The present invention is directed generally to a lighting driver for driving one or more light-emitting diode (LED) light sources. More particularly, various inventive methods and apparatus disclosed herein relate to an LED lamp and an associated lighting driver that can be compatibly retrofit into lighting fixtures having electromagnetic (EM) ballasts.
There are many commercial, industrial, and retail environments, such as factories, stores, warehouses, and office buildings that have a large number of lighting fixtures with installed fluorescent tubes (e.g., T8 or T12 tubes) and accompanying electromagnetic (EM) ballasts.
Illumination devices based on semiconductor light sources, such as light-emitting diodes (LEDs), offer a viable alternative to traditional fluorescent, HID, and incandescent lamps. Functional advantages and benefits of LEDs include high energy conversion and optical efficiency, durability, lower operating costs, and many others.
Accordingly, in some cases there is a desire to replace existing traditional fluorescent light sources with newer LED light sources. In order to eliminate labor costs associated with installing new lighting fixtures or rewiring existing lighting fixtures, in some cases, there is a desire to retrofit newer LED tube (TLED) lamps into the existing lighting fixtures with existing EM ballasts in place of the exiting fluorescent tube lamps. In such cases, it is desirable to be able to use the same TLED lamp with different ballasts having various configurations illustrated in
One of the major challenges of TLED lamp retrofit, however, is the compatibility of the TLED lamp with existing installed EM ballasts designed for fluorescent lamps.
A conventional switching mode driver may operate behind an EM ballast when caution is taken in the circuit design, but it often leads to very poor power factor, and to unbalanced light output when two TLED lamps are in series. In particular, a TLED lamp may be driven with a switching mode power supply (SMPS), but conventional SMPS drivers lead to poor power factor when operated behind a parallel compensated EM ballast (e.g.,
Thus, there is a need in the art to provide a TLED lamp which can be retrofit into existing lighting fixtures compatibly with a variety of installed EM ballasts which are designed for fluorescent lamps. There is also a need for a TLED lamp which can maintain a high power factor when used in a lighting fixture with a compensated EM ballast configuration. There is also a need for a TLED lamp which can be connected in a series configuration with another TLED lamp without an unacceptable level of flicker and/or unbalanced light output between the two series connected TLED lamps. There is further a need to provide a TLED lamp that can provide safe operation in an aluminum tube based architecture.
The present disclosure is directed to inventive methods and apparatus for a light emitting diode (LED) tube (TLED) lamp that can be retrofit into existing lighting fixtures compatibly with a variety of installed electromagnetic (EM) ballasts which are designed for fluorescent lamps. For example, in some embodiments a TLED lamp as disclosed herein can maintain a high power factor when used in a lighting fixture with a compensated ballast configuration, can be connected in a series configuration with another TLED lamp without an unacceptable level of flicker and/or unbalanced light output between the two series connected TLED lamps, and can provide safe operation in an aluminum tube based architecture.
Generally, in one aspect, an apparatus comprises a light emitting diode (LED) tube (TLED) lamp, the TLED lamp including: at least partially transparent tube having an electrical connector configured to be installed in a fluorescent light fixture; one or more light emitting diodes provided inside the tube; and a lighting driver provided inside the tube and connected to the electrical connector and being configured to supply power to the one or more light emitting diodes. The lighting driver comprises a shunt switch circuit and a switching mode power supply. The shunt switch circuit comprises: a rectifier connected to the electrical connector, a shunt switching device connected across an output of the rectifier, an output capacitor and a diode connected in series across the output of the rectifier, wherein the capacitor is connected across an output of the shunt switch circuit, a voltage sensor configured to sense a bus voltage across the output capacitor, a current sensor configured to sense a rectifier current through the rectifier, and a processor configured to control a switching operation of the shunt switching device in response to the sensed bus voltage and the rectifier current. The switching mode power supply is configured to receive the bus voltage and in response thereto to supply a lamp current to drive the one or more light emitting diodes, and is further configured to provide galvanic isolation between the shunt switch circuit and the one or more light emitting diodes.
