, and as shown, one opening of the electrolyte inlet port 206 may be positioned on the face of the cell enclosure 204 facing the negative direction of the x-axis and another opening of the electrolyte inlet port 206 may be positioned on the face of the cell enclosure 204 facing the positive direction of the x-axis.
In some examples, the plurality of inlet and outlet ports may further include a hydrogen gas inlet port 210 for flowing the H2 gas into the cell enclosure 204 and a hydrogen gas outlet port 212 (as shown in
Specifically, upon the H2 gas entering the cell enclosure 204 via the hydrogen gas inlet port 210, the H2 gas may be distributed across and through the stack of internally shorted electrode assemblies via forced convection (e.g., induced by flow field configurations of respective flow field plates, as discussed in greater detail below with reference to
The hydrogen gas inlet port 210 and the hydrogen gas outlet port 212 may be positioned on the cell enclosure 204 based on a flow path of the H2 gas through the stack of internally shorted electrode assemblies. For example, the flow path may be from the hydrogen gas inlet port 210 to the hydrogen gas outlet port 212 (when included) and inclusive of channels, passages, plenums, etc., within the cell enclosure 204 and fluidically coupled to the hydrogen gas inlet port 210 and the hydrogen gas outlet port 212 (when included). In some examples, and as shown, the hydrogen gas inlet port 210 and the hydrogen gas outlet port 212 may be positioned on opposite sides of the cell enclosure 204. In other examples, the hydrogen gas inlet port 210 and the hydrogen gas outlet port 212 may be positioned on adjacent sides of the cell enclosure 204. In other examples, the hydrogen gas inlet port 210 and the hydrogen gas outlet port 212 may be positioned on the same side of the cell enclosure 204. Further, though the hydrogen gas inlet port 210 is shown in
In one example, the hydrogen gas inlet port 210, the hydrogen gas outlet port 212, the electrolyte inlet port 206, and the electrolyte outlet port 208 may be positioned on the cell enclosure 204 in a crosswise configuration. The crosswise configuration may include the hydrogen gas outlet port 212 and the electrolyte inlet port 206 being positioned on different sides (e.g., faces) of the upper half of the cell enclosure 204 and the hydrogen gas inlet port 210 and the electrolyte outlet port 208 being positioned on different sides of the lower half of the cell enclosure 204.
In other examples, no hydrogen gas outlet port 212 may be present for expelling H2 gas which has not reacted at the catalytic surfaces of the negative electrodes and which has not flowed through the negative electrodes into the electrolyte. In such examples, however, the pressure release outlet port 214 for expelling unreacted H2 gas from the electrolyte may still be present, and the unreacted H2 gas may only be expelled from the cell enclosure 204 after flowing through the negative electrodes into the electrolyte and through the pressure release outlet port 214. Exemplary rebalancing cell configurations lacking the hydrogen gas outlet port 212, whether or not including the pressure release outlet port 214, may be referred to as “dead ended configurations.” In dead ended configurations, substantially all of the H2 gas may be forced into contact with the catalytic surfaces of the negative electrodes, whereat the H2 gas may either decompose via the anodic half reaction and/or the H2 gas may enter the electrolyte after passing through the negative electrodes (e.g., without reacting at catalytic surfaces thereof).
Referring now to
In some examples, the plate 304 may be composed of a material having a low electrical conductivity, such as a plastic or other polymer, so as to reduce undesirable shorting events. Accordingly, in one example, the plate 304 may be formed from the same material as the cell enclosure 204 of
As shown, the plate 304 may include a plurality of inlets and outlets therethrough. For example, the plurality of inlets and outlets may include an electrolyte outlet channel section 316, a hydrogen gas inlet channel section 318a, and a hydrogen gas outlet channel section 318b. Specifically, the plate 304 may include the electrolyte outlet channel section 316 for directing the electrolyte out of the rebalancing cell, the hydrogen gas inlet channel section 318a for directing the H2 gas into the rebalancing cell and across the negative electrode 310, and the hydrogen gas outlet channel section 318b for directing the H2 gas out of the rebalancing cell. The plate 304 may further include an electrolyte inlet well 312 for receiving the electrolyte at the electrode assembly 302, the electrolyte inlet well 312 fluidically coupled to a plurality of electrolyte inlet passages 314a set into a berm 314b positioned adjacent to the carbon foam 306 for distributing the received electrolyte across the carbon foam 306. In some examples, the electrolyte inlet well 312 may receive the electrolyte from an electrolyte inlet port (e.g., the electrolyte inlet port 206 of FIGS. 2A and 2B) fluidically coupled thereto (e.g., via an electrolyte inlet channel; not shown at
It will be appreciated that, though the hydrogen gas inlet channel section 318a is described herein as a section of a hydrogen gas inlet channel and the hydrogen gas outlet channel section 318b is described herein as a section of a hydrogen gas outlet channel, in other examples, the channel section 318b may be a section of a hydrogen gas inlet channel (e.g., for directing the H2 gas into the rebalancing cell and across the negative electrode 310 after receiving the H2 gas from the hydrogen gas inlet port) and the gas inlet channel section 318a may be a section of a hydrogen gas outlet channel (e.g., for directing the H2 gas out of the rebalancing cell by expelling the H2 gas through the hydrogen gas outlet port). In other examples, the rebalancing cell may be configured as a dead ended configuration and no hydrogen gas outlet port may be fluidically coupled to the hydrogen gas outlet channel section 318b. In such examples, the hydrogen gas outlet channel section 318b may direct the H2 gas back across the negative electrode 310 or the hydrogen gas outlet channel section 318b may instead be configured as another hydrogen gas inlet channel section (e.g., for directing a portion of the H2 gas into the rebalancing cell and across the negative electrode 310 after receiving the portion of the H2 gas from the hydrogen gas inlet port).
