The present disclosure is directed to coated transparent substrate, and more specifically to various approaches for enhancing electromagnetic communication through coated transparent substrate.
A coated transparent substrate (e.g., a coated glass) may reduce the transmission of visible light to provide tinting or shading. A device (e.g., an electrochromic (EC) device, a photovoltaic device, a quasi-transparent device, a coated device, and the like) may be used to provide a reduction in visible light transmission through the coated transparent substrate. An EC device may include EC materials that are known to change their optical properties, such as coloration, in response to the application of an electrical potential, thereby making the coated transparent substrate more or less transparent or more or less reflective. An EC device can also change its optical properties such as optical transmission, absorption, reflectance and/or emittance in a continual but reversible manner on application of voltage. These properties enable the EC device to be used for applications like smart glasses, EC mirrors, EC display devices, and the like. EC glass may include a type of glass or glazing for which light transmission properties of the glass or glazing are altered when electrical power (e.g., voltage/current) is applied to the glass. EC materials may change in opacity (e.g., may changes levels of tinting) when electrical power is applied.
Typical devices (e.g., EC devices, photovoltaic devices, quasi-transparent devices, coated devices, and the like) may include one or more transparent conductive (TC) layers for communicating electricity to and/or from the other component of the device. For example, an EC device may generally include two transparent conductive (TC) layers (e.g., two transparent conductive oxide (TCO) layers) that are substantially parallel to and in contact with a counter electrode (CE) layer and an EC layer. When an electric potential is applied across the two TC layers, such as by connecting the respective TC layers to a low voltage electrical source, ions, which can include Li+ ions stored in the CE layer, flow from the CE layer, through the IC layer, and to the EC layer. In addition, electrons may flow from the CE layer, around an external circuit including a low voltage electrical source, to the EC layer so as to maintain charge neutrality in the CE layer and the EC layer. The transfer of ions and electrons to the EC layer causes the optical characteristics of the EC layer, and optionally the CE layer in a complementary EC device, to change, thereby changing the coloration and, thus, the transparency of the EC device.
However, when an electric potential is applied across the two TC layers, each of the two TC layers may inhibit or block, in addition to one or more electromagnetic visible light wave bands, one or more additional electromagnetic bands. For example, the two TC layers may impede or block electromagnetic communication bands carrying radio frequency (RF) signals. Thus, a coated transparent substrate having a device for coating the transparent substrate may impede or prevent a mobile device from receiving and/or transmitting one or more wireless transmission signals to and/or from a base station or another wireless communication device. For instance, cellular transmissions to and/or from a mobile device may be inhibited or blocked when that mobile device is within a building that utilizes a coated transparent substrate having a device for coating the transparent substrate on an exterior. However, current means to overcome this issue including using a wireless access point internal to a building and/or an intelligent reflective surface to bypass a coated transparent substrate can be costly and difficult to manage.
A coated transparent substrate (e.g., a coated glass) with enhanced electromagnetic communication transmission as described herein may include one or more sections that are formed and that extend at least partially through a device thereof. For example, a first section may be formed through a device of a coated transparent substrate. The first section may be configured to enhance electromagnetic communication of a first electromagnetic communication band through the coated transparent substrate. A second section may also be formed through the device of the coated transparent substrate. The second section may be configured to enhance electromagnetic communication of a second electromagnetic communication band through the coated transparent substrate. The second electromagnetic communication band may not be a same electromagnetic communication band as the first electromagnetic communication band allowing for enhanced electromagnetic communication of at least two electromagnetic communication bands through the coated transparent substrate. In some aspects, at least a portion of the first section and at least a portion of the second section may merge together or intersect with each other forming a third section. The third section may be configured to enhance electromagnetic communication of a third electromagnetic communication band through the coated transparent substrate. The third electromagnetic communication band may not be a same electromagnetic communication band as the first electromagnetic communication band and/or the second electromagnetic communication band. Forming a third section by merging at least a portion of the first section and the second section together may reduce manufacturing costs, when, for example, each of the sections are formed by ablating a surface of the device into patterns.
