The invention relates, generally, to drug pump devices, and, in various embodiments, to electrolysis-driven piston or diaphragm pump devices.
As patients live longer and are diagnosed with chronic and often debilitating ailments, there is an increased need for improvements to the speed, convenience, and efficacy of drug delivery. For example, many chronic conditions, including multiple sclerosis, diabetes, osteoporosis, and Alzheimer's disease, are incurable and difficult to treat with currently available therapies: oral medications have systemic side effects; injections may require a medical visit, can be painful, and risk infection; and sustained-release implants must typically be removed after their supply is exhausted, and offer limited ability to change the dose in response to the clinical picture. In recent decades, several types of wearable drug delivery devices have been developed, including battery-powered miniature pumps, implantable drug dispensers, and diffusion-mediated skin patches.
Treatments for a number of chronic diseases currently require subcutaneous administration of a drug or therapeutic agent either continuously or at specific times or time intervals in highly controlled doses. Subcutaneous injections take advantage of the lack of blood flow to the subcutaneous layer, which allows the administered drug to be absorbed more slowly over a longer period of time (compared with direct injection into the bloodstream). Additional advantages to subcutaneous delivery of some drugs (i.e., vaccines, tuberculin tests, immunostimulents, etc.) to the tissue region are the targeting of lymph tissue and lymphatic drainage for subsequent antigen presentation to the body. Traditionally, these types of injections have been administered either by the patient or a medical practitioner anywhere from several times a day to once every few weeks. Such frequent injections can result in discomfort, pain, and inconvenience to the patient. Self-administration further poses the risk of non-compliance or errors in dosage events.
These problems can be at least partially overcome by wearable, electronically controlled drug pump devices capable of delivering highly controlled dosages of drug continuously or intermittently, depending on the needs of the patient. Such pumps often employ electrolysis to evolve gas from a liquid electrolyte, and thereby to generate pressure inside a pump chamber. The pump chamber imparts the pressure onto an adjacent drug reservoir, from where liquid drug is conducted to a subcutaneous injection site. The drug delivery rate can, generally, be accurately controlled via the electric current supplied to the electrolysis electrodes. In conventional electrolysis pumps with liquid electrolyte, however, the electrolyte level decreases as more and more gaseous electrolysis products develop in and thereby expand the pump chamber. As a result, the electrodes may gradually lose contact with the electrolyte, which affects the rate of electrolysis and, eventually, causes the electrolysis process to cease entirely. Not only does this negatively affect the drug-delivery capacity of a pump device with a given electrolyte volume, but it also undermines the reliability of drug delivery because the effect tends to depend on the orientation of the device, and is, therefore, highly unpredictable (in particular, in patient-worn devices). Accordingly, there is a need for alternative electrolysis pump configurations that ensure stable pump operation throughout all stages of the drug delivery.
The instant invention generally provides electrolytically driven drug pump devices with configurations that ensure sustained physical contact between the electrolysis electrodes and the electrolyte notwithstanding changes in device orientation. In some embodiments, the anode and cathode each consists of two or more portions placed at different locations in the pump chamber such that at least part of each electrode remains submerged in the electrolyte regardless of the orientation of the drug pump device. The device may, for example, have a pen-injection pump configuration including a linear arrangement of a drug reservoir, an electrolytically driven piston facing the drug reservoir at one side, and an electrolyte-filled electrolysis chamber in contact with the other side of the piston. One portion of each electrode may be attached to the piston, and the other portion to an opposing wall of the pump chamber; the corresponding portions may be electrically connected by flexible wires. In alternative embodiments, a pair of electrodes extends three-dimensionally through the pump chamber, e.g., in the form of a pair of spring coils or flexible wires supported by a series of electrically insulating spacers.
Another approach involves compartmentalizing the pump chamber by a gas-permeable separator into a back-end portion of constant volume that contains the electrodes and electrolyte, and a front-end portion in contact with the piston that is expanded by the gaseous electrolysis products. In this configuration, the electrolyte-level in the back-end compartment decreases only minimally as the front-end compartment expands and drives the piston forward.
In yet another group of embodiments, the liquid electrolyte is absorbed in a three-dimensionally networked material (hereinafter referred to as a “matrix”), such as a gel, cotton, a sponge, a superabsorbent polymer, or a combination thereof, that fills the electrolysis chamber. The electrodes are embedded in or, in the case of tubular electrodes, filled with the matrix. The matrix maintains a persistent distribution of the electrolyte, and thus ensures that the electrodes remain in contact with the electrolyte. In one aspect, the invention is directed to a drug pump device including a vial, an electrolytically driven piston, and an electrolysis pump containing an electrolysis chamber and a coaxial electrode pair in contact with electrolyte absorbed within a matrix contained therein. The vial includes a drug reservoir therein, which is fluidically connectable to a cannula for conducting liquid from the reservoir. The piston is movable within the vial, and serves to force liquid from the reservoir into cannula. It faces the drug reservoir with a first side and is in contact with the electrolysis chamber in contact with a second side. The device may further include an electrical circuit and associated power supply.
The pump may include multiple coaxial electrode pairs arranged in parallel and, in certain embodiments, in a close-packing pattern. For example, the electrode pairs may have hexagonal cross sections and be arranged in a honeycomb fashion. One or more of the electrode pairs may have a surface coating inhibiting gas formation; a surface portion of the electrode pair(s) proximate to the piston may lack the coating so as to allow gas formation at this portion. The coaxial electrode pair may be sealed with a gas-permeable membrane. The matrix may include or consist of the solid phase of a gel (e.g., a hydrogel), a sponge, cotton, or superabsorbent polymer, or, generally, a hydrophilic absorbent material.
The vial may be formed from a conventional drug vial, and may be made of glass and/or a polymer. The electrolysis pump may be attached to the vial by a clamp-fit mechanism and sealed by a rubber O-ring. The electrolysis pump may have a back-end made of polymer, ceramics, anodized metal, or glass, with feed-throughs for connection to the external electrical circuit and associated power supply without loss of electrolyte fluid and without electrical shorting of the electronic circuit or battery. In some embodiments, the electrical circuit and associated power supply are sized based on a diameter of the electrolysis pump so as to fit as a cap thereon. In other embodiments, they are located adjacent the vial and are wire-connected to the electrolysis pump. The device may include a controller for facilitating device operation by an electronic handheld device via a wireless connection, or a mechanical selector for setting the drug dose to be delivered from the drug reservoir.