The plurality of inlets and outlets may be configured to ease electrolyte and H2 gas flow throughout the rebalancing cell. As an example, a size of each of the hydrogen gas inlet channel section 318a and the hydrogen gas outlet channel section 318b may be selected to minimize a pressure drop therethrough, thereby aiding in flow distribution into each electrode assembly 302 of the stack of internally shorted electrode assemblies. As another example, a size of each electrolyte inlet passage 314a and a total number of the plurality of electrolyte inlet passages 314a relative to the berm 314b may be selected to induce a relatively small pressure drop to substantially evenly distribute electrolyte flow. In such an example, the selection of the size of each electrolyte inlet passage 314a and the total number of the plurality of electrolyte inlet passages 314a may be dependent on a number of factors specific to a given configuration of the rebalancing cell, such as a size of an electrolyte flow field and a desired electrolyte flow rate.
In additional or alternative examples, the electrolyte outlet channel section 316 may further be configured for distributing the electrolyte through multiple openings included in the electrolyte outlet port. For instance, in the exploded view 300 of
Further, when the electrode assembly 302 is included in a stack of electrode assemblies, electrolyte outlet channel sections 316, hydrogen gas inlet channel sections 318a, and hydrogen gas outlet channel sections 318b may align to form a continuous electrolyte outlet channel, a continuous hydrogen gas inlet channel, and a continuous hydrogen gas outlet channel, respectively (as shown in
As further shown, a plurality of sealing inserts may be affixed (as used herein, “affix,” “affixed,” or “affixing” includes, but is not limited to, gluing, attaching, connecting, fastening, joining, linking, or securing one component to another component through a direct or indirect relationship) or otherwise coupled to the plate 304. As an example, the plurality of sealing inserts may include a hydrogen gas inlet channel seal insert 320a and a hydrogen gas outlet channel seal insert 320b for inducing flow of the H2 gas across the negative electrode 310 by mitigating H2 gas bypass. Specifically, the hydrogen gas inlet channel seal insert 320a and the hydrogen gas outlet channel seal insert 320b may be affixed or otherwise coupled adjacent to the hydrogen gas inlet channel section 318a and the hydrogen gas outlet channel section 318b, respectively, on a side of the plate 304 including the carbon foam 306, the positive electrode 308, and the negative electrode 310. In some examples, and as discussed in greater detail with reference to
As another example, the plurality of sealing inserts may further include each of a hydrogen gas inlet channel O-ring 322a and a hydrogen gas outlet channel O-ring 322b for respectively sealing an interface of the hydrogen gas inlet channel section 318a with a hydrogen gas inlet channel section of another electrode assembly and an interface of the hydrogen gas outlet channel section 318b with a hydrogen gas outlet channel section of another electrode assembly. Specifically, the hydrogen gas inlet channel O-ring 322a and the hydrogen gas outlet channel O-ring 322b may be affixed or otherwise coupled to the plate 304 so as to respectively circumscribe the hydrogen gas inlet channel section 318a and the hydrogen gas outlet channel section 318b.
As another example, the plurality of sealing inserts may further include an overboard O-ring 324 for sealing an interface of the electrode assembly 302 with another electrode assembly at outer edges thereof. Specifically, the overboard O-ring 324 may be affixed or otherwise coupled to the plate 304 so as to circumscribe each of the electrolyte inlet well 312, the plurality of electrolyte inlet passages 314a, the berm 314b, the electrolyte outlet channel section 316, the hydrogen gas inlet channel section 318a, and the hydrogen gas outlet channel section 318b.
The carbon foam 306 may be positioned in a cavity 326 of the plate 304 between the berm 314b and the electrolyte outlet channel section 316 along the y-axis and between the hydrogen gas inlet channel section 318a and the hydrogen gas outlet channel section 318b along the x-axis. Specifically, the carbon foam 306 may be positioned in face-sharing contact with a side of the plate 304 forming a base of the cavity 326. In some examples, the carbon foam 306 may be formed as a continuous monolithic piece, while in other examples, the carbon foam 306 may be formed as two or more carbon foam sections. In an exemplary embodiment, the carbon foam 306 may be conductive, permeable, and porous, providing a distribution field for the electrolyte being gravity fed therethrough from the plurality of electrolyte inlet passages 314a. In some examples, a pore distribution of the carbon foam 306 may be between 10 and 100 PPI. In one example, the pore distribution may be 30 PPI. In additional or alternative examples, a permeability of the carbon foam 306 may be between 0.02 and 0.5 mm2. As such, each of the pore distribution and the permeability, in addition to an overall size, of the carbon foam 306 may be selected to target a relatively small pressure drop and thereby induce convection of the electrolyte from the carbon foam 306 into the positive electrode 308. For example, the pressure drop may be targeted to between 2 to 3 mm of electrolyte head rise.