In one embodiment, the processor is configured to execute an algorithm to detect when an input of the rectifier is connected to mains power without an electromagnetic (EM) ballast, and in response thereto to disable the lighting driver
According to one optional feature of this embodiment, the algorithm for detecting when the input of the rectifier is connected to mains power without an EM ballast includes disabling the supply of the lamp current to drive the one or more light emitting diodes; and while the supply of the lamp current is disabled, determining at least one of: (1) a peak rectifier current, and (2) a time delay between a zero crossing of the rectifier current and the peak rectifier current; and comparing at least one of: (1) the peak rectifier current and a peak detection threshold; and (2) the time delay and a time delay threshold to obtain a comparison result; and determining when the input of the rectifier is connected to mains power without the EM ballast based on the obtained comparison result.
In another embodiment, the processor is configured to execute an algorithm the processor is configured to execute an algorithm to detect a type of electromagnetic (EM) ballast connected to an input of the rectifier, and to control a switching operation of the shunt switching device to regulate the bus voltage according to the detected type of EM ballast.
According to one optional feature of this embodiment, when the detected type of EM ballast is a capacitive ballast, the processor controls the shunt switch to be turned on at a zero crossing of the rectifier current, and when the detected type of EM ballast is an inductive ballast, the processor controls the shunt switch to be turned off at a zero crossing of the rectifier current.
According to another optional feature of this embodiment, the algorithm for detecting the type of EM ballast includes: controlling the shunt switch to be turned off at a zero crossing of the rectifier current and measuring a first average value of the rectifier current; controlling the shunt switch to be turned off at an offset time period with respect to the zero crossing of the rectifier current and measuring a second average value of the rectifier current; comparing the first average current to the second average current; when the second average current is less than the first average current, determining that the type of EM ballast is a capacitive ballast; and when the second average current is not less than the first average current, determining that the type of EM ballast is an inductive ballast.
Generally, in another aspect, a device comprises a lighting driver, including: a shunt switch circuit configured to detect when an input of the lighting driver is connected to mains power without a ballast, and in response thereto to disable the lighting driver, and further configured to detect a type of ballast connected to the input of the lighting driver when the input of the lighting driver is connected to the ballast, and to regulate a bus voltage of the shunt switch circuit according to the detected type of ballast; and a switching mode power supply configured to receive the bus voltage of the shunt switch circuit and in response thereto to supply a lamp current to drive one or more light emitting diodes.
Generally, in yet another aspect, a device includes: a rectifier connected to an input of the device, a shunt switching device connected across an output of the rectifier, an output capacitor and a diode connected in series across the output of the rectifier, wherein the output capacitor is connected across an output of the shunt switch circuit, a voltage sensor configured to sense a bus voltage across the output capacitor, a current sensor configured to sense a rectifier current through the rectifier, and a processor configured to control a switching operation of the shunt switching device in response to the sensed bus voltage and the rectifier current and further configured to execute an algorithm to detect when an input of the device is connected to mains power without an electromagnetic (EM) ballast.
As used herein for purposes of the present disclosure, the term “LED” should be understood to include any electroluminescent diode or other type of carrier injection/junction-based system that is capable of generating radiation in response to an electric signal. Thus, the term LED includes, but is not limited to, various semiconductor-based structures that emit light in response to current, light emitting polymers, organic light emitting diodes (OLEDs), electroluminescent strips, and the like. In particular, the term LED refers to light emitting diodes of all types (including semi-conductor and organic light emitting diodes) that may be configured to generate radiation in one or more of the infrared spectrum, ultraviolet spectrum, and various portions of the visible spectrum (generally including radiation wavelengths from approximately 400 nanometers to approximately 700 nanometers).
For example, one implementation of an LED configured to generate essentially white light (e.g., a white LED) may include a number of dies which respectively emit different spectra of electroluminescence that, in combination, mix to form essentially white light. In another implementation, a white light LED may be associated with a phosphor material that converts electroluminescence having a first spectrum to a different second spectrum. In one example of this implementation, electroluminescence having a relatively short wavelength and narrow bandwidth spectrum “pumps” the phosphor material, which in turn radiates longer wavelength radiation having a somewhat broader spectrum.