In another aspect, a drug pump device in accordance with various embodiments includes a vial and electrolytically driven piston as above, and an electrolysis pump having an electrolysis chamber in contact with a second side of the piston (the first side of the piston facing the drug reservoir) as well as cathode and anode structures arranged to remain at least partially submerged in liquid electrolyte partially filling the chamber notwithstanding variations in orientation of the device.
In some embodiments, the cathode and anode structures comprises respective first and second cathode and anode portions. The first cathode and anode portions are in contact with the piston, and the second cathode and anode portions are attached to an opposed wall of the electrolysis chamber. The cathode and anode structures may also include flexible wires that electrically connect the respective first and second portions notwithstanding variations in the distance therebetween. The first and/or second cathode and anode portions may extend parallel to, or, alternatively, at an angle with respect to, the second side of the piston and the opposed wall of the electrolysis chamber, respectively, In some embodiments, each of the first cathode and anode portions comprises multiple wire sections attached to the piston at different locations and each of the second cathode and anode portions comprises multiple wire sections attached to the opposing wall at different locations. In certain embodiments, the first cathode and anode portions and/or the second cathode and anode portions are two-dimensional and interdigitated.
In some embodiments, the cathode and anode structures extend in three dimensions through the electrolysis chamber. They may include a pair of parallel wires, which may be separated by insulating spacers. The wires may be flexible or in the form of spring coils.
In yet another aspect, the invention provides a drug pump device including a vial and electrolytically piston as described above, and an electrolysis pump including a gas-permeable separator that partitions the electrolysis chamber into first and second compartments. The first compartment contains a pair of electrodes immersed in electrolyte, and the second compartment is in contact with the second side of the piston (the first side of the piston, again, facing the drug reservoir). The gas-permeable separator may be fixed within the electrolysis chamber so that a volume of the first compartment remains constant. The second compartment may expand during operation of the device, as the piston moves. In a further aspect, the invention provides a drug pump device including a refillable drug reservoir, an electrolytically driven displaceable member (e.g., a piston or diaphragm) for forcing liquid from the reservoir and having a first side facing the drug reservoir, and an electrolysis pump comprising an electrolysis chamber in contact with a second side of the displaceable member. The electrolysis chamber contains electrodes in contact with liquid electrolyte absorbed within a matrix that substantially does not expand during electrolysis. The drug pump device may be implantable, or include an adhesive patch for adhesion to a patient's skin. The device may be an ophthalmic drug pump device, and may have an underside that conforms to a patient's eyeball.
As used herein, the term “substantially” means ±10% and, in some embodiments, ±5%.
The foregoing and the following detailed description of the invention may be more readily understood in conjunction with the drawings, in which:
The pump 104 may utilize any suitable pumping mechanism such as, for example, electrochemical, osmotic, electroosmotic, piezoelectric, thermopneumatic, electrostatic, pneumatic, electrohydrodynamic, magnetohydrodynamic, acoustic-streaming, ultrasonic, and/or electrically driven (e.g., motorized) mechanical actuation. In certain embodiments, electrolysis provides the mechanism that mechanically drives drug delivery. An electrolysis pump generally includes an electrolyte-containing chamber (hereinafter also referred to as the “pump chamber”) and, disposed in the chamber, one or more pairs of electrodes that are driven by a direct-current power source to break the electrolyte into gaseous products. Suitable electrolytes include water and aqueous solutions of salts, acids, or alkali, as well as non-aqueous ionic solutions. The electrolysis of water is summarized in the following chemical reactions:
The net result of these reactions is the production of oxygen and hydrogen gas, which causes an overall volume expansion of the drug chamber contents. This gas evolution process proceeds even in a pressurized environment (reportedly at pressures of up to 200 MPa). As an alternative (or in addition) to water, ethanol may be used as an electrolyte, resulting in the evolution of carbon dioxide and hydrogen gas. Ethanol electrolysis is advantageous due to its greater efficiency and, consequently, lower power consumption, compared with water electrolysis. Electrolysis pumps in accordance with several embodiments are described in detail further below.
The pressure generated by the drug pump 104 may be regulated via a pump driver 110 by a system controller 112. For example, in an electrolytic pump, the controller 112 may set the drive current and thereby control the rate of electrolysis, which, in turn, determines the pressure. In particular, the amount of gas generated is proportional to the drive current integrated over time, and can be calculated using Faraday's law of electrolysis. For example, creating two hydrogen and one oxygen molecule from water requires four electrons; thus, the amount (measured in moles) of gas generated by electrolysis of water equals the total electrical charge (i.e., current times time), multiplied by a factor of ¾ (because three molecules are generated per four electrons), divided by Faraday's constant. The volume of the gas can be determined, using the ideal gas law, based on the pressure inside the pump chamber (and the temperature). Accordingly, by monitoring the pressure inside the pump chamber, it is possible to control the electrolysis current and duration so as to generate a desired volume of electrolysis gas, and thereby displace the same volume of liquid drug from the reservoir 102.
In certain low-cost embodiments, the dose of drug to be delivered from the reservoir 102 is dialed into the device using a mechanical switch (e.g., a rotary switch), which then activates the pump 104, via the controller 112, to deliver the dose. In various alternative embodiments, the controller 112 executes a drug-delivery protocol programmed into the device or commands wirelessly transmitted to the device, as further described below.
The system controller 112 may be responsive to one or more sensors that measure an operational parameter of the drug pump device 100, such as the pressure or flow rate in the drug reservoir 102 or cannula 108, the pressure inside the pump chamber, barometric pressure changes, or the position of the displaceable member 106. For example, the controller 112 may adjust the electrolysis based on the pressure inside the pump chamber, as described above; due to the inexpensiveness of pressure sensors, this option is particularly advantageous for pumps designed for quick drug delivery. Two or more pressure sensors may be placed in the pump chamber to simultaneously monitor pressure therein, which provides additional feedback to the controller 112, improves accuracy of information, and serves as a backup in case of malfunction of one of the sensors.
