This application claims priority from U.S. Provisional Patent 61/669,161, filed Jul. 9, 2012, which is incorporated herein by reference.
The present invention relates to medical implants, and more specifically to a novel bone conduction hearing implant system.
A normal ear transmits sounds as shown in
Hearing is impaired when there are problems in the ability to transduce external sounds into meaningful action potentials along the neural substrate of the cochlea. To improve impaired hearing, auditory prostheses have been developed. For example, when the impairment is related to operation of the middle ear, a conventional hearing aid or a middle ear implant may be used to provide acoustic-mechanical stimulation to the auditory system in the form of amplified sound. Or when the impairment is associated with the cochlea, a cochlear implant with an implanted stimulation electrode can electrically stimulate auditory nerve tissue with small currents delivered by multiple electrode contacts distributed along the electrode.
Middle ear implants employ electromagnetic transducers that convert sounds into mechanical vibration of the middle ear 103. A coil winding is held stationary by attachment to a non-vibrating structure within the middle ear 103 and microphone signal current is delivered to the coil winding to generate an electromagnetic field. A magnet is attached to an ossicle within the middle ear 103 so that the magnetic field of the magnet interacts with the magnetic field of the coil. The magnet vibrates in response to the interaction of the magnetic fields, causing vibration of the bones of the middle ear 103. See U.S. Pat. No. 6,190,305, which is incorporated herein by reference.
U.S. Patent Publication 20070191673 (incorporated herein by reference) describes another type of implantable hearing prosthesis system which uses bone conduction to deliver an audio signal to the cochlea for sound perception in persons with conductive or mixed conductive/sensorineural hearing loss. An implanted floating mass transducer (FMT) is affixed to the temporal bone of the skull. In response to an externally generated electrical audio signal, the FMT couples a mechanical stimulation signal to the temporal bone for delivery by bone conduction to the cochlea for perception as a sound signal.
Embodiments of the present invention include (Original) An external component for a bone conduction hearing implant. An external housing is fixedly attached on the skin of a hearing implant patient over an implanted bone conduction hearing transducer. An electromagnetic drive coil arrangement is fixed within the external housing for conducting electrical current to develop electromagnetic drive signals. An attachment magnet arrangement is suspended within the external housing by a flexible spring arrangement and magnetically coupled to the drive coil arrangement and to a corresponding implant magnet arrangement within the implanted bone conduction transducer. The electromagnetic drive signals magnetically interact with the attachment magnet arrangement which reacts by vibrating on the spring arrangement and magnetically interacting with the implant magnet arrangement to generate a bone conduction vibration signal by the implanted bone conduction hearing transducer for perception by the patient as sound.
There also may be a signal processor for generating electrical drive signals for the electromagnetic drive coils. The signal processor may be enclosed within the external housing, or within a signal processor housing separate from and connected to the external housing. There also may be at least one sensing microphone for developing an audio input signal to the signal processor.
The attachment magnet arrangement may be based on a cylindrical magnet suspended within and surrounded by the drive coil arrangement. Or the attachment magnet arrangement may be suspended within the external housing below the drive coil arrangement. The attachment magnet arrangement may include a first magnet having a first magnetic field orientation and a second magnet having a second magnetic field orientation opposite to the first magnetic field orientation. For example, the first magnet may be an inner cylinder magnet and the second magnet may be an outer ring magnet.
Embodiments of the present invention also include a hearing implant system having an external component according to any of the foregoing.
Conventional bone conduction implant arrangements may not optimally exploit the relatively large masses of the magnets that are used. Embodiments of the present invention are directed to an external component for a bone conduction hearing implant that better harnesses the inertial masses involved.
The electromagnetic drive signals from the drive coil arrangement 203 magnetically interact with the attachment magnet arrangement 202 which reacts by vibrating on the spring arrangement 204 and magnetically interacting with the center implant magnet 207 to generate a bone conduction vibration signal by the implanted transducer 205 for perception by the patient through the skull bone as sound. The magnetic fields of the attachment magnet arrangement 202 and the outer ring magnet 208 do not interact significantly.
The signal processor that develops the electromagnetic drive signals from for drive coil arrangement 203 may be enclosed within the external housing 201, or it may be contained within a separate signal processor housing and electrically connected to the external housing 201. There also may be at least one sensing microphone for developing an audio input signal to the signal processor 210.