Generally, the one or more sections formed through the device of the coated transparent substrate may reduce or eliminate the effectiveness of the device to change its optical properties such as optical transmission, absorption, reflectance and/or emittance at the location(s) of the formed section(s). Thus, in some aspects, each of the one or more sections may be formed through the device at locations on the coated transparent substrate to reduce or minimize an amount of visible light that transmits through the coated transparent substrate. For instance, each of the one or more sections may be formed at a location that includes one or more obstructions when the coated transparent substrate is installed for use. Forming the one or more sections at location(s) on the coated transparent substrate where one or more obstructions may be located when the coated transparent substrate is installed for use may allow the device to maintain a desired level of tinting while still providing enhanced electromagnetic communication of one or more electromagnetic communication bands through the coated transparent substrate. In some aspects, each of the one or more sections may be formed only through the TC layers of the device. For instance, one or more of the sections may extend from an exterior surface of a TC layer and though the TC layer without penetrating any other layers of the device. Forming the one or more sections through only the TC layers may allow the device to maintain a desired level of tinting while still providing enhanced electromagnetic communication of one or more electromagnetic communication bands through the coated transparent substrate.
This specification may include references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or steps. Consider a claim that recites: “An apparatus comprising one or more processor units . . . .” Such a claim does not foreclose the apparatus from including additional components (e.g., a network interface unit, graphics circuitry, etc.).
“Configured To.” Various units, circuits, or other components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry) that performs those task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the “configured to” language include hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue. “Configure to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks.
“First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For example, a buffer circuit may be described herein as performing write operations for “first” and “second” values. The terms “first” and “second” do not necessarily imply that the first value must be written before the second value. It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the intended scope. The first contact and the second contact are both contacts, but they are not the same contact.
“Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While in this case, B is a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
The terminology used in the description herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will further be understood that the term “or” as used herein refers to and encompasses alternative combinations as well as any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. For example, the words “include,” “including,” and “includes” indicate open-ended relationships and therefore mean including, but not limited to. Similarly, the words “have,” “having,” and “has” also indicate open-ended relationships, and thus mean having, but not limited to.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Whenever a relative term, such as “about”, “substantially” or “approximately”, is used in this specification, such a term should also be construed to also include the exact term. That is, e.g., “substantially straight” should be construed to also include “(exactly) straight”. As used herein, the terms “about”, “substantially”, or “approximately” (and other relative terms) may be interpreted in light of the specification and/or by those having ordinary skill in the art. In some examples, such terms may as much as 1%, 3%, 5%, 7%, or 10% different from the respective exact term.
While embodiments are described herein by way of example for several embodiments and illustrative drawings, those skilled in the art will recognize that the embodiments are not limited to the embodiments or drawings described. It should be understood that the drawings and detailed description thereto are not intended to limit embodiments to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope as defined by the appended claims. Any headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description or the claims. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must).
“Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
In some aspects, a device of a coated transparent substrate may block and/or reduce electromagnetic communication of one or more electromagnetic communication bands (e.g., one or more radio frequency (RF) bands) through the coated glass. For example, a transparent conductive (TC) layer of an electrochromic (EC) device may impede or block electromagnetic communication transmissions of one or more electromagnetic communication bands through the EC device. However, one or more sections may be formed through at least a portion of the device to enhance electromagnetic communication of the one or more electromagnetic communication bands through the coated transparent substrate while maintaining a level of visible light transmission through the device to provide tinting.
Coated transparent substrates with enhanced electromagnetic communication transmission, as described herein, may involve one or more sections that are formed and that extend through a device of the coated transparent substrate. For example, a first section may be formed through a device of a coated transparent substrate. The first section may be configured to enhance electromagnetic communication of a first electromagnetic communication band through the coated transparent substrate. A second section may also be formed through the device of the coated transparent substrate. The second section may be configured to enhance electromagnetic communication of a second electromagnetic communication band through the coated transparent substrate. The second electromagnetic communication band may not be a same electromagnetic communication band as the first electromagnetic communication band allowing for enhanced electromagnetic communication of at least two electromagnetic communication bands through the coated transparent substrate. In some aspects, at least a portion of the first section and at least a portion of the second section may merge together or intersect with each other forming a third section. The third section may be configured to enhance electromagnetic communication of a third electromagnetic communication band through the coated transparent substrate. The third electromagnetic communication band may not be a same electromagnetic communication band as the first electromagnetic communication band and/or the second electromagnetic communication band. Forming a third section by merging at least a portion of the first section and the second section together may reduce manufacturing costs, when, for example, each of the sections are formed by ablating a surface of the device into patterns.