In pump devices that are intended to operate over multiple days, typically in accordance with a non-uniform delivery protocol (e.g., insulin delivery devices that are designed for 3-7 days of continuous drug delivery), a flow sensor is preferably used to measure drug flow out of the cannula in real-time, and compute the total dose delivered by integrating the flow rate over time. For safety, the device may include, in addition to the flow sensor, a pressure sensor inside the pump chamber. This ensures that, in case the flow sensor fails, the pressure sensor would be able to detect high drug delivery rates, and shut the pump down to avoid administering an overdose to the patient. It also provides extra safety by preventing chamber explosion at very high pressure when a failure mode occurs. Conversely, the combination of flow and pressure sensors can also detect a violation in the drug reservoir 102 if pressure is measured in the pump chamber but no flow is measured in the cannula 108, indicating a potential leak.
In general, the sensors used to measure various pump parameters may be flow, thermal, time of flight, pressure, or other sensors known in the art, and may be fabricated (at least in part) from parylene—a biocompatible, thin-film polymer. Multiple pressure sensors may be used to detect a difference in pressure and calculate the flow rate based on a known laminar relationship. In the illustrated embodiment, a flow sensor 114 (e.g., a MEMS sensor) is disposed in the cannula 108 to monitor drug flow to the infusion site, and detect potential obstructions in the flow path, variations in drug-pump pressure, etc. The cannula 108 may further include a check valve 116 that prevents backflow of liquid into the drug reservoir 112. Like the sensor 114, the check valve 116 may be made of parylene. In other embodiments, silicon or glass are used in part for the flow sensor 114 and valve 116 construction. The drug pump device 100 may include electronic circuitry 118 (which may, but need not, be integrated with the system controller 112) for processing the sensor signal(s) and, optionally, providing pump status information to a user by means of LEDs, other visual displays, vibrational signals, or audio signals. In addition to controlling the drug pump 104, the controller 112 may be used to control other components of the drug pump system; for example, it may trigger insertion of the lancet and catheter.
The system controller 112 may be a microcontroller, i.e., an integrated circuit including a processor core, memory (e.g., in the form of flash memory, read-only memory (ROM), and/or random-access memory (RAM)), and input/output ports. The memory may store firmware that directs operation of the drug pump device. In addition, the device may include read-write system memory 120. In certain alternative embodiments, the system controller 112 is a general-purpose microprocessor that communicates with the system memory 120. The system memory 120 (or memory that is part of a microcontroller) may store a drug-delivery protocol in the form of instructions executable by the controller 112, which may be loaded into the memory at the time of manufacturing, or at a later time by data transfer from a hard drive, flash drive, or other storage device, e.g., via a USB, Ethernet, or firewire port. In alternative embodiments, the system controller 112 comprises analog circuitry designed to perform the intended function, e.g., to deliver the entire bolus upon manual activation by the patient.
The drug-delivery protocol may specify drug delivery times, durations, rates, and dosages, which generally depend on the particular application. For example, some applications require continuous infusion while others require intermittent drug delivery to the subcutaneous layer. An insulin-delivery device may be programmed to provide a both a continuous, low basal rate of insulin as well as bolus injections at specified times during the day, typically following meals. To implement a dinner pump, for example, the instructions may cause the pump to administer a 150 μL dose of insulin immediately after dinner, and to dispense another 350 μL at a basal rate over eight hours while the patient sleeps. In general, drug pump devices 100 may be configured to achieve sustained drug release over periods ranging from several hours to several months, with dosage events occurring at specific times or time intervals. Flow rates of fluid flowing through the cannula 108 may range from nanoliters per minute to microliters per minute. A clinician may alter the pump programming in system memory 120 if the patient's condition changes.
Sensor feedback may be used in combination with a pre-programmed drug-delivery protocol to monitor drug delivery and compensate for external influences that may affect the infusion rate despite unchanged electrolysis (such as backpressure from the infusion site or cannula clogging). For example, signals from the flow sensor 114 may be integrated to determine when he proper dosage has been administered, at which time the system controller 112 terminates the operation of the pump 104 and, if appropriate, causes retraction of the delivery vehicle. The system controller 112 may also assess the flow through the cannula 108 as reported by the flow sensor 114, and take corrective action if the flow rate deviates sufficiently from a programmed or expected rate. If the system controller 112 determines that a higher flow rate of drug is needed, it may increase the current to the electrolysis electrodes to accelerate gas evolution in the electrolysis chamber; conversely, if the system controller 112 determines that a lower flow rate of drug is needed, it may decrease the current to the electrolysis electrodes.
The pump driver 110, system controller 112, and electronic circuitry 118 may be powered by a battery 122. Suitable batteries 122 include non-rechargeable lithium batteries approximating the size of batteries used in wristwatches, as well as rechargeable Li-ion, lithium polymer, thin-film (e.g., Li-PON), nickel-metal-hydride, and nickel cadmium batteries. Other devices for powering the drug pump device 100, such as a capacitor, solar cell or motion-generated energy systems, may be used either in place of the battery 122 or supplementing a smaller battery. This can be useful in cases where the patient needs to keep the drug-delivery device 100 on for several days or more.
In certain embodiments, the drug pump device 100 includes, as part of the electronic circuitry 118 or as a separate component, a signal receiver 124 (for uni-directional telemetry) or a transmitter/receiver 124 (for bi-directional telemetry) that allows the device to be controlled and/or re-programmed remotely by a wireless handheld device, such as a customized personal digital assistant (PDA) or a smartphone 150. A smartphone is a mobile phone with advanced computing ability that, generally, facilitates bi-directional communication and data transfer. Smartphones include, for example, iPhones™ (available from Apple Inc., Cupertino, Calif.), BlackBerries™ (available from RIM, Waterloo, Ontario, Canada), or any mobile phones equipped with the Android™ platform (available from Google Inc., Mountain View, Calif.).