In some examples, the carbon foam 306 may be replaced with a flow field plate configured to transport the electrolyte into the positive electrode 308 via convection induced by a flow field configuration of the flow field plate. For example, the flow field channels may be integrated into the flow field plate or into an insert of the flow field plate. An example of flow field geometry, when integrated into the flow field plate, is depicted in
In some examples, and as described in detail below with reference to
In certain examples, and as discussed in greater detail below with reference to
The positive electrode 308 may be positioned in the cavity 326 in face-sharing contact with a side of the carbon foam 306 opposite from the plate 304 along the z-axis. In an exemplary embodiment, the positive electrode 308 may be a wicking conductive carbon felt, sponge, or mesh which may bring the electrolyte flowing through the carbon foam 306 into contact with the negative electrode 310 via capillary action. Accordingly, in some examples, the positive electrode 308 may be conductive and porous (though less porous than the carbon foam 306 in such examples). In one example, the electrolyte may be wicked into the positive electrode 308 when the porosity of the carbon foam 306 may be within a predefined range (e.g., below an upper threshold porosity so as to retain enough solid material to promote wicking up and into the positive electrode 308 and above a lower threshold porosity so as to not impede electrolyte flow through the carbon foam 306).
In an additional or alternative example, each of a sorptivity of the positive electrode 308 may decrease and a permeability of the positive electrode 308 may increase with an increasing porosity of the positive electrode 308 (e.g., at least until too little solid material of the positive electrode 308 remains to promote wicking of the electrolyte, such as when a threshold porosity of the positive electrode 308 is reached). In some examples, surfaces of the positive electrode 308 may be sufficiently hydrophilic for desirable rebalancing cell operation (e.g., by facilitating thorough electrolyte wetting and thereby forming an ionically conductive medium). In such examples, an overall hydrophilicity of the positive electrode 308 may be increased by coating or treating the surfaces thereof. Further, though at least some of the H2 gas may pass into the positive electrode 308 in addition to a portion of the electrolyte wicked into the positive electrode 308, the positive electrode 308 may be considered a separator between a bulk of the H2 gas thereabove and a bulk of the electrolyte therebelow.
In some examples, each of the positive electrode 308 and the negative electrode 310 may be formed as a continuous monolithic piece (e.g., as opposed to discrete particles or a plurality of pieces), such that interphase mass-transport losses across boundary layer films may be reduced when bringing the electrolyte into contact with the H2 gas at the catalytic surfaces of the negative electrode 310, thereby promoting ion and proton movement. In contrast, a packed bed configuration including discretely packed catalyst particles may include mass-transport limiting boundary layer films surrounding each individual particle, thereby reducing a rate of mass-transport of the electrolyte from a bulk thereof to surfaces of the particles.
The negative electrode 310 may be positioned in the cavity 326 in face-sharing contact with a side of the positive electrode 308 opposite from the carbon foam 306 along the z-axis, such that a three-phase contact interface between the (wicked) electrolyte, the catalytic surfaces of the negative electrode 310, and the H2 gas may be formed for proton (e.g., H+) and ion movement (H3O+) therethrough. In tandem, the positive electrode 308 may reduce an overall electronic resistance by providing a conductive path for electrons to move into the electrolyte front and reduce Fe3+ ions thereat.
In an exemplary embodiment, the negative electrode 310 may be a porous non-conductive material or a conductive carbon substrate with a metal catalyst coated thereon. In some examples, the porous non-conductive material may include polytetrafluoroethylene (PTFE), polypropylene, or the like. In some examples, the conductive carbon substrate may include carbon cloth or carbon paper. In some examples, the metal catalyst may include a precious metal catalyst. In some examples, the precious metal catalyst may include Pt. In additional or alternative examples, the precious metal catalyst may include Pd, Rh, Ru, Ir, Ta, or alloys thereof. In some examples, a relatively small amount (e.g., 0.2 to 0.5 wt %) of the precious metal catalyst supported on the conductive carbon substrate may be employed for cost considerations. In practice, however, the amount of the precious metal catalyst may not be particularly limited and may be selected based on one or more of a desired rate of reaction for the rebalancing cell and an expected lifetime of the rebalancing cell. Furthermore, alloys included in the precious metal catalyst may be utilized to reduce cost and increase a corrosion stability of the precious metal catalyst. For example, 10% addition of Rh to Pt may reduce corrosion of Pt by Fe3+ by over 98%. In other examples, the metal catalyst may include a non-precious metal catalyst selected for stability in ferric solution and other such acidic environments (e.g., molybdenum sulfide). In one example, the negative electrode 310 may include carbon cloth coated with 1.0 mg/cm2 Pt and may include a microporous layer bound with a polytetrafluoroethylene (PTFE) binder (e.g., for hydrophobicity). Indeed, inclusion of the PTFE binder may increase a durability of rebalancing cell performance over extended durations relative to electrode assemblies formed using other binders.
In some examples, such as when the precious metal catalyst includes Pt, soaking of the negative electrode 310 may eventually result in corrosion of the precious metal catalyst. In other examples, and as discussed in greater detail above with reference to
In an exemplary embodiment, the electrode assembly 302, including each of the carbon foam 306, the positive electrode 308, and the negative electrode 310, may be under compression along the z-axis, with the positive electrode 308 having a greater deflection than the carbon foam 306 and the negative electrode 310 under a given compressive pressure. Accordingly, a depth of the cavity 326 may be selected based on a thickness of the carbon foam 306, a thickness of the positive electrode 308, a desired compression of the positive electrode 308, and a thickness of the negative electrode 310. Specifically, the depth of the cavity 326 may be selected to be greater than a lower threshold depth of a sum of the thickness of the carbon foam 306 after substantially complete compression thereof and the thickness of the positive electrode 308 after substantially complete compression thereof (to avoid overstressing and crushing of the carbon foam 306, which may impede electrolyte flow) and less than an upper threshold depth of a sum of the thickness of the carbon foam 306 and the thickness of the positive electrode 308 (to avoid zero compression of the positive electrode 308 and possibly a gap, which may result in insufficient contact of the H2 gas and the electrolyte).