Generally, the one or more sections formed through a device of the coated transparent substrate may reduce or eliminate the effectiveness of the device to change its optical properties such as optical transmission, absorption, reflectance and/or emittance at the location(s) of the formed section(s). Thus, in some aspects, each of the one or more sections may be formed through the device at locations on the coated transparent substrate to reduce or minimize an amount of visible light that transmits through the coated transparent substrate. For instance, each of the one or more sections may be formed at a location that includes one or more obstructions when the coated transparent substrate is installed for use. Forming the one or more sections at location on the coated transparent substrate where one or more obstructions may be located when the coated transparent substrate is installed for use may allow the device to maintain a desired level of tinting while still providing enhanced electromagnetic communication of one or more electromagnetic communication bands through the coated transparent substrate. In some aspects, each of the one or more sections may be formed only through the TC layers of the device. For instance, one or more of the sections may extend from an exterior surface of a TC layer and though the TC layer without penetrating any other layers of the device. Forming the one or more sections through only the TC layers may allow the device to maintain a desired level of tinting while still providing enhanced electromagnetic communication of one or more electromagnetic communication bands through the coated transparent substrate.
In some aspects, a coated transparent substrate may include a device such as an EC device, a photovoltaic device, a quasi-transparent device, and the like for providing tinting to block or impede one or more electromagnetic visible light bands through the coated transparent substrate. In some aspects, the coated transparent substrate may be an EC system having an EC device.
As described herein, a device such as the EC device 105 of
In some aspects, the device 205 may include one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the system 200. For example, the one or more sections may include at least a first section 215 and a second section 220. The first section 215 may be configured to enhance electromagnetic communication of a first electromagnetic communication band through the system 200 and the second section 220 may be configured to enhance electromagnetic communication of a second electromagnetic communication band through the system 200. In some aspects, the first section 215 may include a low-pass or all-pass topology in two cross-polarizations at the first electromagnetic communication band and the second section 220 may include a high-pass or band-pass topology in one polarization of a passband of the first section 215 at the second electromagnetic communication band. In some aspects, the first electromagnetic communication band may be a different (e.g., partially overlapping or non-overlapping) electromagnetic communication band than the second electromagnetic communication band. For example, the first electromagnetic communication band may be 600 MHz to 960 MHz and the second electromagnetic communication band may be 2600 MHz to 3800 MHz. In some aspects, each of the one or more sections may include a frequency selective surface configured to enhance electromagnetic communication of one or more desired electromagnetic communication bands through the system 200.
The one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the system 200 may extend through device 205 from the first surface 225 of the device 205 to the second surface 230 of the device 205. For example, the first surface 225 may be parallel or substantially parallel to the second surface 230 and the one or more sections may extend completely through the device 205 from the first surface 225 to the second surface 230. As shown in
In some aspects, the one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the system 200 may extend linearly through the device 205 from the first surface 225 of the device 205 to the second surface 230 of the device 205. For example, the one or more sections may extend linearly through the device 205 and in a direction that is perpendicular or substantially perpendicular to the first surface 225 and the second surface 230. As shown in
As indicated herein, the one or more sections may extend linearly through the device 205. Additionally, or alternatively, the one or more sections may each include one or more arcs, curves, or changes in direction as the one or more sections extend through the device 205. For example, at least one of the first section 215 or the second section 220 may include an arc, a curve, or a change in direction as the respective section(s) extend(s) through the device 205.
In some aspects, the one or more sections extending through the device 205 may extend through the device 205 without intersecting or overlapping with each other. For example, the first section 215 does not intersect or overlap with the second section 220 at the first surface 225, at a location within the device 205, or at the second surface 230. In some aspects, one or more sections may intersect, overlap, or merge with at least one other section to form a third or merged section, as described further herein.
At least similar to the one or more sections illustrated and described with respect to
Further, as described herein, the one or more sections may extend from the first surface 325, through the device 305, and to the second surface (e.g., not shown in
In addition, in some aspects, the first surface area on the second surface may be a same or similar size surface area as the first surface area on the first surface 325. Similarly, the second surface area on the second surface may be a same or similar size surface area as the second surface area on the first surface 325. Alternatively, the first surface area on the second surface may be a different size surface area compared to the first surface area on the first surface 325. Similarly, the second surface area on the second surface may be a different size surface area compared to the second surface area on the first surface 325. The total surface area of the one or more sections on the first surface 325 and/or on the second surface of the device 305, or an average, maximum, or minimum cross-sectional area of the one or more sections extending through the device 305 should be of area large enough to allow the one or more sections to enhance electromagnetic communication of the respective electromagnetic communication bands while also maintaining a minimum amount of tinting or shading effect through the coated transparent substrate 305. For example, the total surface area of the one or more sections on the first surface 325 and/or on the second surface of the device 305, or an average, maximum, or minimum cross-sectional area of the one or more sections extending through the device 305 may be no greater than 50% of the total surface area of the first surface 325, the total surface area of the second surface, or a total cross section area of the device 305.