The smartphone 150 may communicate with the drug pump device 100 using a connection already built into the phone, such as a Wi-Fi, Bluetooth, or near-field communication (NFC) connection. Alternatively, a smartphone dongle 152 may be used to customize the data-transfer protocol between the smartphone and the drug pump device 100, which facilitates optimizing the sender and/or receiver components 122 of the drug pump device 100, e.g., for reduced power consumption, and may provide a layer of security beyond that available through the smartphone. A smartphone dongle is a special hardware component, typically equipped with a microcontroller, designed to mate with a corresponding connector on the smartphone (e.g., a Mini USB connector or the proprietary iPhone connector). The connector may accommodate several power and signal lines (including, e.g., serial or parallel ports) to facilitate communication between the dongle and the smartphone and to power the dongle via the phone.
In certain embodiments, the smartphone 150 and pump device 100 communicate over a (uni- or bidirectional) infrared (IR) link, which may utilize one or more inexpensive IR light-emitting diodes and phototransistors as transmitters and receivers, respectively. Data transfer via the. IR link may be based on a protocol with error detection or error correction on the receiving end. A suitable protocol is the IrDA standard for IR data communication, which is well-established and easy to implement. Communication between the drug pump device 100 and the smartphone 150 may also occur at radio frequencies (RF), using, e.g., a copper antenna as the transmitter/receiver component 124. The transmitter/receiver 124 and associated circuitry, which may collectively be referred to as the communication module of the drug pump device 100, may be powered by the battery 122 and/or by the signal transmitted from the smartphone 150 or other communication device. In some embodiments, the communication module remains in a dormant state until “woken up” by an external signal, thereby conserving power.
In some embodiments, the smartphone 150 is used to send real-time signals to the drug pump device 100, for example, to turn the pump on or off, or to adjust an otherwise constant drug delivery rate, and in some embodiments, the smartphone serves to program or re-program the drug pump device 100 for subsequent operation over a period of time in accordance with a drug-delivery protocol. The communication link between the smartphone and the drug pump device 100 may be unidirectional (typically allowing signals only to be sent from the phone and received by the drug pump device) or bi-directional (facilitating, e.g., transmission of status information from the drug pump device 100 to be sent to the smartphone). A special software application 154 (e.g., an iPhone “app”) executing as a running process on the smartphone 150 may provide a user interface for controlling the drug pump device 100 via the smartphone display. As a security measure, the application 154 may be configured to be accessible only when the dongle 152 is connected to the smartphone 150. The application may further facilitate communication between the smartphone 150 and a remote party. For example, a health-care provider may communicate with his patient's smartphone 150 to obtain status updates from the drug pump device 100 and, based on this information, push a new drug-delivery protocol onto the patient's smartphone, which in turn uploads this new protocol to the drug pump device 100.
The functional components of drug pump devices as described above may be packaged and configured in various ways. In certain preferred embodiments, the drug pump device may be integrated into a patch adherable to the patient's skin. Suitable adhesive patches are generally fabricated from a flexible material that conforms to the contours of the patient's body and attaches via an adhesive on the backside surface that contacts a patient's skin. The adhesive may be any material suitable and safe for application to and removal from human skin. Many versions of such adhesives are known in the art, although utilizing an adhesive with gel-like properties may afford a patient particularly advantageous comfort and flexibility. The adhesive may be covered with a removable layer to preclude premature adhesion prior to the intended application. As with commonly available bandages, the removable layer preferably does not reduce the adhesion properties of the adhesive when removed. In some embodiments, the drug pump device is of a shape and size suitable for implantation. For example, certain pump devices in accordance herewith may be used to deliver drug to a patient's eye or middle ear. Ophthalmic pump devices may be shaped so as to conform to the patient's eyeball, and may include a suitable patch for adhesion to the eyeball.
The various components of the drug pump device may be held within a housing mounted on the skin patch. The device may either be fully self-contained, or, if implemented as discrete, intercommunicating modules, reside within a spatial envelope that is wholly within (i.e., which does not extend beyond in any direction) the perimeter of the patch. The housing may provide mechanical integrity and protection of the components of the drug pump device 100, and prevent disruption of the pump's operation from changes in the external environment (such as pressure changes). The control system components 110, 112, 118, 120, 122 may be mounted on a circuit board, which is desirably flexible and/or may be an integral part of the pump housing. In some embodiments, the electrodes are etched, printed, or otherwise deposited directly onto the circuit board for cost-savings and ease of manufacturing.
The housing may contain the infusion set 109. Alternatively, the infusion set 109 may be separately housed, mounted on a second skin-adhesive patch, and tethered to the drug pump device 100 via the cannula 108. Such a tethered infusion set 109 may be advantageous because it generally provides greater flexibility for the placement and orientation of the insertion set 109 and drug pump device 100 son the patient's skin. Further, it allows leaving the insertion set 109 in place while removing the pump device 100, for example, for the purpose of replacing or refilling the drug reservoir 102.
In some embodiments, the drug reservoir 102 and pump 104 are stacked in a double-chamber configuration, in which the drug reservoir 102 is separated from the pump chamber by a flexible diaphragm. Typically, the pump chamber is formed between the skin patch and the diaphragm, and the drug reservoir 102 is disposed above the pump 104 and formed between the diaphragm and a dome-shaped portion of the housing. In alternative embodiments, the drug pump device has a pen-injector configuration, i.e., the reservoir 102, a piston movable in the reservoir, and the pump 104 driving the piston are arranged in series in an elongated (e.g., substantially cylindrical) housing. A pump device with this configuration may be integrated horizontally into a skin patch for prolonged drug infusion. Alternatively, it may be used as a handheld injection device that is oriented substantially perpendicularly during injection, much like a conventional pen injector. Compared with the conventional injector that is mechanically activated by the patient, a digitally controlled electrolysis-based pump device as described herein provides the advantage of better dosage control. Various diaphragm pump and piston pump configurations are described in more detail below.
The drug-delivery device 100 may be manually activated, e.g., toggled on and off, by means of a switch integrated into the pump housing. In some embodiments, using the toggle switch or another mechanical release mechanism, the patient may cause a needle to pierce the enclosure of the drug reservoir 102 (e.g., the septum of a drug vial) to establish a fluidic connection between the reservoir 102 and the cannula 108; priming of the pump can then begin. Coupling insertion of the needle into the reservoir 102 with the activation of the pump device ensures the integrity of the reservoir 102, and thus protects the drug, up to the time when the drug is injected; this is particularly important for pre-filled drug pump devices. Similarly, the lancet and catheter may be inserted by manually releasing a mechanical insertion mechanism. In some embodiments, insertion of the lancet and catheter automatically triggers electronic activation of a pump, e.g., by closing an electronic circuit. Alternatively, the pump and/or insertion set may be activated remotely by wireless commands. Drug pump devices integrated into skin patches may also be configured to automatically turn on once the skin, patch 102 is unwrapped and moisture is sensed. When drug delivery is complete, the device 100 may automatically retract the catheter and turn off the pump.