It should also be understood that the term LED does not limit the physical and/or electrical package type of an LED. For example, as discussed above, an LED may refer to a single light emitting device having multiple dies that are configured to respectively emit different spectra of radiation (e.g., that may or may not be individually controllable). Also, an LED may be associated with a phosphor that is considered as an integral part of the LED (e.g., some types of white LEDs). In general, the term LED may refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T-package mount LEDs, radial package LEDs, power package LEDs, LEDs including some type of encasement and/or optical element (e.g., a diffusing lens), etc.
The term “light source” should be understood to refer to any one or more of a variety of radiation sources, including, but not limited to, LED-based sources (including one or more LEDs as defined above. A given light source may be configured to generate electromagnetic radiation within the visible spectrum, outside the visible spectrum, or a combination of both. Hence, the terms “light” and “radiation” are used interchangeably herein. Additionally, a light source may include as an integral component one or more filters (e.g., color filters), lenses, or other optical components. Also, it should be understood that light sources may be configured for a variety of applications, including, but not limited to, indication, display, and/or illumination. An “illumination source” is a light source that is particularly configured to generate radiation having a sufficient intensity to effectively illuminate an interior or exterior space. In this context, “sufficient intensity” refers to sufficient radiant power in the visible spectrum generated in the space or environment (the unit “lumens” often is employed to represent the total light output from a light source in all directions, in terms of radiant power or “luminous flux”) to provide ambient illumination (i.e., light that may be perceived indirectly and that may be, for example, reflected off of one or more of a variety of intervening surfaces before being perceived in whole or in part).
The term “lighting unit” is used herein to refer to an apparatus including one or more light sources of same or different types. A given lighting unit may have any one of a variety of mounting arrangements for the light source(s), enclosure/housing arrangements and shapes, and/or electrical and mechanical connection configurations. Additionally, a given lighting unit optionally may be associated with (e.g., include, be coupled to and/or packaged together with) various other components (e.g., control circuitry) relating to the operation of the light source(s). An “LED-based lighting unit” refers to a lighting unit that includes one or more LED-based light sources as discussed above, alone or in combination with other non LED-based light sources.
The term “lamp” should be interpreted to refer to a lighting unit that includes connector(s) for receiving electrical power and for generating radiation (e.g., visible light) from the received electrical power. Examples include bulbs and tubes, including incandescent bulbs, fluorescent bulbs, fluorescent tubes, LED bulbs, LED tube (TLED) lamps, etc.
The term “lighting fixture” is used herein to refer to an implementation or arrangement of one or more lighting units in a particular form factor, assembly, or package, and may be associated with (e.g., include, be coupled to and/or packaged together with) other components, for example an electromagnetic (EM) ballast, in particular for supplying power.
The term “controller” is used herein generally to describe various apparatus relating to the operation of one or more light sources. A controller can be implemented in numerous ways (e.g., such as with dedicated hardware) to perform various functions discussed herein. A “processor” is one example of a controller which employs one or more microprocessors that may be programmed using software (e.g., microcode) to perform various functions discussed herein. A controller may be implemented with or without employing a processor, and also may be implemented as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions. Examples of controller components that may be employed in various embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs).
As used herein, “galvanic isolation” refers to the principle of isolating functional sections of electrical systems preventing the moving of charge-carrying particles from one section to another. There is no electric current flowing directly from a first section to a second section when the first and second sections are galvanically isolated from each other. Energy and/or information can still be exchanged between the sections by other means, e.g. capacitance, induction, electromagnetic waves, optical, acoustic, or mechanical means.
As used herein, an “optocoupler” is an electronic device designed to transfer electrical signals by utilizing light waves to provide coupling with electrical isolation between its input and output, and may sometimes also be referred to as an opto-isolator, photocoupler, or optical isolator.
As used herein, “mains” refers to the general-purpose alternating current (AC) electric power supply from the public utility grid, and may sometimes also be referred to as household power, household electricity, domestic power, wall power, line power, city power, street power, and grid power.