In some aspects, the device 405 may include one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the system 400. For example, the device 405 may include a first section 415 extending through the device 405, and a second section 420 extending through the device 405. In addition, the coated transparent substrate 400 includes a merged or third section 435 extending through the device 405. The third section 435 may be positioned at a location including at least one of a location on the first surface 425 of the device 405, a location within the first TC layer 424, a location within the second TC layer 426, or a location on the second surface 430 of the device 405 where at least a portion of the first section 415 and a portion of the second section 420 intersect, overlap, or merge.
For example, as shown in
As described herein, the third section 435 may be positioned at a location including at least one of a location on the first surface 425 of the device 405, a location within the first TC layer 424, a location within the second TC layer 426, or a location on the second surface 430 of the device 405 where at least the first section 415 and the second section 420 intersect, overlap, or merge. For example, as shown in
The first section 415, at least partially merging with the second section 420, may form the third section 435 so that the third section 435 is configured to enhance electromagnetic communication of a third electromagnetic communication band through the coated transparent substrate 400. In some aspects, the third electromagnetic communication band may overlap with or contain one or more electromagnetic communication frequencies that are shared by at least one of the first electromagnetic communication band or the second electromagnetic communication band. Alternatively, the third electromagnetic communication band may be an electromagnetic communication band that does not share any electromagnetic communication frequencies with the first electromagnetic communication band and the second electromagnetic communication band. In some aspects, the third electromagnetic communication band may comprise an electromagnetic communication band of 1700 MHz to 1900 MHz.
At least similar to the one or more sections illustrated and described with respect to
Further, as described herein, the one or more sections may extend from the first surface 525, through the device 505, and to the second surface (e.g., not shown in
In addition, in some aspects, the first surface area on the second surface area may be a same or similar size surface area as the first surface area on the first surface 525. Similarly, the second surface area on the second surface may be a same or similar size surface area as the second surface area on the first surface 525. Alternatively, the first surface area on the second surface may be a different size surface area compared to the first surface area on the first surface 525. Similarly, the second surface area on the second surface may be a different size surface area compared to the second surface area on the first surface 525. The total surface area of the one or more sections on the first surface 525 and/or on the second surface of the device 505, or an average, maximum, or minimum cross-sectional area of the one or more sections extending through the device 505 may be of an area large enough to allow the one or more sections to enhance electromagnetic communication of the respective electromagnetic communication bands while also maintaining a minimum amount of tinting or shading effect through the coated transparent substrate 505. For example, the total surface area of the one or more sections on the first surface 525 and/or on the second surface of the device 505, or an average, maximum, or minimum cross-sectional area of the one or more sections extending through the device 505 may be no greater than 50% of the total surface area of the first surface 525, the total surface area of the second surface, or a total cross section area of the device 505.
In addition, the coated transparent substrate 500 may include a merged or third section 535 extending from the first surface 525 and at least partially through the device 505. The third section 535 may include one or more of the same or similar features described herein with respect to the third section 435 illustrated in
In some aspects, the first cut pattern 620 may have a first filling factor, and the second cut pattern 625 may have a second filling factor. Each of the filling factors may indicate a percentage of the first surface 525 illustrated in
In some aspects, the first cut pattern 650 may have a first filling factor, and the second cut pattern 655 may have a second filling factor. Each of the filling factors may indicate a percentage of the first surface 525 illustrated in
In some aspects, the first cut pattern 680 may have a first filling factor, and the second cut pattern 685 may have a second filling factor. Each of the filling factors may indicate a percentage of the first surface 525 illustrated in
Each of the filling factors may be a function of the length of each cut and a width of each cut forming the cut patterns. For example, at least one of the cuts forming a cut pattern may be performed by a laser having an elongated focal region that has an aspect ratio that is less than 2:1. As another example, at least one of the cuts forming a cut pattern may be formed by a laser having a circular focal region that has an aspect ratio of 2:1. In some aspects, a laser may preform one or more cuts each having a width that is no greater than 15 μm.
As described herein, the one or more sections may enhance electromagnetic communication of a one or more electromagnetic communication bands through a coated transparent substrate. Also, as described herein, the one or more sections may reduce an ability of a coated transparent substrate to tint. Accordingly, in addition to or as an alternative to limiting a surface area (or cross-sectional area) of each of the one or more sections to allow the coated transparent substrate maintain a minimum amount of tinting, a position of each of the one or more sections on the first surface of the device, on the second surface of the device, or at a depth within the device may enhance electromagnetic communication of one or more electromagnetic communication bands through a coated transparent substrate while also allowing the coated transparent substrate to maintain a minimum amount of tinting. For example, at least a portion of an area of at least one section of the one or more sections may be positioned at an obstruction area of the coated transparent substrate. An obstruction area on a coated transparent substrate may include an area on the coated transparent substrate that is obstructed by another object. An obstruction area may include a position for attaching a rear-view mirror on a coated transparent substrate for use as an automobile windshield. An obstruction area may include a position for attaching a coated transparent substrate to a frame. For example, an obstruction area may include at least one of an area including at least a portion of a perimeter of the coated transparent substrate.