The electromagnetic drive signals from the drive coil arrangement 303 magnetically interact with the attachment magnet arrangement of the center cylindrical attachment magnet 302 and the outer ring attachment magnet 3021 which vibrate on the spring arrangement 304 and magnetically interact with the implant magnet 307 and pole pieces including 308 and 310 to generate a bone conduction vibration signal by the implanted transducer 305 for perception by the patient through the skull bone as sound.
The electromagnetic drive signals from the drive coil arrangement 403 magnetically interact with the attachment magnet arrangement of the magnetically opposite attachment magnets 4021 and 4022 which vibrate on the spring arrangement 404 and magnetically interact with the implant magnets 4071 and 4072 to generate a bone conduction vibration signal by the implanted transducer 405 for perception by the patient through the skull bone as sound.
While the foregoing describe external components having attachment magnets suspended within the housing, the inertial mass of the implant magnets can also be exploited similarly suspending the implant magnets within the implant transducer housing. For example,
In the specific embodiment shown in
Embodiments of the present invention such as those described above can be easily and directly implemented in existing products with corresponding size and geometry replacement magnets, either for the implanted magnet and/or the external magnet. Embodiments may usefully contain permanent magnetic material and/or ferro-magnetic material as well as other structural materials. These include without limitation magnetic ferrite materials such as Fe3O4, BaFe12O19 etc., compound materials such as plastic bonded permanent magnetic powder, and/or sintered material such as sintered NdFeB, SmCo, etc. Selection of the proper materials and arrangements may help avoid or reduce undesired eddy currents.
Although various exemplary embodiments of the invention have been disclosed, it should be apparent to those skilled in the art that various changes and modifications can be made which will achieve some of the advantages of the invention without departing from the true scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3487403 | Pihl | Dec 1969 | A |
3573812 | Pihl | Apr 1971 | A |
3801767 | Marks | Apr 1974 | A |
3987967 | Kuznetsov et al. | Oct 1976 | A |
4038990 | Thompson | Aug 1977 | A |
4199741 | Serrus Paulet | Apr 1980 | A |
4257936 | Matsumoto et al. | Mar 1981 | A |
4317969 | Riegler et al. | Mar 1982 | A |
4549532 | Baermann | Oct 1985 | A |
4596971 | Hirabayashi et al. | Jun 1986 | A |
4628907 | Epley | Dec 1986 | A |
4785816 | Dow et al. | Nov 1988 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
4868530 | Ahs | Sep 1989 | A |
4918745 | Hutchison | Apr 1990 | A |
5015224 | Maniglia | May 1991 | A |
5183056 | Dalen et al. | Feb 1993 | A |
5434549 | Hirabayashi et al. | Jul 1995 | A |
5456654 | Ball | Oct 1995 | A |
5538219 | Osterbrink | Jul 1996 | A |
5554096 | Ball | Sep 1996 | A |
5624376 | Ball et al. | Apr 1997 | A |
5630835 | Brownlee | May 1997 | A |
5716407 | Knapp et al. | Feb 1998 | A |
5724014 | Leikus et al. | Mar 1998 | A |
5749912 | Zhang et al. | May 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5857958 | Ball et al. | Jan 1999 | A |
5877664 | Jackson, Jr. | Mar 1999 | A |
5897486 | Ball et al. | Apr 1999 | A |
5913815 | Ball et al. | Jun 1999 | A |
6040762 | Tompkins | Mar 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6175767 | Doyle, Sr. | Jan 2001 | B1 |
6178079 | Renger | Jan 2001 | B1 |
6178353 | Griffith et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6208235 | Trontelj | Mar 2001 | B1 |
6208882 | Lenarz et al. | Mar 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6219580 | Faltys et al. | Apr 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6295472 | Rubinstein et al. | Sep 2001 | B1 |
6313551 | Hazelton | Nov 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6475134 | Ball et al. | Nov 2002 | B1 |
6505062 | Ritter et al. | Jan 2003 | B1 |
6506987 | Woods | Jan 2003 | B1 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6838963 | Zimmerling et al. | Jan 2005 | B2 |