For instance, in an example wherein the thickness of the carbon foam 306 is 6 mm, the thickness of the positive electrode 308 is 3.4 mm, the desired compression of the positive electrode 308 is 0.4 mm (so as to achieve a desired compressive pressure of 0.01 MPa), and the thickness of the negative electrode 310 is 0.2 mm, the depth of the cavity 326 may be 9.2 mm (=3.4 mm+6 mm+0.2 mm−0.4 mm). As another example, the thickness of the carbon foam 306 may be between 2 and 10 mm, the thickness of the positive electrode 308 may be between 1 and 10 mm, the desired compression of the positive electrode 308 may be between 0 and 2.34 mm (so as to achieve the desired compressive pressure of 0 to 0.09 MPa), and the thickness of the negative electrode 310 may be between 0.2 and 1 mm, such that the depth of the cavity 326 may be between 0.86 and 21 mm. In additional or alternative examples, the thickness of the positive electrode 308 may be 20% to 120% of the thickness of the carbon foam 306. In one example, the thickness of the positive electrode 308 may be 100% to 110% of the thickness of the carbon foam 306. In one example, the depth of the cavity 326 may further depend upon a crush strength of the carbon foam 306 (e.g., the depth of the cavity 326 may be increased with decreasing crush strength).
For instance, a foam crush factor of safety (FOS) may be 5.78 when the depth of the cavity 326 is 9.2 mm (e.g., when the desired compression of the positive electrode is 0.4 mm). The foam crush FOS may have a minimum value of 0.34 in some examples, where foam crush FOS values less than 1 may indicate that at least some crushing is expected. In some examples, the crush strength of the carbon foam 306 may be reduced by heat treatment of the carbon foam 306 during manufacturing thereof (from 0.08 MPa to 0.03 MPa, in one example). It will be appreciated that the electrode assembly 302 may be configured such that the depth of the cavity 326 is as low as possible (e.g., within the above constraints), as generally thinner electrode assemblies 302 may result in a reduced overall size of the rebalancing cell and a reduced electrical resistance across the electrode assembly 302 (e.g., as the electrolyte flow may be closer to the negative electrode 310).
In this way, the electrode assembly 302 may include a sequential stacking of the carbon foam 306 and an interfacing pair of the positive electrode 308 and the negative electrode 310 being in face-sharing contact with one another and being continuously electrically conductive. Specifically, a first interface may be formed between the positive electrode 308 and the carbon foam 306 and a second interface may be formed between the positive electrode 308 and the negative electrode 310, the second interface being opposite to the first interface across the positive electrode 308, and each of the carbon foam 306, the positive electrode 308, and the negative electrode 310 may be electrically conductive. Accordingly, the electrode assembly 302 may be internally shorted, such that electric current flowing through the electrode assembly 302 may not be channeled through an external load.
In an exemplary embodiment, and as discussed above, forced convection may induce flow of the H2 gas into the electrode assembly 302 and across the negative electrode 310 (e.g., via a flow field plate interfacing with the negative electrode 310; not shown at
½H2→H++e− (anodic half reaction) (4a)
The proton (H+) and the electron (e−) may be conducted across the negative electrode 310 and into the positive electrode 308. The electrolyte, directed through the electrode assembly 302 via the carbon foam 306, may be wicked into the positive electrode 308. At and near the second interface between the positive electrode 308 and the negative electrode 310, Fe3+ in the electrolyte may be reduced via equation (4b):
Fe3++e−→Fe2+ (cathodic half reaction) (4b)
Summing equations (4a) and (4b), the electrolyte rebalancing reaction may be obtained as equation (4):
Fe3++½H2→Fe2++H+ (electrolyte rebalancing) (4)
Since the electrode assembly 302 is internally shorted, a cell potential of the electrode assembly 302 may be driven to zero as:
0=(Epos−Eneg)−(ηact+ηmt+ηohm) (7)
where Epos is a potential of the positive electrode 308, Eneg is a potential of the negative electrode 310, ηact is an activation overpotential, ηmt is a mass transport overpotential, and ηohm is an ohmic overpotential. For the electrode assembly 302 as configured in
ηohm=ηelectrolyte+ηfelt (8)
Accordingly, performance of the electrode assembly 302 may be limited at least by an electrical resistivity σelectrolyte of the electrolyte and an electrical resistivity σfelt of the carbon felt. The electrical conductivity of the electrolyte and the electrical conductivity of the carbon felt may further depend on a resistance Relectrolyte of the electrolyte and a resistance Rfelt of the carbon felt, respectively, which may be given as:
R
electrolyte=σelectrolyte×telectrolyte/Aelectrolyte (9)
R
felt=σfelt×tfelt/Afelt (10)
where telectrolyte is a thickness of the electrolyte (e.g., a height of the electrolyte front), tfelt is a thickness of the carbon felt (e.g., the thickness of the positive electrode 308), Aelectrolyte is an active area of the electrolyte (front), and Afelt is an active area of the carbon felt. Accordingly, the performance of the electrode assembly 302 may further be limited based on a front location of the electrolyte within the carbon felt and therefore the distribution of the electrolyte across the carbon foam 306 and an amount of the electrolyte wicked into the carbon felt forming the positive electrode 308.