In some aspects, each of the first section 715, the fourth section 740, the fifth section 745, and the sixth section 750 may enhance electromagnetic communication of the first electromagnetic communication band through the coated transparent substrate 700 as described herein. Similarly, each of the second section 720, the seventh section 755, the eighth section 760, and the ninth section 765 may enhance electromagnetic communication of the second electromagnetic communication band through the coated transparent substrate 700 as described herein. The third section 735, the tenth section 770, the eleventh section 775, the twelfth section 780, the thirteenth section 785, the fourteenth section 790, the fifteenth section 795, and the sixteenth section 797 may be merged or third sections that enhance electromagnetic communication of the third electromagnetic communication band through the coated transparent substrate 700 as described herein. In some aspects, at least one section of the one or more sections may enhance electromagnetic communication of an electromagnetic communication band that is different from the first electromagnetic communication band, the second electromagnetic communication band, or the third electromagnetic communication band.
In some aspects, the first surface 725 may include an obstruction area 717. As shown in
As described herein, the one or more sections of the device may extend from a first surface of the device, through the device, and to a second surface of the device. In other words, one or more sections of a device may extend completely through the device. Additionally, or alternatively, one or more sections of the device may extend partially through the device. For example, a first section may extend completely through the device while a second section may extend only partially through the device. As another example, both the first section and the second section may extend only partially through the device. In some aspects, when a coated transparent substrate includes an electrochromic (EC) system having a device that includes an EC device, one or more sections may extend only partially through the device.
In some aspects, the EC device 805 may include one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the EC system 800. For example, the one or more sections may include at least a first section 815 and a second section 820. The first section 815 may be configured to enhance electromagnetic communication of a first electromagnetic communication band through the EC system 800 and the second section 820 may be configured to enhance electromagnetic communication of a second electromagnetic communication band through the EC system 800. In some aspects, the first electromagnetic communication band and the second electromagnetic communication band may be a same electromagnetic communication band. In some aspects, the first electromagnetic communication band and the second electromagnetic communication band may have one or more same electromagnetic communication frequencies.
In some aspects, the first electromagnetic communication band may be a different (e.g., partially overlapping or non-overlapping) electromagnetic communication band than the second electromagnetic communication band. For example, the first section 815 may include a low-pass or all-pass topology in two cross-polarizations at the first electromagnetic communication band and the second section 820 may include a high-pass or band-pass topology in one polarization of a passband of the first section 815 at the second electromagnetic communication band. As another example, the first electromagnetic communication band may be 600 MHz to 960 MHz and the second electromagnetic communication band may be 2600 MHz to 3800 MHz. In some aspects, each of the one or more sections may include a frequency selective surface configured to enhance electromagnetic communication of one or more desired electromagnetic communication bands through the EC system 800.
The at least one section of the one or more sections for enhancing electromagnetic communication of one or more electromagnetic communication bands through the EC system 800 may extend through some of the EC system 800, but not entirely through the EC system 800. For example, the first surface 825 may be parallel or substantially parallel to the second surface 830. The first section 815 may extend from the first surface 825 and at least partially through the first TC layer 824. Thus, an electric current may continue to communicate through the first TC layer 824 around the first section 815. The first section 815 may not extend into the CE layer 828. Thus, the EC device 805 may continue to provide tinting while enhancing electromagnetic communication of the first electromagnetic communication band through the first section 815. The second section 820 may extend from the second surface 830 and at least partially through the second TC layer 826. Thus, an electric current may continue to communicate through the second TC layer 826 around the second section 820. The second section 820 may not extend into the EC electrode layer 831. Thus, the EC device 805 may continue to provide tinting while enhancing electromagnetic communication of the second electromagnetic communication band through the second section 820. The first section 815 and the second section 820 may be formed using one or more cuts or ablations as described herein. In addition, or as an alternative, at least one of the first section 815 or the second section 820 may be formed using a masking process, for example, during the formation of the first TC layer 824 and the second TC layer 826, respectively.