Drug pump devices 100 in accordance herewith may be designed for single or repeated use. Multi-use pumps generally include a one-way check valve and a flow sensor, as described above, in the cannula. Further, the drug reservoir of a multi-use pump may be refillable via a refill port, using, e.g., a standard syringe. In some embodiments, the drug pump device 100 is removed from the patient's skin for re-filling. The patient may, for example, place the drug pump device 100 and cartridge containing the new drug into a home refill system, where the pump device and cartridge may be aligned using, e.g., a press-machine mechanism. The patient may then press a button to trigger automatic insertion of a needle that draws liquid drug from the cartridge to the cannula in order to activate the electronics and begin priming the pump. In a further embodiment, a two-channel refill system may be used to aspirate old drug using one channel as well as load new drug into the drug pump device 100 using the other channel. One channel of the two-channel refill system is configured to regulate the flow and storage of drug, while the other one is configured to regulate the flow and storage of waste liquid. The system may use pneumatic pressure and/or vacuum control to direct the infusion and suction of liquid in and out of the drug pump, and may include sensors to monitor the pressures, and sterile filters to keep air from contaminating new drug. The drug pump device need not necessarily be removed from the patient for refilling with the two-channel system, as the system may provide sufficient and flow and pressure control to prevent accidental drug infusion into the target region (e.g., by infusing liquid below the cracking pressure of a check valve).
In some embodiments, multiple drug pump devices are integrated into one skin-adhesive patch. The devices may be arranged in an array on the same surface, stacked on top of one another, or a combination of both. They may share the same insertion set, or, alternatively, each device may have its own insertion set and drug outlet. A multiple-outlet arrangement facilitates administering several smaller doses over a larger surface area using multiple delivery vehicles, which may help to reduce systemic side effects (such as scarring and damage to subcutaneous tissue) that results from drug deliver at high concentrations to a small target area. In some embodiments, the multi-pump system includes, in addition to the drug reservoirs of the individual devices, a shared reservoir. During operation of any one of the pump devices, drug may be expelled from the respective reservoir into the shared reservoir, from where it is conducted to the infusion site.
The volume of drug stored in the various pump devices may be the same or varied, and may be as little as 50 μL or less. The pumps may function separately or collectively to deliver variable dosage volumes, essentially achieving controllable dosage resolution equal to an average dosage delivered by each pump. Parallel operation of the pumps may lead to faster response times and better control over the overall flow rate. For example, if a high flow rate is desired, all of the pumps may simultaneously be active. Further, the use of multiple, independently operable pumps provides redundancy, should any of the pumps fail.
In some embodiments, the individual drug reservoirs store different drugs, facilitating variable drug mixing through selective pump activation. Different drugs may be administered together as part of a drug “cocktail” or separately at different times, depending on the treatment regimen. Multiple reservoirs may also facilitate mixing of agents. For example, one reservoir may store, as a first agent, a drug that is in a “dormant” state with a half-life of several months, and another reservoir may contain, as a second agent, a catalyst required for activating the dormant drug. By controlling the amount of the second agent that reacts with the first agent, the drug delivery device is able to regulate the potency of the delivered dosage. The pumps may be operated by a single controller, which may be programmed to deliver the various drugs in accordance with a user-selected drug-delivery protocol. As explained above, pump operation may be altered through wireless reprogramming or control.
The vial 208 may be fabricated from a glass, polymer, or other materials that are inert with respect to the stability of the drug and, preferably, biocompatible. Glass is commonly used in commercially available and FDA-approved drug vials and containers from many different manufacturers. As a result, there are well-established and approved procedures for aseptically filling and storing drugs in glass containers, which may accelerate the approval process for drug pump devices that protect the drug in a glass container, and avoid the need to rebuild a costly aseptic filling manufacturing line. Using glass for the reservoir further allows the drug to be in contact with similar materials during shipping. Polymer vials, e.g., made of polypropylene or parylene, may be suitable for certain drugs that degrade faster when in contact with glass, such as protein drugs.
Suitable glass materials for the vial may be selected based on the chemical resistance and stability as well as the shatterproof properties of the material. For example, to reduce the risk of container breakage, type-II or type-III soda-lime glasses or type-I borosilicate materials may be used. To enhance chemical resistance and maintain the stability of enclosed drug preparations, the interior surface of the vial may have a specialized coatings. Examples of such coatings include chemically bonded, invisible, ultrathin layers of silicone dioxide or medical-grade silicone emulsions. In addition to protecting the chemical integrity of the enclosed drugs, coatings such as silicone emulsions may provide for easier withdrawal of medication by lowering internal resistance and reducing the amount of pressure needed to drive the piston forward and expel the drug.
In certain embodiments, the drug pump device is manufactured by fitting a conventional, commercially available glass or polymer drug vial, which may already be validated for aseptic filling, with the piston and electrolysis pump, as shown in
In applications involving dry-powder or lyophilized drug preparations, dual-compartment vials, also known as mix-o-vials, may be employed in the drug pump device. These vials may incorporate a top compartment containing a diluent solution and a bottom compartment containing a powdered or lyophilized drug. The two compartments may be separated by a rubber stopper. Electrolysis may be used to actuate a mixing system that triggers the piercing of the stopper to cause the top and bottom contents to mix before or during infusion. For lyophilized and powder medications, vials of borosilicate glass are particularly suitable. The vial bottom may be specially designed to optimize cake formation and enhance the efficiency of the reconstitution process. Borosilicate vials also offer good hydrolytic resistance and small pH shifting, and are not prone to delamination. They are commercially available in both clear and amber varieties, with capacities ranging currently from 1.5 to 150 cm3.
