Electromagnetic connectors for an industrial control system

Information

  • Patent Grant
  • 10848012
  • Patent Number
    10,848,012
  • Date Filed
    Tuesday, December 12, 2017
    6 years ago
  • Date Issued
    Tuesday, November 24, 2020
    3 years ago
Abstract
An electromagnetic connector is disclosed that is configured to form a first magnetic circuit portion comprising multiple coils disposed about a first core member. The electromagnetic connector is configured to mate with a second electromagnetic connector that is configured to form a second magnetic circuit portion comprising a coil disposed about a second core member. When the electromagnetic connector is mated with the second electromagnetic connector, the first core member and the second core member are configured to couple the multiple coils of the electromagnetic connector to the coil of the second electromagnetic connector with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion. The magnetic circuit is configured to induce a signal in a first coil of the multiple coils and the coil of the second electromagnetic connector when a second coil of the multiple coils is energized.
Description
BACKGROUND

Electrical connectors are mechanical assemblies used to complete an electrical circuit or join two or more electrical circuits together. Plug and socket type electrical connectors generally include a male plug and a female receptacle, with multiple pin or prong contacts in the male plug configured for insertion into openings in a mating socket of the female receptacle. Multi-pin connectors employ multiple metal pins. Thus, the connections between mating metal parts (e.g., pins and sockets) must be capable of furnishing good electrical connections to complete the electrical circuits. For example, multi-pin connectors are used as interconnects in Industrial Control Systems (ICS)/Process Control Systems (PCS) to connect Input/Output (I/O) devices to power and/or communications signal transmission circuitry. Such circuitry may be used by, for instance, a power backplane, where multiple electrical connectors are connected in parallel to a common electrical power supply. Other types of electrical connectors include: Eight Positions, Eight Conductors (8P8C) modular connectors used for Ethernet and Category 5 (CAT5) cables; D subminiature connectors used for Recommended Standard 232 (RS-232) modem serial ports, computers, telecommunications, test/measurement instruments, monitors, joysticks, mice, and game consoles; Universal Serial Bus (USB) connectors, including Type A, Type B, Mini-A, Mini-B, Micro-A, and Micro-B connectors used for interfacing devices; electrical power connectors, such as Alternating Current (AC) power plugs and sockets (e.g., plugs having protruding prongs, blades, and/or pins that fit into matching slots and/or holes in sockets, receptacles, outlets, power points, and so forth), and Direct Current (DC) connectors, such as coaxial power connectors; as well as Radio Frequency (RF) connectors for transmitting RF signals; and the like.


SUMMARY

In one or more implementations, a device is disclosed that includes multiple electrical circuits and an electromagnetic connector configured to form a first magnetic circuit portion that comprises a first core member and multiple coils disposed about the first core member. Respective ones of the multiple coils are configured to separately connect to a corresponding one of the multiple electrical circuits. The electromagnetic connector is configured to mate with a second electromagnetic connector, where the second electromagnetic connector is configured to form a second magnetic circuit portion that comprises a second core member and a coil disposed about the second core member. When the electromagnetic connector is mated with the second electromagnetic connector, the first core member and the second core member are configured to couple the multiple coils of the electromagnetic connector to the coil of the second electromagnetic connector with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion. The magnetic circuit is configured to induce a signal in a first coil of the multiple coils and the coil of the second electromagnetic connector when a second coil of the multiple coils is energized (e.g., in the manner of a passive hub).


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





DRAWINGS

The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.



FIG. 1 is an isometric view illustrating a connector assembly comprising a first electromagnetic connector mated with a second electromagnetic connector, where the first electromagnetic connector includes first and second coils disposed about a first core member, and the second electromagnetic connector includes another coil disposed about a second core member, and where the first and second electromagnetic connectors form a magnetic circuit configured to induce a signal in the first coil of the first electromagnetic connector and the coil of the second electromagnetic connector when the second coil of the first electromagnetic connector is energized (e.g., in the manner of a passive hub) in accordance with an example embodiment of the present disclosure.



FIG. 2 is a diagrammatic illustration of an electromagnetic connector including multiple coils separately connected to multiple electrical circuits in accordance with an example embodiment of the present disclosure.



FIG. 3 is a partial diagrammatic illustration of a system including multiple communications channels connected together with a passive hub formed using electromagnetic connectors, such as the electromagnetic connector illustrated in FIG. 2, in accordance with an example embodiment of the present disclosure.



FIG. 4 is a partial diagrammatic illustration of a system including electrical circuits fabricated on a printed circuit board, where each one of the electrical circuits is separately connected to an electromagnetic connector supported by the printed circuit board, such as the electromagnetic connector illustrated in FIG. 2, in accordance with example embodiments of the present disclosure.