In some aspects, as shown in
In some aspects, the EC system 800 may include a merged or third section (e.g., such as the third section 435 illustrated in
The EC system 900 may also include a first section 915 and a second section 920 each for enhancing electromagnetic communication of an electromagnetic communication band through the EC system 900. The first section 915 may extend from the first surface 925 and at least partially through the first TC layer 924. Because the first section 915 allows the first TC layer 924 to remain intact, an electric current may continue to communicate through the first TC layer 924 around the first section 815. The first section 915 may not extend into the CE layer 928. Thus, the EC device 905 may continue to provide tinting while enhancing electromagnetic communication of the first electromagnetic communication band through the first section 915. The second section 920 may extend from the second surface 930 and at least partially through the second TC layer 926. Because the second section 920 allows the second TC layer 926 to remain intact, an electric current may continue to communicate through the second TC layer 826 around the second section 820. The second section 820 may not extend into the EC electrode layer 831. Thus, the EC device 805 may continue to provide tinting while enhancing electromagnetic communication of the second electromagnetic communication band through the second section 820. The first section 815 and the second section 820 may be formed using one or more cuts or ablations as described herein. In addition, or as an alternative, at least one of the first section 815 or the second section 820 may be formed using a masking process, for example, during the formation of the first TC layer 824 and the second TC layer 826, respectively.
In addition, the EC system 900 may also include a third section 935. The third section 935 may extend at least partially through (e.g., completely through) the EC device 905 and may be the same as or at least similar to the first section 215 illustrated in
As shown in block 1005, a first area of a first surface of an EC device may be selected to form at least a first section for enhancing electromagnetic communication of a first electromagnetic communication band through the coated transparent substrate. In some aspects, the first area may be selected at an area of the coated transparent substrate that is less frequently used for visible light communication (e.g., viewing) compared to another area of the coated transparent substrate. For example, the first area may include a boundary formed at a location adjacent an edge surface of the coated transparent substrate. As another example, the first area may include an area that is no more than 50 mm from an edge surface of the coated transparent substrate. In some aspects, the first area may include an obscuration area. An obscuration area may be an area of the coated transparent substrate that is not being used to communicate visible therethrough. For example, the coated transparent substrate may be intended for use as an automobile windshield. In this case, the obscuration area may include an area of the coated transparent substrate designated for attaching a rear-view mirror. As another example, the coated transparent substrate may be intended for use as an exterior window of a building. The coated transparent substrate may be installed on the exterior of the building within a frame that overlaps a perimeter area of the transparent substrate and obscures or obstructs visible light from propagating through the coated transparent substrate at the location where the frame overlaps the coated transparent substrate. In this case, the obscuration area may include an area where the frame overlaps the coated transparent substrate.
As shown in block 1010, the first section may be formed extending through the EC device from a first surface of the EC device to a second surface of the EC device. The first surface of the EC device may be parallel or substantially parallel to the second surface of the EC device. The first section may be configured to enhance electromagnetic communication of a first electromagnetic communication band through a coated transparent substrate. The first electromagnetic communication band may include 600 MHz to 960 MHz. The first section may include a low-pass or all-pass topology in two cross polarizations at the first microwave band. In some aspects, forming the first section may include cutting the EC device to form a first cut pattern extending at least partially through the EC device. The first cut pattern may be formed by one or more cuts that are no greater than 15 μm. The first cut pattern may have a first filling factor. The first filling factor may be less than 50% of the first surface. The first cut pattern may be formed with a laser having an elongated focal region that has an aspect ratio of at least 1:2. The first cut pattern may be formed with a laser having a circular focal region that has an aspect ratio that is less than 2:1. The first section may be formed at the first area including a boundary formed at a location adjacent an edge surface of the coated transparent substrate. As another example, the first section may be formed at the first area including an area that is no more than 50 mm from an edge surface of the coated transparent substrate. In some aspects, the first section may be formed at an obscuration area as described herein.
In some aspects, the first section may extend through the coated transparent substrate in a direction that is parallel to an edge surface of the coated transparent substrate. In some aspects, forming the first section may include forming the first section extending from the first top layer surface and at least partially through the top layer.
As shown in block 1015, a second area of the first surface of the EC device may be selected to form at least a second section for enhancing electromagnetic communication of a second electromagnetic communication band through the coated transparent substrate. In some aspects, the second area may be selected at an area of the coated transparent substrate that is less frequently used for visible light communication (e.g., viewing) compared to another area of the coated transparent substrate. For example, the second area may include a boundary formed at a location adjacent an edge surface of the coated transparent substrate. As another example, the second area may include an area that is no more than 50 mm from an edge surface of the coated transparent substrate. In some aspects, the second area may include an obscuration area as described herein. In some aspects, the second area may be an area that is adjacent the first area and/or an area that at least partially overlaps or merges with the first area as described herein.