7091806 | Zimmerling et al. | Aug 2006 | B2 |
7190247 | Zimmerling | Mar 2007 | B2 |
7266209 | House | Sep 2007 | B1 |
7338035 | Tsai | Mar 2008 | B2 |
7566296 | Zimmerling et al. | Jul 2009 | B2 |
7608035 | Farone | Oct 2009 | B2 |
7642887 | Zimmerling | Jan 2010 | B2 |
20040012470 | Zimmerling et al. | Jan 2004 | A1 |
20050001703 | Zimmerling | Jan 2005 | A1 |
20050062567 | Zimmerling et al. | Mar 2005 | A1 |
20060244560 | Zimmerling et al. | Nov 2006 | A1 |
20070053536 | Westerkull | Mar 2007 | A1 |
20070191673 | Ball et al. | Aug 2007 | A1 |
20070274551 | Tsai et al. | Nov 2007 | A1 |
20090209806 | Hakansson | Aug 2009 | A1 |
20100004716 | Zimmerling et al. | Jan 2010 | A1 |
20100145135 | Ball et al. | Jun 2010 | A1 |
20100324355 | Spitaels et al. | Dec 2010 | A1 |
20110022120 | Ball | Jan 2011 | A1 |
20110216927 | Ball | Sep 2011 | A1 |
20120029267 | Ball | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
2031896 | Apr 2009 | EP |
1468890 | Mar 1977 | GB |
04023821 | Jan 2004 | JP |
1690749 | Nov 1991 | SU |
WO 9732629 | Sep 1997 | WO |
WO 0010361 | Feb 2000 | WO |
WO 03036560 | May 2003 | WO |
WO 03081976 | Oct 2003 | WO |
WO 03092326 | Nov 2003 | WO |
WO 2004114723 | Dec 2004 | WO |
WO 2011011409 | Jan 2011 | WO |
WO 2011133747 | Oct 2011 | WO |
Entry |
---|
Bromberg & Sunstein LLP, Response A filed May 14, 2007 to Office Action dated Feb. 12, 2007, pertaining to U.S. Appl. No. 11/158,322, 14 pages. |
Bromberg & Sunstein LLP, Response B filed Jun. 17, 2008 to Office Action dated Mar. 17, 2008, pertaining to U.S. Appl. No. 11/158,322, 10 pages. |
Bromberg & Sunstein LLP, Response C filed Sep. 19, 2008 to Office Action dated Jun. 26, 2008, pertaining to U.S. Appl. No. 11/671,132, 8 pages. |
Bromberg & Sunstein LLP, Response D filed Jan. 5, 2009 to Office Action dated Oct. 27, 2008, pertaining to U.S. Appl. No. 11/671,132, 13 pages. |
European Patent Office, European Search Report (Extended) pertaining to Application No. 08075886.5-2205/12031896, date of mailing Jun. 3, 2009, 8 pages. |
Heller et al, “Evaluation of MRI Compatibility of the Modified Nucleus Multichannel Auditory Brainstem and Cochlear Implants”, The American J. of Otology 17(5); pp. 724-729 (Sep. 1996). |
Hobbs, et al, “Magnetic Resonance Image—Guided Proteomics of Human Glioblastoma Multiforme”, Journal of Magnetic Resonance Imaging; pp. 530-536 (2003). |
International Searching Authority, International Search Report International Application No. PCT/IB03/02283, date of mailing Nov. 28, 2003, 7 pages. |
International Searching Authority, Invitation to Pay Additional Fees—International Application No. PCT/IB2004/002588, date of mailing Dec. 20, 2004, 4 pages. |
Teissl et al, “Cochlear Implants: In Vitro Investigation of Electromagnetic Interference at MR Imaging—Compatibility and Safety Aspects”, Radiology 208(3); pp. 700-708 (Sep. 1998). |
Teissl et al, “Magnetic Resonance Imaging and Cochlear Implants: Compatibility and Safety Aspects”, J. Magn. Reson. Imaging 9(1); pp. 26-38 (Jan. 1999). |
United States Patent and Trademark Office, Office Action dated Feb. 12, 2007, pertaining to U.S. Appl. No. 11/158,322, 6 pages. |
United States Patent and Trademark Office, Office Action dated Mar. 17, 2008, pertaining to U.S. Appl. No. 11/158,322, 14 pages. |
United States Patent and Trademark Office, Office Action dated Oct. 27, 2008, pertaining to U.S. Appl. No. 11/671,132, 7 pages. |
International Searching Authority, Authorized Officer Lee W. Young, International Search Report and Written Opinion, PCT/US11/41045, mailed Oct. 25, 2011, 10 pages. |
International Searching Authority, Authorized Officer Shane Thomas, International Search Report and Written Opinion, PCT/US12/70823, date of mailing Mar. 13, 2013, 13 pages. |
International Searching Authority, Authorized Office Shane Thomas, International Search Report and Written Opinion, PCT/US13/28183, date of mailing May 10, 2013, 13 pages. |
International Searching Authority, Authorized Officer Frank Liebmann, International Search Report and Written Opinion, PCT/US2013/049642, date of mailing Jan. 8, 2014, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20140012069 A1 | Jan 2014 | US |