In some embodiments, the electrodes are arranged such that at least a portion of each electrode remains submerged in electrolyte partially filling the electrolysis chamber regardless of the device orientation. For example, as illustrated in
In another embodiment, illustrated in
In some embodiments, schematically illustrated in
Yet another approach involves absorbing the electrolyte within a matrix that fills the interior of the pump chamber, or at least a portion of the chamber containing the electrodes. The matrix may be any absorbent, three-dimensionally networked material, for example, the solid phase of a gel, cotton, a superabsorbent polymer, a sponge material, or any combination thereof (such as, e.g., a gel absorbed within a sponge). Its function is to maintain a persistent distribution of the electrolyte throughout the matrix, thereby ensuring that the electrodes, which are embedded in or filled with the matrix, remain in contact with electrolyte.
Additional examples of suitable matrix materials include other fibers such as natural or synthetic cellulose based materials (e.g., rayon), acetate fiber, nylon fiber, hemp, bamboo fabric, wool, carbon based fibrous material, silk, polyester, or other cotton-blend fibers. Ultra-fine cellulose nanofibers (with diameters of 1-50 nm), made using, for example, a combination of TEMPO, NaBr, and/or NaClO oxidation of natural cellulose (e.g., wood pulp), in different nanofibrous composite formats include small diameter, high surface-to-volume ratio, easy surface functionality, good mechanical properties, and good chemical resistance. Fibers with hydrophilic and water-absorbent properties tend to be preferable; they include “polymer molecules” that are linked up in repetitive patterns or chains, negative charged materials that help attract and absorb “dipolar” water molecules, and fibers with capillary action, where the fibers are able to draw or suck in water like a straw through the interior of the fiber. Capillary action is present both in the fiber of the cotton plant and cotton fabric. Once drawn in through the fibers, the water is then stored in the interior cell walls.
A particularly advantageous matrix material is hydrogel, a highly water-absorbent network of hydrophilic polymer chains. Hydrogels can contain large fractions (e.g., more than 99% by weight) of water or an aqueous solution. They are highly biocompatible, and their absorbed liquid maintains most of its original liquid properties (e.g., density, phase change, and incompressibility), which makes the gels stable for mechanical operation. Using hydrogel also facilitates easier packaging in low-cost manufacturing.
Electrolytes used with the hydrogel system may generally be aqueous solutions, i.e., solutes dissolved in water. Examples of solutes include salts (e.g., sodium chloride, magnesium sulfate, or sodium sulphate), dilute acids (e.g., sulfuric acid, hydrochloric acid, or amino acid), and dilute alkali (e.g., sodium hydroxide, potassium hydroxide, calcium hydroxide). Instead of water, other liquids, such as oil or ethanol, may be used as solvents. Depending on the electrolyte used, the electrolysis gas includes a combination of hydrogen, oxygen, and/or carbon dioxide. For example, electrolysis of water results in oxygen and hydrogen gas, whereas electrolysis of ethanol results in carbon dioxide and hydrogen gas. The use of ethanol may lower the power consumption of the electrolysis pump and extend the life of the battery.
In some embodiments, the water contained in the hydrogel itself serves as the electrolyte. The volume expansion from liquid water to hydrogen and oxygen gas is more than a thousand times. Consequently, a pump chamber volume of less than 1/1000 that of the drug reservoir may, at least theoretically, suffice to expel all the drug from the reservoir. However, to increase the reliability of the electrolysis pump, a volume ratio such as 1 to 5 (electrolysis chamber to drug reservoir) may be preferable. For example, for drug reservoir volumes of 0.5 mL, 3 mL, or 5 mL, the corresponding volume of electrolysis chamber may be 0.1 mL, 0.6 mL, or 1 mL, respectively. Still, use of an electrolysis pump permits the size of the pump to be reduced significantly compared with conventional drug pumps, such as, e.g., motorized drug pump devices.
The matrix material may be placed next to electrodes in a single pump chamber, or in multiple electrolysis cells (e.g., as described with respect to
In some embodiments, multiple coaxial electrode pairs, which are preferably arranged in parallel in a close-packed pattern, are used to compartmentalize the pump chamber into several electrolytic cells. The individual cells may be driven separately or in combination, which facilitates precise and smooth actuation of the piston. Operating the cells consecutively may contribute to maintaining contact between the hydrogel and the respective active electrode pair while gas is generated over time. A multi-cell electrode structure also increases the reliability of the pump device due to redundancy: because of the large volume expansion ratio, a single cell may be able to drive the piston from the beginning to the end of drug delivery. In some embodiments, the electrolysis cells are activated in a serial fashion, one after the other as electrolyte in the respective active cells dries out, to, prolong the overall lifetime of the pump; cell activation may be controlled by the electronic circuitry and based, for example, on a measured electrolysis or flow rate.
At the beginning of drug delivery from a filled reservoir 706, the honeycomb electrode structure may extend through the drug pump chamber, from the back wall 708 of the chamber to the piston 710, as illustrated in
In some embodiments, large portions of the interior surfaces of the honeycomb electrodes 702 and portions of the core electrodes 704 are coated with a material that inhibits gas formation, such as epoxy, while surface portions of the electrodes near the gas-permeable filter 714 are exposed (see
Some electrolysis pumps, such as smaller implantable pumps for drug delivery to the eye or the middle ear, or refillable drug pumps (where a diaphragm or piston collapses back to its initial state after the drug has been refilled) desirably use a non-expanding fibrous material for the matrix. Otherwise, expansion of the matrix could limit the collapse of the piston or diaphragm, and prevent the drug reservoir from being fully refilled A non-expanding fibrous material can keep electrolyte near the electrodes, but does not interfere with the piston or diaphragm motion.
Electrolysis pumps as described above generally facilitate continuous control of the drug-delivery rate via the drive voltage or current applied to the electrodes. However, as the piston moves inside the drug vial, sudden changes in friction between the piston and the vial may cause the drug delivery rate to deviate from the intended delivery protocol, resulting, for example, in a non-uniform delivery rate despite a constant rate of electrolysis, or in undesired spikes in an otherwise smooth uniform or non-uniform delivery protocol. Such changes in friction typically occur at the onset of piston movement as a consequence of the difference between static and dynamic coefficients of friction: the static coefficient of friction between the piston and vial generally exceeds the dynamic coefficient of friction (usually by a factor of about two or three), so that the force needed to start the piston in motion is greater than that needed to keep it moving. In addition, if the piston stops moving for a short period of time, a larger force is needed to re-initiate piston movement.