As shown in block 1020, the second section may be formed extending through the EC device from the first surface of the EC device to the second surface of the EC device. The first surface of the EC device may be parallel or substantially parallel to the second surface of the EC device. The second section may be configured to enhance electromagnetic communication of a second electromagnetic communication band through a coated transparent substrate. The second electromagnetic communication band may include 2600 MHz to 3800 MHz. The second section may include a high-pass or band-pass topology in one polarization of a passband of the first section at the second microwave band. In some aspects, forming the second section may include cutting the EC device to form a second cut pattern extending at least partially through the EC device. The second cut pattern may be formed by one or more cuts that are no greater than 15 μm. The second cut pattern may have a second filling factor such that the first filling factor is twice the second filling factor. The first cut pattern may include a different pattern than the second cut pattern. The second cut pattern may be formed with a laser having an elongated focal region that has an aspect ratio of at least 1:2. The second cut pattern may be formed with a laser having a circular focal region that has an aspect ratio that is less than 2:1. The second section may be formed at the second area including a boundary formed at a location adjacent an edge surface of the coated transparent substrate. As another example, the second section may be formed at the second area including an area that is no more than 50 mm from an edge surface of the coated transparent substrate. In some aspects, the second section may be formed at an obscuration area as described herein.
In some aspects, the second section may extend through the coated transparent substrate in a direction that is parallel to an edge surface of the coated transparent substrate. In some aspects, forming the second section may include forming the second section extending from the first top layer surface and at least partially through the top layer. In some aspects, the second section may be offset from an axis extending through the first section and perpendicular to the first top layer surface.
As shown in block 1025, when forming the first section and the second section, for example, at least a portion of the first section may overlap with or be merged with at least a portion of the second section to form a merged or third section. The third section may be configured to enhance electromagnetic communication of a third electromagnetic communication band through the coated transparent substrate. The third electromagnetic communication band may include 1700 MHz to 1900 MHz. The third section may be formed extending from the first surface at an obscuration area of the coated transparent substrate. The obscuration area may include a boundary formed at a location adjacent an edge surface of the coated transparent substrate. The obscuration area may include an area on the first surface that is no more than 50 mm from an edge surface of the coated transparent substrate. In some aspects, the third section may extend through the coated transparent substrate in a direction that is parallel to an edge surface of the coated transparent substrate.
Please note that the functional block described herein are illustrated in
As shown in block 1105, a device (e.g., a coated device) may be provided. The device may include a first transparent conductive (TC) layer and a second TC layer. The first TC layer includes a first surface of the device. The second TC layer includes a second surface of the device. The first surface may be substantially parallel to the second surface.
As shown in block 1110, a first area of the first surface of the first TC layer may be selected to form at least a first section for enhancing electromagnetic communication through the device. In some aspects, the first area may be selected at an area of the device that is less frequently used for visible light communication (e.g., viewing) compared to another area of the device. For example, the first area may include a boundary formed at a location adjacent an edge surface of the device. As another example, the first area may include an area that is no more than 50 mm from an edge surface of the device. In some aspects, the first area may include an obscuration area. An obscuration area may be an area of the device that is not being used to communicate visible therethrough. For example, the device may be intended for use with an automobile windshield. In this case, the obscuration area may include an area of the device designated for attaching a rear-view mirror. As another example, the device may be intended for use with an exterior window of a building. The device may be installed on the exterior of the building within a frame that overlaps a perimeter area of the device and obscures or obstructs visible light from propagating through the device at the location where the frame overlaps the device. In this case, the obscuration area may include an area where the frame overlaps the device. In some aspects, the first area may include no more than 50% of the entire surface area of the first surface. In some aspects, the first area may include a plurality of different areas across the first surface of the first TC layer. The plurality of different areas may include no more than 50% of the entire surface area of the first surface. The first area may be aligned with an axis that extends through the device from first surface to the second surface and that is substantially perpendicular to at least one of the first surface or the second surface.