After determining Relectrolyte and Rfelt, an electric current Iassembly of the electrode assembly 302 may be determined as:
I
assembly=(Epos−Eneg)/(Relectrolyte+Rfelt) (11)
and a rate Vrebalancing of the electrolyte rebalancing reaction (e.g., the rate of reduction of Fe3+) may further be determined as:
v
rebalancing
=I
assembly/(nFArebalancing) (12)
where n is a number of electrons flowing through the negative electrode 310, F is Faraday's constant, and Arebalancing is an active area of the electrolyte rebalancing reaction (e.g., an area of an interface between the electrolyte front and the negative electrode 310). As an example, for an uncompressed carbon felt having tfelt=3 mm, vrebalancing may have a maximum value of 113 mol/m2hr.
Referring now to
As shown, and as indicated by arrows 408a, the H2 gas may enter the hydrogen gas inlet channel 404 via the hydrogen gas inlet port 210, flowing first into the hydrogen gas inlet plenum 406 and then sequentially through the hydrogen gas inlet channel sections 318a in a positive direction along the z-axis. A size and a shape of the hydrogen gas inlet plenum 406 is not particularly limited, though a minimum size (e.g., a minimum volume, a minimum flow path width) of the hydrogen gas inlet plenum 406 may be selected to avoid relatively high flow velocity and pressure drop resulting in poor H2 gas distribution. Further, the sloped support 220 may tilt the rebalancing cell 202 such that the hydrogen gas inlet channel 404 extends along the positive direction of the z-axis away from a direction of gravity (though not directly opposite to the direction of gravity, as discussed in detail above with reference to
As further shown, and as indicated by arrows 408b, at least some of the H2 gas may flow from the hydrogen gas inlet channel 404 across the hydrogen gas inlet channel seal insert 320a of each respective electrode assembly 302 and into one or more hydrogen gas inlet passages 452 fluidically coupled to the hydrogen gas inlet channel 404 and interfacing with each respective electrode assembly 302. In one example, a surface of the hydrogen gas inlet channel seal insert 320a of a given electrode assembly 302 opposite to the one or more hydrogen gas inlet passages 452 of the given electrode assembly 302 may be coincident with the same x-y plane as a surface of the negative electrode 310 of the given electrode assembly 302 opposite to the one or more hydrogen gas inlet passages 452 of the given electrode assembly. Further, in some examples, the hydrogen gas inlet channel seal insert 320a of the given electrode assembly 302 may extend from a locus of affixation or coupling with the plate 304 of the given electrode assembly 302 and partially overlap the positive electrode 308 of the given electrode assembly 302 along the z-axis, thereby assisting in sealing the positive electrode 308 at an edge thereof.
In an exemplary embodiment, the one or more hydrogen gas inlet passages 452 may not be wholly included in any given electrode assembly 302 and instead may be formed as one or more gaps between adjacent pairs of electrode assemblies 302 in the electrode assembly stack 402. In some examples, the one or more hydrogen gas inlet passages 452 interfacing with a given electrode assembly 302 may be configured in a flow field configuration, such that the H2 gas may be forcibly convected into the one or more hydrogen gas inlet passages 452 interfacing with the given electrode assembly 302. Specifically, the one or more hydrogen gas inlet passages 452 as configured in the flow field configuration may be formed from a flow field plate interfacing with the negative electrode 310 of the given electrode assembly 302. In one example, the flow field plate interfacing with the negative electrode 310 of the given electrode assembly 302 may be integrally formed in the plate 304 of an adjacent electrode assembly 302, positioned beneath the carbon foam 306 of the adjacent electrode assembly 302 with respect to the z-axis. In other examples, the flow field plate interfacing with the negative electrode 310 of the given electrode assembly 302 may be a separate, removable component. Additionally, a topmost flow field plate with respect to the z-axis may not be integrally formed with any electrode assembly 302 and may instead be included in the rebalancing cell 202 as either a separate, removable component or an integral feature of another component (e.g., the cell enclosure 204 of
In some examples, and as described in detail below with reference to
As further shown, and as indicated by arrows 408c, the H2 gas may be convected across the negative electrodes 310 of the electrode assembly stack 402 (e.g., at a flow rate of 10 to 50 l/min per m2 of the catalytic surfaces of the negative electrode 310). In some examples, the flow field plates interfacing with the respective electrode assemblies 302 may assist in the convection and distribute the H2 gas across the respective negative electrodes 310. The H2 gas may react with the catalytic surfaces of the negative electrodes 310 of the electrode assembly stack 402 in an anodic half reaction (see equation (4a)) to generate protons and electrons, which may then flow towards respective positive electrodes 308 and carbon foams 306. In some examples, at least some of the H2 gas may remain unreacted and may flow across the negative electrodes 310 of the electrode assembly stack 402 along the arrows 408c as well.