In various implementations, a processor or controller may be associated with one or more storage media (generically referred to herein as “memory,” e.g., volatile and non-volatile computer memory such as RAM, PROM, EPROM, and EEPROM, floppy disks, compact disks, optical disks, magnetic tape, etc.). In some implementations, the storage media may be encoded with one or more programs that, when executed on one or more processors and/or controllers, perform at least some of the functions discussed herein. Various storage media may be fixed within a processor or controller or may be transportable, such that the one or more programs stored thereon can be loaded into a processor or controller so as to implement various aspects of the present invention discussed herein. The terms “program” or “computer program” are used herein in a generic sense to refer to any type of computer code (e.g., software or microcode) that can be employed to program one or more processors or controllers.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Generally, Applicants have recognized and appreciated that it would be beneficial to provide a light emitting diode (LED) tube (TLED) lamp that can be retrofit into an existing lighting fixture for a fluorescent tube lamp with a compensated ballast configuration, and which can maintain a high power factor, can be connected in a series configuration with another TLED without an unacceptable level of flicker and/or unbalanced light output between the two series connected TLED lamps, and can provide safe operation in an aluminum tube based architecture.
In view of the foregoing, various embodiments and implementations of the present invention are directed to a lighting driver that detects when it is connected to mains power without a ballast, and in response thereto disables the lighting driver, and further detects a type of ballast when it is connected to a ballast, and regulates an output bus voltage in response to the detected type of ballast. Further, a switching mode power supply may be configured to receive the bus voltage and in response thereto to supply a current to drive one or more light emitting diodes.
In some embodiments, at least a portion of substantially cylindrical shell or tube 32 is metallic, for example aluminum, in which case TLED lamp 30 may be said to have an aluminum tube-based architecture. In other embodiments, substantially cylindrical shell or tube 32 is made of glass, in which case TLED lamp 30 may be said to have a glass tube-based architecture.
Beneficially, in some embodiments shunt switch circuit 310 provides compatibility with EM ballast 10, while the SMPS provides mains isolation.
To operate TLED lamp 30 behind all EM ballast configurations illustrated in
SMPS 320 is configured to receive the bus voltage VBUS and in response thereto to supply a lamp current ILED to drive the one or more light emitting diodes 38. In some embodiments, SMPS comprises a flyback circuit.
Beneficially, shunt switch circuit 310 is controlled is such a way that the bus voltage VBUS is regulated. In some embodiments, VBUS is regulated to be about 150V. SMPS 320 (e.g., a flyback stage) is fed with this constant voltage VBUS and operated in a constant output current mode to supply power to the one or more LEDs 38. In some embodiments, SMPS delivers about 25 W to the one or more LEDs 38.
Shunt switch circuit 410 comprises: a rectifier 411;, a shunt switching device 412 connected across an output of rectifier 411; an output capacitor 413 and a diode 414 connected in series across the output of rectifier 411, wherein output capacitor 413 is connected across an output of shunt switch circuit 410; a gate driver 415 for driving shunt switching device 412; a voltage sensor 416 configured to sense a bus voltage VBUS across output capacitor 413; a current sensor 417 configured to sense a rectifier current through rectifier 411; a processor 418 configured to control a switching operation of shunt switching device 412 in response to the sensed bus voltage VBUS and the rectifier current; and a protection circuit 419 for protecting ballast 10 and/or the lighting driver of TLED lamp 400 from a short circuit and/or over-voltage and/or over-current condition under control of processor 418. Processor 418 may include one of more associated memory devices, include volatile memory (e.g., dynamic random access memory) and/or nonvolatile memory (e.g., FLASH memory) for storing programming code (i.e. software) for various operations which may be performed by processor 418.
As illustrated in
Returning again to
Also shown in
As shown in
Operationally, voltage sensor 416 senses the bus voltage VBUS and supplies the sensed voltage VSENSE to processor 418. Also, current sensor 417 supplies the measured rectifier current to op amp 620. The amplified rectifier current from op amp 620 is supplied to zero crossing detector 630 for zero crossing detection, and is also supplied to LPF 660. Zero crossing detector 630 detects when the rectifier current experiences a zero crossing. LPF 660 averages the rectifier current and supplies the averaged rectifier current IAVG to the input of ADC 650 which converts it to a digital value.