As shown in block 1115, a first section may be formed at the first area and extending at least partially through the first TC layer from the first surface. The first section may be configured to enhance electromagnetic communication through a device. For example, the first section may be configured to enhance electromagnetic communication of a first electromagnetic communication band through the device. The first electromagnetic communication band may include 600 MHz to 960 MHz. The first section may include a low-pass or all-pass topology in two cross polarizations at the first microwave band. In some aspects, the first section may be formed using a masking process, for example, during the formation of the first TC layer. In some aspects, forming the first section may include cutting the device to form a first cut pattern extending through the device. The first cut pattern may be formed by one or more cuts that are no greater than 15 μm. The first cut pattern may have a first filling factor. The first filling factor may be less than 50% of the first surface. The first cut pattern may be formed with a laser having an elongated focal region that has an aspect ratio of at least 1:2. The first cut pattern may be formed with a laser having a circular focal region that has an aspect ratio that is less than 2:1. The first section may be formed at the first area including a boundary formed at a location adjacent an edge surface of the device. As another example, the first section may be formed at the first area including an area that is no more than 50 mm from an edge surface of the device. In some aspects, the first section may be formed at an obscuration area as described herein. In some aspects, the first section may extend through the device in a direction that is parallel to an edge surface of the device. The first section may extend from the first surface of the first TC layer and at least partially through the first TC layer in a direction that is parallel to an edge surface of the device. The first section may be aligned with an axis that extends through the device from first surface to the second surface and that is substantially perpendicular to at least one of the first surface or the second surface. The first section may extend through the first TC layer in a direction along the axis.
As shown in block 1120, a second area of the second surface of the second TC layer may be selected to form at least a second section for enhancing electromagnetic communication through the device. In some aspects, the second area may be selected at an area of the device that is less frequently used for visible light communication (e.g., viewing) compared to another area of the device. For example, the second area may include a boundary formed at a location adjacent an edge surface of the device. As another example, the second area may include an area that is no more than 50 mm from an edge surface of the device. In some aspects, the second area may include an obscuration area. An obscuration area may be an area of the device that is not being used to communicate visible therethrough. For example, the device may be intended for use with an automobile windshield. In this case, the obscuration area may include an area of the device designated for attaching a rear-view mirror. As another example, the device may be intended for use with an exterior window of a building. The device may be installed on the exterior of the building within a frame that overlaps a perimeter area of the device and obscures or obstructs visible light from propagating through the device at the location where the frame overlaps the device. In this case, the obscuration area may include an area where the frame overlaps the device. In some aspects, the second area may include no more than 50% of the entire surface area of the second surface. In some aspects, the second area may include a plurality of different areas across the second surface of the second TC layer. The plurality of different areas may include no more than 50% of the entire surface area of the second surface. The first area may be offset from the axis that extends through the first area, from first surface to the second surface, and that is substantially perpendicular to at least one of the first surface or the second surface.
As shown in block 1125, a second section may be formed at the second area and extending through the second TC layer from the second surface. The second section may be configured to enhance electromagnetic communication through a device. For example, the second section may be configured to enhance electromagnetic communication of a second electromagnetic communication band through a device. In some aspects, the second electromagnetic communication band may be same band or share one or more same frequencies as the first electromagnetic communication band. In some aspects, the second electromagnetic communication band may include 2600 MHz to 3800 MHz. The second section may include a high-pass or band-pass topology in one polarization of a passband of the first section at the second microwave band. In some aspects, the second section may be formed using a masking process, for example, during the formation of the second TC layer. In some aspects, forming the second section may include cutting the device to form a second cut pattern extending through the coated. The second cut pattern may have a second filling factor such that the second filling factor is half the first filling factor. The second cut pattern may include a different pattern than the first cut pattern. The second cut pattern may be formed with a laser having an elongated focal region that has an aspect ratio of at least 1:2. The second cut pattern may be formed with a laser having a circular focal region that has an aspect ratio that is less than 2:1. As another example, the second section may be formed at the second area including an area that is no more than 50 mm from an edge surface of the device. In some aspects, the second section may be formed at an obscuration area as described herein. The second section may be formed at the second area including a boundary formed at a location adjacent an edge surface of the device. In some aspects, the second section may extend through the device in a direction that is parallel to an edge surface of the device. The second section may extend from the second surface of the second TC layer and at least partially through the second TC layer in a direction that is parallel to an edge surface of the second TC layer. The second section may be offset from the axis that is aligned with the first area and the first section. The second section may extend through the second TC layer in a direction that is parallel to the axis.
Please note that the functional block described herein are illustrated in
The various methods as illustrated in the figures and described herein represent example embodiments of methods. The methods may be implemented manually, in software, in hardware, or in a combination thereof. The order of any method may be changed, and various elements may be added, reordered, combined, omitted, modified, etc.
Although the embodiments above have been described in considerable detail, numerous variations and modifications may be made as would become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications and changes and, accordingly, the above description to be regarded in an illustrative rather than a restrictive sense.
This application claims benefit of priority to U.S. Provisional Application Ser. No. 63/253,055, entitled “Electromagnetic Communication Enhancements Through a Coated Transparent Substrate,” filed Oct. 6, 2021, and which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63253055 | Oct 2021 | US |