Referring now to
In one example, the flow field configurations shown in
A set of reference axes 501 is provided for describing relative positioning of the components shown and for comparison between the views of
As shown in the schematic view 500 of
For example, the fluid may flow unimpeded from the inlet channel 506a into a first passage 502a of the plurality of interdigitated passages 502. At an end of the first passage 502a proximate to the outlet channel 506b, the fluid may be forced to flow parallel to the z-axis over one of the end walls 508. In contrast, at a second passage 502b of the plurality of interdigitated passages 502, fluid from the inlet channel 506a may be forced over one of the end walls 508 (also along the z-axis) located proximate to the inlet channel 506a before flowing into the second passage 502b.
In some examples, when the exemplary interdigitated flow field configuration interfaces with a porous medium (such as the positive electrode 308 or the negative electrode 310 of
As shown in the schematic view 520 of
In some examples, when the exemplary partially interdigitated flow field configuration interfaces with a porous medium (such as the positive electrode 308 or the negative electrode 310 of
As shown in the schematic view 540 of
As shown in the schematic view 560 of
Turning now to
As described above, a plate of an electrode assembly configured with a carbon foam, e.g., the plate 304 and the carbon foam 306 of
Turning first to
Alternatively, as shown in
In some examples, the flow field of the flow field plate (e.g., the flow field plate 600 of
The PIDFF 700 includes a plurality of partially interdigitated passages 702 extending linearly across the PIDFF 700 parallel with the z-axis. Fluid (e.g., positive electrolyte, H2 gas) flowing through an inlet channel 704 may be convected into a distribution manifold 706 that fluidically couples the inlet channel 704 to inlets 710 of the plurality of interdigitated passages 702, as indicated by arrows 708. The fluid may flow from the inlets 710 to outlets 712 of the plurality of partially interdigitated passages 702, as indicated by arrows 714, to be expelled into an outlet channel 716. Furthermore, the fluid may also flow along the positive y-axis into the positive electrode, as well as along the negative y-axis to return to the plurality of partially interdigitated passages 702 to exit the flow field through the outlets 712.
The plurality of interdigitated passages 702 includes two passage geometries, e.g., a first set of passages and a second set of passages, which are arranged in an alternating pattern along the x-axis. A first passage 702a of the first set of passages may have first inlets 710a that are tapered and first outlets 712a that are linear while a second passage 702b of the second set of passages may have second inlets 710b that are linear and second outlets 712b that are tapered. It will be appreciated that a geometry of the first inlets 710a may be similar to that of the second outlets 712b, but reversed in orientation, while a geometry of the second inlets 710b may be similar to that of the first outlets 712b. The inlets 710 of the plurality of partially interdigitated passages 702 are shown in greater detail in
An expanded view of a region 750 of the PIDFF 700 is depicted in
By configuring the first passage 702a with the first inlet 710a, an infiltration pressure of fluid entering the first passage 702a at the first inlet 710a may be reduced, e.g., relative to non-tapered inlets. The second outlets 712b of the second passage 702b, as shown in
The second inlets 710b (and the first outlets 712a) are formed of a partial channel 756 that strips gas (e.g., H2) from the positive electrolyte, as the positive electrolyte flows through the partial channel 756. For example, the positive electrode may be positioned at an interface 758 between the partial channel 756 and the second passage 702b. In other words, the positive electrode (which may be formed of felt) may be positioned directly on top of the plurality of interdigitated passages 702 of the PIDFF 700. When the positive electrode is saturated with the fluid, a pressure for the gas in the fluid to penetrate into the positive electrode may increase (e.g., break-through pressure). Without the partial channel 756 present at both the second inlets 710b and the first outlets 712a, the gas may be trapped in the plurality of interdigitated passages 702 until the pressure rises enough to reach the break-through pressure. In such instances, the trapped gas may cause poor flow distribution and pressure accumulation at a positive side of the electrode assembly. The pressure accumulation may lead to flooding at a negative side of the electrode assembly in order to overcome (e.g. reach and/or exceed) the break-through pressure.
By incorporating the partial channel 756 at the inlets 710 and the outlets 712 of the plurality of partially interdigitated passages 702, a less restrictive path is provided for the gas to exit the flow field while the remaining fluid is forced to flow into the positive electrode. A reduced diameter of the partial channel 756 relative to the plurality of partially interdigitated passages 702 inhibits flow of the remaining fluid through the partial channel 756, a result of a higher infiltration pressure demanded for liquids than for gas at a given flow rate. The gas may therefore escape through the partial channel 756 while the remaining fluid is forcibly converted into the positive electrode, circumventing a drop in pressure across the flow field plate.
At the outlets 712 of the plurality of partially interdigitated passages 702, the first outlet 712a of the first passage 702a may include the interface 758 between the first passage 702a and the positive electrode and the partial channel 756. The second outlet 712b of the second passage 702b may have a similar funnel shape as the first inlet 710a. As such, flow of the positive electrolyte out of the first passage 702a may be forcibly convected into the positive electrode while gas escapes through the partial channel 756, as described above. At the second outlet 712b of the second passage 702b, widening of a diameter of the second outlet 712b may increase flow of positive electrolyte out of the second passage 702b, which may alleviate backpressure arising from surface tension effects. In this way, a combination of the configurations of the first passage 702a and the second passage 702b may drive flow of the positive electrolyte through the plurality of partially interdigitated passages 702 and into the positive electrode, where the flow maintains a small pressure drop across the flow field plate. Flooding of negative channels of a negative electrode of the electrode assembly may be circumvented as a result. Additionally, at least a portion of gases present in the positive electrolyte may be removed from the positive electrolyte as the positive electrolyte enters the plurality of partially interdigitated passages 702.