Processor 418 may use the sensed bus voltage VBUS, the rectifier current, and the averaged rectifier current IAVG to execute various algorithms to regulate the bus voltage VBUS, to detect a type of ballast 10 to with TLED lamp 400 is connected, and to detect when TLED lamp 400 is connected to mains 12 without a ballast, as will be explained in greater detail below with respect to
The loss in the EM ballast is high when a TLED lamp is connected to a capacitive ballast and operated in the LE control mode, thus causing a risk of overheating when operated with certain ballasts. On the other hand, when a TLED lamp that is connected to a capacitive ballast is operated in the TE control mode, the loss is greatly reduced.
Beneficially, In order to minimize the loss in EM ballast 10, TLED lamp 400 may employ trailing edge (TE) control when TLED lamp 400 is connected to a capacitive ballast, and may employ leading edge (LE) control when TLED lamp 400 is connected to an inductive ballast.
Accordingly, TLED lamp 400, and in particular shunt switch circuit 410, and even more particularly processor 418, may employ a ballast type detection algorithm to determine whether TLED lamp 400 is connected to a capacitive ballast or an inductive ballast so that an appropriate control mode can be applied.
From
The method starts at step 1010. In step 1020, TLED lamp 400 is operated with leading edge (LE) control. More specifically, processor 418 regulates the bus voltage VBUS with LE control of the switching control pulse provided to shunt switching device 412 by gate driver 415. It is beneficial that the method 1000 begins with LE control, since this is a safe control method for both inductive and capacitive ballasts with no excessive ballast loss, while trailing edge (TE) control may lead to unacceptable loss for inductive ballasts and therefore present a risk of overheating.
In a step 1030, processor 418 regulates the bus voltage VBUS for a given period until the lamp power stabilizes, and then records the measured average rectifier current IAVG.
Then, in a step 1040, processor 418 shifts the switching control pulse by a predetermined time shift, for example, 2 ms. The time shift is selected such that the average rectifier current will have a significant difference between the LE switching point and the shifted switching point, while at the same time not leading to excessive loss for the shifted pulse operation.
In a step 1050, processor 418 again regulates the bus voltage VBUS for a given period until the lamp power stabilizes, and then records the measured average rectifier current IAVG-SHIFTED.
In a step 1060, processor 418 compares the average rectifier current IAVG at the normal LE switching point to the average rectifier current IAVG-SHIFTED when the timing of the switching control pulse is shifted with respect to the normal LE switching point.
If the shifted average rectifier current IAVG-SHIFTED is less than the average rectifier current IAVG, then processor 418 determines that the ballast is a capacitive ballast and processor 418 operates shunt switch circuit 410 and TLED lamp 400 with TE control. Otherwise processor 418 determines that the ballast is an inductive ballast and processor 418 operates shunt switch circuit 410 and TLED lamp 400 with LE control. As a result, TLED lamp 400 is automatically operated with minimum EM ballast loss for different fixture circuits.
As described above, TLED lamp 400 is configured to be retrofit into an existing lighting fixture having a ballast whose type may not be known. However, it may occur that TLED lamp 400 is misused and is connected directly to mains power 12 without any EM ballast. In that case, beneficially processor 418 may execute an algorithm to detect when an input of rectifier 411, and therefore of TLED lamp 400, is connected to mains power 12 without an electromagnetic (EM) ballast, and in response thereto to disable the lighting driver.
In still another embodiment where a glass tube based architecture is employed, and mains isolation in the driver is not necessary, the SMPS driver can be left out altogether and the shunt switch stage may then regulate the LED current instead of the bus voltage.
For a TLED lamp with a lighting driver as described above including the shunt switch circuit, it is possible to connect two TLED lamps in series with one EM ballast. Accordingly,
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
Any reference numerals or other characters, appearing between parentheses in the claims, are provided merely for convenience and are not intended to limit the claims in any way.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/050705 | 2/16/2012 | WO | 00 | 8/13/2013 |
Number | Date | Country | |
---|---|---|---|
61443300 | Feb 2011 | US |