Furthermore, the dynamic friction itself may be affected by variations in the surface properties of the piston and/or the vial along their lengths, and/or by changes in the surface properties resulting from the interaction between piston and vial. For example, if the inner diameter of the vial and/or the outer diameter of the piston vary slightly along their lengths, the frictional forces generally depend on the piston position. Further, surface roughness may be smoothened out in time, in particular, if a refillable drug pump device is used repeatedly. Conversely, discrete surface defects, e.g., a peck sticking out from the interior surface of a glass vial, may roughen and/or damage the other surface, e.g., the surface of a soft rubber piston. In general, the variations in dynamic friction due to these and other effect are highly unpredictable.
The difference between static and dynamic friction may be reduced by applying a suitable surface coating to the interior surface of the vial and/or to the piston. In some embodiments, the vial (which may be made, e.g., of glass) is coated with a low-friction material such as, for example, parylene or polytetrafluoroethylene (commonly known under the brand name Teflon™), which reduces static friction without significantly changing dynamic friction. Because vial surface coatings may be in contact with drugs or drug solutions, the coating materials are preferably biocompatible to facilitate long-term drug stability.
While the friction drop at the onset of piston movement can be mitigated with friction-reducing coatings, and variations in dynamic friction can be minimized through high-precision manufacturing and selection of suitable combinations of piston and vial materials, in general they cannot be eliminated entirely. This problem may be addressed by using pressure variations in the drug chamber to match the applied force to the friction profile in order to maintain a desired piston velocity (or to change the piston velocity according to a desired protocol). For this purpose, some drug pump embodiments include one or more sensors to continuously monitor a parameter indicative of or affecting drug delivery. For example, a flow or pressure sensor placed inside the cannula may be used to measure the drug delivery rate directly, and feedback circuitry can be employed to adjust the rate of electrolysis in response to sensed variations that deviate from the delivery protocol.
Alternatively, the movement of the piston may be monitored with a position or velocity sensor. For example, in one embodiment, illustrated in
In response to the measured flow, pressure, position, or other parameter, the system controller 112 may adjust the electrolysis rate in real-time (or near real-time, e.g., within 1 ms of the friction change) to compensate for any variations in friction. Alternatively or additionally, for changes in friction that are relatively predictable (such as the drop in friction at the onset of piston motion), the necessary adjustments to the electrolysis may be determined empirically. For example, to avoid flow rate spikes as the piston begins to move, the transition from static to dynamic friction may be repeated multiple times while the electrolysis rate and piston position and/or flow rate in the cannula are measured simultaneously. From this data, the electrolysis rate, as a function time, that is required to assure a smooth onset of piston motion may be calculated, and then programmed into the pump device. The friction compensation techniques and features described above apply similarly to a piston pump device that employs a pump mechanism other than electrolysis, i.e., the pump rate may, generally, be controlled based on a measured drug delivery parameter to reduce or eliminate the effect of changes in friction on the drug delivery rate.
When operating a drug pump device to inject liquid drug into a patient, it is often desirable to monitor the rate or volume of the injection or to track the filling status of the device, e.g., to alert the patient of the need to refill the device soon. This can be accomplished by monitoring the position of the piston inside the vial. One approach utilizes the magnet 900 and one or more induction coils 904, as shown in
Rather than continuously monitoring the position of the piston, it often suffices to detect and signal certain threshold piston positions corresponding to incremental amounts of drug remaining inside the vial, as depicted in
For example,
Position sensing may also be accomplished using multiple Hall effect sensors, optical sensors, induction coils, and/or capacitive sensors placed at different locations along the drug vial in combination with a magnet or optical component embedded in or attached to the piston; several embodiments are illustrated in
To detect the piston motion using capacitive sensing, one or multiple pairs of plate-electrodes 1020 are positioned along the length of the vial such that the piston 1004 moves between consecutive pairs of plate-electrodes as the drug is dispensed. As the piston moves between a pair of plate-electrodes, the dielectric medium between those particular plate-electrodes changes, thereby producing a detectable change in capacitance between the two plate-electrodes 1020. The piston 1004 may be made from or contain material(s) that maximize the detectable change in capacitance, e.g., the piston may possess significantly different dielectric properties than the drug in the vial.
Piston drug pump devices as described above may be manufactured from various readily available components, and prefilled using existing fill/finish lines with few modifications. For example, as explained above, a conventional, FDA-approved drug glass vial may be used to house the drug reservoir. A rubber stopper, optionally having a magnet attached thereto, may be placed into the vial to serve as the piston. The electrolysis chamber may be housed in a container that is open on one side so as to allow mechanical coupling between its contents and the piston. A circuit board including the pump driver, system controller, memory, any other electronic circuitry, and battery (or other power supply) may be attached to the back-end of the electrolysis chamber, which may be made of ceramics or plastics and include electrical feedthroughs that allow electrical connections between the electrodes and the circuit board components. The circuit board may have the same or a similar diameter as the drug vial and pump, and may form, or be integrated into, a cap that fits onto the pump. Alternatively, if the circuit board is larger than the pump diameter, it may be placed to the side of the drug vial and pump assembly. The chamber may be filled with electrolyte-absorbed hydrogel, and then fitted into (or onto) the back-end of the vial, thereby closing the vial.
The pump container may be made of glass. Its back-end may be sealed by heating it, e.g., in an oven or with a torch, and then crimping, twisting, or otherwise closing it, by hand or with a specially designed jig, while the glass is molten. The electrolysis electrodes may be positioned and sealed in place as the glass is crimped. In some embodiments, the glass container holding the pump may be placed over a portion of the open drug vial like an end-cap. In other embodiments, the glass container is slid partially into the vial. Either way, the overlapping wall portions of the vial and pump container may be bonded with an adhesive sealant or through application of heat. In embodiments that utilize a honeycomb electrode or similar structure, this structure may, itself, serve to contain the other drug pump components (such as the hydrogel or other matrix material), and may be placed into the glass vial and secured, e.g., by a clamp-fit or screw mechanism. To prevent leakage of the electrolyte out of the electrolyte chamber (which could cause a short circuit in the circuit board), the electrolysis chamber may be sealed with a rubber O-ring.