Dimensions of the plurality of partially interdigitated passages 702 may be sized to maximize the effects described above. For example, as shown in
Referring now to
At 802, method 800 includes receiving the H2 gas and the electrolyte at the rebalancing cell via respective inlet ports thereof. The electrolyte may be received at the rebalancing cell via a first inlet port and the H2 gas may be received at the rebalancing cell via a second inlet port. In one example, the first inlet port being positioned above the second inlet port with respect to a direction of gravity.
At 804, method 800 includes distributing the H2 gas and the electrolyte throughout the stack of internally shorted electrode assemblies. Specifically, the electrolyte may be distributed via an inlet manifold including a plurality of first inlet channels respectively coupled to the electrode assemblies of the stack of internally shorted electrode assemblies and the H2 gas may be distributed via a second inlet channel formed by the stack of internally shorted electrode assemblies and fluidically coupled to each electrode assembly of the stack of internally shorted electrode assemblies. In some examples, after distribution via the inlet manifold, the electrolyte may be distributed through first flow field plates respectively interfacing with positive electrodes of the stack of internally shorted electrode assemblies. In other examples, after distribution via the inlet manifold, the electrolyte may be distributed through activated carbon foams respectively interfacing with the positive electrodes. In some examples, after distribution via the second inlet channel, the H2 gas may be distributed through second flow field plates respectively interfacing with negative electrodes of the stack of internally shorted electrode assemblies.
At 806, method 800 includes inducing flows (e.g., crosswise, parallel, or opposing flows) of the H2 gas and the electrolyte to perform an electrolyte rebalancing reaction at the negative and positive electrodes of the stack of internally shorted electrode assemblies. The negative and positive electrodes may be distributed among the stack of internally shorted electrode assemblies in interfacing pairs of negative and positive electrodes. As discussed above, each positive electrode of the interfacing pairs of negative and positive electrodes may further interface with a respective activated carbon foam or a respective first flow field plate. In one example, the negative electrode may be a conductive carbon substrate having a Pt catalyst coated thereon and the positive electrode may be a carbon felt. In some examples, inducing flows of the H2 gas and the electrolyte may include: (i) at 808, inducing flow of the H2 gas across the negative electrodes of the stack of internally shorted electrode assemblies via convection (e.g., forced convection via the second flow field plates interfacing with the negative electrodes of the stack of internally shorted electrode assemblies); and (ii) at 810, inducing flow of the electrolyte across the positive electrodes of the stack of internally shorted electrode assemblies via one or more of gravity feeding (e.g., by tilting the rebalancing cell relative to a direction of gravity), capillary action (e.g., wicking up the electrolyte into the positive electrodes of the stack of internally shorted electrode assemblies), and convection (e.g., forced convection via the first flow field plates interfacing with the positive electrodes of the stack of internally shorted electrode assemblies). In one example, the flow of H2 gas may be induced across the negative electrodes by convection and the flow of the electrolyte may be induced across the positive electrodes by each of gravity feeding and capillary action. Upon flowing the H2 gas and the electrolyte across the negative and positive electrodes of the stack of internally shorted electrode assemblies, the electrolyte rebalancing reaction may be performed, including, at 812, reacting the H2 gas with positively charged ions in the electrolyte to reduce the positively charged ions (see equation (4)).
At 814, method 800 includes expelling the electrolyte (having the reduced positively charged ions, e.g., a lower concentration of Fe3+ than upon being received at the first inlet port at 802) and any unreacted H2 gas from the rebalancing cell via outlet ports thereof. Specifically, at 816, the electrolyte may be expelled from the rebalancing cell via a first outlet port and, in some examples, at 818, the unreacted H2 gas may be expelled from the rebalancing cell via a second outlet port. However, in other examples, the rebalancing cell may include a dead ended configuration for flowing the H2 gas and no second outlet port may be included. In either case, at least some unreacted H2 gas may flow through the negative electrodes of the stack of internally shorted electrode assemblies and into the electrolyte. Accordingly, expelling the unreacted H2 gas from the rebalancing cell may include, at 820, expelling the unreacted H2 gas in the electrolyte via a pressure release outlet port (e.g., to prevent pressure from building up in the electrolyte and flooding the negative electrodes of the stack of internally shorted electrode assemblies).
In this way, a rebalancing cell including a stack of internally shorted electrode assemblies is provided for a redox flow battery. Specifically, flows of H2 gas and a charge-imbalanced electrolyte from the redox flow battery may be provided to the rebalancing cell and induced across negative and positive electrodes of the stack of internally shorted electrode assemblies. In some examples, the positive electrodes may be in face-sharing contact with flow field plates configured with integrated channels or passages for flowing electrolyte therethrough. The electrolyte channels may be embedded directly into a face of the flow field plates or into an insert that can be coupled to the flow field plate. A geometry of the electrolyte channels may promote stripping of gas from positive electrolyte and reduced drop in pressure, which may arise from oxidation issues, across the flow field plate. Furthermore, by integrating the electrolyte channels into the flow field plate, rather than relying on a separate porous carbon foam, a cost of manufacturing and an assembly time of the rebalancing cell may be decreased, the electrode assemblies may be more robust to degradation, and more consistent performance of the rebalancing cell may be enabled.
The disclosure also provides support for a rebalancing cell for a redox flow battery, the rebalancing cell comprising: a cell enclosure, and a stack of electrode assemblies enclosed by the cell enclosure, each electrode assembly of the stack of electrode assemblies including a positive electrode interfacing with a flow field plate, wherein a face of the flow field plate interfacing with the positive electrode has a plurality of passages including tapered inlets and/or tapered outlets and partial channels configured to remove gas from electrolyte flowing therethrough. In a first example of the system, the plurality of passages is formed directly into the face of the flow field plate. In a second example of the system, optionally including the first example, the plurality of passages is formed into an insert configured to be coupled to the face of the flow field plate. In a third example of the system, optionally including one or both of the first and second examples, the plurality of passages is arranged in a partially interdigitated configuration. In a fourth example of the system, optionally including one or more or each of the first through third examples, the plurality of passages includes a first set of passages having the tapered inlets and outlets with the partial channels and a second set of passages having inlets with the partial channels and the tapered outlets. In a fifth example of the system, optionally including one or more or each of the first through fourth examples, the first set of passages and the second set of passages are arranged in an alternating pattern across the flow field plate. In a sixth example of the system, optionally including one or more or each of the first through fifth examples, the partial channels have narrowed diameters to allow gas to exit the flow field plate but not the electrolyte, and wherein the electrolyte is forcibly convected into the positive electrode. In a seventh example of the system, optionally including one or more or each of the first through sixth examples, the electrolyte is positive electrolyte circulated from a positive electrode compartment in which the positive electrode is positioned. In an eighth example of the system, optionally including one or more or each of the first through seventh examples, each electrode assembly further includes a negative electrode interfacing with the positive electrode, and wherein each electrode assembly is internally shorted. In a ninth example of the system, optionally including one or more or each of the first through eighth examples, the system further comprises: a hydrogen gas inlet for flowing H2 gas into the cell enclosure, an electrolyte inlet port for flowing electrolyte into the cell enclosure, and an electrolyte outlet port for expelling electrolyte from the cell enclosure. In a tenth example of the system, optionally including one or more or each of the first through ninth examples, the system further comprises: a sloped support coupled to the cell enclosure to tilt the cell enclosure with respect to a surface on which the sloped support rests.
The disclosure also provides support for a redox flow battery system, comprising: positive and negative electrode compartments respectively housing redox and plating electrodes, positive and negative electrolyte chambers respectively including a positive electrolyte for pumping to the positive electrode compartment and a negative electrolyte for pumping to the negative electrode compartment, where the positive and negative electrolyte chambers further include a common gas head space, and a rebalancing cell for electrolyte rebalancing of the positive electrolyte, the rebalancing cell being fluidically coupled to the positive electrode compartment and the common gas head space, wherein the electrolyte rebalancing of the positive electrolyte is driven via internal electrical shorting of interfacing pairs of positive and negative electrodes of the first rebalancing cell and by the positive electrolyte being directed through integrated channels of flow field plates interfacing with the positive electrodes. In a first example of the system, the integrated channels include partial channels for removing gas from a positive flow field of the flow field plates. In a second example of the system, optionally including the first example, the integrated channels are arranged in a partially interdigitated configuration to force convection of the positive electrolyte into the positive electrode. In a third example of the system, optionally including one or both of the first and second examples, the integrated channels include tapered inlets and tapered outlets, and wherein diameters of the tapered inlets are widest at entrances to the tapered inlets and wherein diameters of the tapered outlets are narrowest at entrances to the tapered outlets. In a fourth example of the system, optionally including one or more or each of the first through third examples, the integrated channels are machined or molded into a surface of the flow field plates interfacing with the positive electrodes, and wherein the flow field plates are formed of a polymer. In a fifth example of the system, optionally including one or more or each of the first through fourth examples, the integrated channels are machined or molded in inserts formed of a polymer, and wherein the inserts are coupled to a surface of flow field plates interfacing with the positive electrodes.
The disclosure also provides support for an electrode assembly for a rebalancing cell, comprising: an internally shorted interfacing pair of a positive electrode and a negative electrode, and a flow field plate in face-sharing contact with a surface of the positive electrode opposite of the negative electrode, wherein a face of the flow field plate facing the positive electrode has a plurality of partially interdigitated electrolyte channels with tapered inlets and outlets and constrictions for removing gas from positive electrolyte flowing through the plurality of partially interdigitated electrolyte channels of the flow field plate. In a first example of the system, the constrictions are configured to remove gas by providing flow paths for the gas to exit the flow field plate. In a second example of the system, optionally including the first example, the gas removed from the positive electrolyte is expelled from the rebalancing cell via a gas outlet port of the rebalancing cell.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
The present application is a continuation-in-part of International Application No. PCT/US22/73693 entitled “REBALANCING CELL FOR REDOX FLOW BATTERY SYSTEM” filed Jul. 13, 2022, which claims priority to U.S. Provisional Application No. 63/221,325 entitled “REBALANCING CELL FOR REDOX FLOW BATTERY SYSTEM” filed Jul. 13, 2021 and U.S. Provisional Application No. 63/221,330 entitled “REBALANCING CELL FOR REDOX FLOW BATTERY SYSTEM” filed Jul. 13, 2021. The entire contents of each of the above identified applications are hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
63221325 | Jul 2021 | US | |
63221330 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US22/73693 | Jul 2022 | US |
Child | 17932245 | US |