Once the vial, piston, and pump are assembled, they may be sterilized, for example, by gamma-irradiation. One of the advantages of hydrogel and electrolysis fluid is that they can readily be gamma-irradiated after assembly. Sterilization serves to protect the patient from infection by preventing bacteria and pyrogens from entering the final fluid pathway of the device. The drug vial may initially be sterilized through standard techniques, for example, the use of heat or radiation. In one embodiment, a metal barrier is placed over the septum before sterilization of the vial (using, e.g., heat or radiation) to serve as a barrier during final sterilization steps using ethylene oxide or gases, preventing the gases from penetrating the septum.
Following assembly and sterilization of the vial, the vial may be filled with liquid drug in a standard aseptic fill and finish line. For that purpose, the glass vial may be oriented vertically, with its back-end (where the piston is) at the bottom, and filled through the front opening. After the filling step, the front-end of the vial is sealed, e.g., by placing a silicone septum in the opening and crimping a metal ring cap to hold the septum in place. Finally, the vial assembly may be enclosed in an injection-molded protective housing, which may optionally have an adhesive on its underside. The housing may have separate front and back portions (shown in
Assembling the device (e.g., adding the pump chamber and outer casing), packaging the device in an outer sterile barrier, and boxing it for shipping may be performed with non-sterile techniques, before a final sterilization is used to sterilize the rest of the pump (including the outer areas of the drug vial). This outer sterilization is particularly important for any surfaces that are in contact with the drug. Post-sterilization processes such as treatment with ethylene-oxide gas or gas plasma, e-beam treatment, steam autoclaving, radiation treatment, chemical treatment, or dry heat treatment can all be used. In one embodiment, the resulting drug device has a pump with a sterile drug vial that has an aluminum barrier over its pierceable silicone septum, and a loading needle that can be mechanically driven through the vial's septum and the metal barrier into the drug reservoir, which simultaneously activates the electronics and primes the pump.
Precisely controlled piston pump devices as described herein may be advantageous over traditional body-adhered syringe systems, for example, because they can supply a larger overall volume of drug to a patient while reducing the flow rate from a rapid injection rate to a slower rate of infusion over time. Due to the lower flow rate, a smaller needle may be used to deliver the drug to the patient, resulting in less pain to the patient. Further, in comparison with conventional, manually operated pen injectors, electrolytically driven pump devices in accordance herewith provide greater accuracy and precision in drug dosage, thus increasing patient safety and treatment efficacy.
The drug reservoir 1104 opens into a cannula 1110, which conducts liquid drug to an infusion set 1112 (not shown in
A series of low-profile electrolysis electrodes 1116 are disposed at the bottom of the electrolysis chamber 1106. The pump control system may be disposed below the electrodes 1116, e.g., embedded in the lower housing portion 1102. As shown in
In operation, when current is supplied to the electrolysis electrodes 1116, the electrolyte filling the pump chamber 1106 evolves gas 1120, expanding the diaphragm 1108 and moving it upwards, i.e., towards the upper portion of the housing 1102. As a result, liquid is displaced from the drug reservoir 1104 and forced into and through the cannula 1110 to a delivery vehicle that is part of the infusion set 1112. The diaphragm 1108 may be corrugated or otherwise folded to permit a large degree of expansion without sacrificing volume within the drug reservoir 1104 when the diaphragm 1108 is relaxed. However, flat or bellows diaphragms may also be used. The diaphragm 1108 may be molded or microfabricated from, for example, parylene polymer. When the current is stopped, the electrolyte gas 1120 condenses back into its liquid state, and the diaphragm 1108 recovers its space-efficient corrugations. The electrolysis pump may be smaller and more portable than other pumps because of its lack of rigidly moving parts, and may be capable of generating high pressures (e.g., greater than 20 psi), allowing the drug pump device to overcome any biofouling or blockages in the system.
The pump 1100 may include a magnet 1120 attached to the underside of the diaphragm 1108. As the magnet 1120 approaches the top of the drug dome 1102, a sensor 1124 determines the relative distance between the magnet and the top of the drug dome, thus indicating when the pump is, e.g., 80%, 90% and 100% empty. The sensor 1124 may, for example, be a magnetic induction coil or a Hall effect sensor. In one embodiment, the pump device alerts (e.g., by means of LED flashes and/or an audio alert, or by wirelessly signaling, for example, a smartphone) the patient when the pump is almost empty (e.g., 80% to 90% empty), and again when the pump is completely empty.
Mechanical recoil may similarly be exploited for power savings in a drug pump device that includes only a single pump chamber, but primary and secondary drug reservoirs. The pump chamber and primary drug reservoir may be arranged and function substantially like the pump device 1100 shown in
Diaphragm pump devices in accordance herewith may include various pump features described above with respect to piston pump devices. For example, to ensure continuous contact between the electrolysis electrode structure and the electrolyte despite changes in the orientation of the device, the electrolyte may be absorbed within a matrix material that is disposed on top of, or otherwise placed in contact with, the electrode structure. Preferably, the matrix material does not retain electrolysis gas and, therefore, substantially does not expand during electrolysis. This facilitates collapsing the expanded diaphragm to refill the drug reservoir to its original volume. In other embodiments, electrode structures (such as a pair of spring coils or flexible wires) that remain in contact with liquid electrolyte regardless of device orientation may be implemented in the electrolysis pump.
Having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. For example, various features described with respect to one particular device type and configuration may be implemented in other types of device and alternative device configurations as well. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.
This application claims priority to and the benefit of, and incorporates herein by reference in its entirety, U.S. Provisional Patent Applications No. 61/326,047, filed on Apr. 20, 2010, No. 61/367,686, filed on Jul. 26, 2010, No. 61/423,945, filed on Dec. 16, 2010, and No. 61/449,899, filed on Mar. 7, 2011.
Number | Date | Country | |
---|---|---|---|
61326047 | Apr 2010 | US | |
61367686 | Jul 2010 | US | |
61423945 | Dec 2010 | US | |
61449899 | Mar 2011 | US |