FIG. 5A is a cross-sectional end view of a system including a module (e.g., an industrial element) configured to couple with a backplane using electromagnetic connectors in accordance with an example embodiment of the present disclosure.



FIG. 5B is a partial cross-sectional end view of the system illustrated in FIG. 5A, where the electromagnetic connectors are mated to couple the module to the backplane.





DETAILED DESCRIPTION

Overview


Multi-pin connectors are typically used in industrial control systems/process control systems to connect I/O devices to power and/or communications signal transmission circuitry included with a power backplane. The pin interconnects provide high precision signal resolution and are often constructed from high quality materials, such as hardened steel with gold plating, and so forth. Care must be taken when connecting and disconnecting multi-pin connectors to avoid bending or misaligning the various pins. Additionally, in both industrial settings and in the field, pin interconnects are often exposed to corrosive materials and contaminants, and may be subject to oxidation and coating, leading to intermittent failures. The nature and cause of the failures may be difficult and costly to determine. Thus, multi-pin connectors are generally a high cost and high maintenance component of industrial control systems hardware.


Industrial control systems/process control systems may also require galvanic isolation between I/O devices and associated power transmission and control equipment. For example, I/O devices typically use transformers and/or optical equipment for signal transmission to electrically isolate the I/O devices, prevent ground loops, and so forth. Industrial systems may provide a backplane for power and/or communications signal transmission, with pluggable I/O devices connected to the backplane. Each pluggable I/O device may use multi-pin connectors for both power and communications transmissions, along with Pulse-Width Modulation (PWM)/Pulse-Duration Modulation (PDM) and a power transformer to achieve isolation between the backplane and the I/O devices. For example, the backplane may use a DC power source and connectors to deliver DC signals to the I/O devices. Each I/O device may then use a PWM to convert the DC signals to AC and a transformer to deliver the power/communications signals to circuitry. The use of the high quality multi-pin connectors, PWM circuitry, and power transformers increases the cost and complexity of the I/O devices.


Accordingly, electromagnetic connector assemblies are described that employ electromagnetic connectors which form portions of a magnetic circuit. One or more of the electromagnetic connectors comprises a core member and multiple coils disposed about the core member. In implementations, the electromagnetic connectors are configured to mate with other electromagnetic connectors so that, when one electromagnetic connector is mated with another electromagnetic connector, the core members of the connectors couple the coils of the first connector to one or more coils of the second connector to complete the magnetic circuit. When one coil of the multiple coils is energized, the magnetic circuit is configured to induce a signal in another coil of the multiple coils and one or more coils of the second connector. Further, when a coil of the second connector is energized, a signal is induced in the multiple coils of the first connector. In this manner, an electromagnetic connector assembly can be used in the manner of a passive hub. Electromagnetic connectors can be used to facilitate communications between, for example, an I/O module and a backplane.


Electromagnetic connectors configured in accordance with the present disclosure need not necessarily require precision contact, pressure, and/or alignment to complete the magnetic circuit linking the tightly coupled coils. In implementations, the electromagnetic connectors can be used in industrial control systems having a power backplane/bus configuration. For example, the electromagnetic connectors can be used with one or more I/O modules in place of the PWM, separate power transformer, and associated transistors that would otherwise be required for each I/O module to maintain isolation between the I/O modules and the power backplane. The electromagnetic connectors can also be used in place of multi-pin connectors for communications and/or power signal transmission. Eliminating multiple PWM's, power transformers, transistors, and multi-pin connectors can provide a significant cost and space savings for this type of configuration, along with increased galvanic isolation between sensor and control components. Further, contactless interconnection for signal transmission can provide more environmentally robust structures, reducing or eliminating field failures due to corrosion, pin misalignment, and so forth.


In one or more implementations, the electromagnetic connector assemblies are employed in a system that includes a backplane for distributing an AC signal. The system can include a number of electromagnetic connectors coupled with the backplane. As described herein, the electromagnetic connectors comprise a core member and one or more coils disposed of the core member (e.g., as previously described). Each one of the electromagnetic connectors is configured to mate with another electromagnetic connector, which can be included within a module. When the electromagnetic connectors are mated, the coils are coupled via a magnetic circuit. The magnetic circuit is configured to induce a signal in one or more coils of the module when a coil of the backplane, or another coil of the module, is energized. Further, when a coil of the module is energized, the magnetic circuit is configured to induce a signal in one or more coils of the backplane. The backplane can be used to power and/or furnish communications with circuitry of the module.


The system can be configured for an industrial control system/process control system having a multidrop power backplane/bus configuration that transmits high frequency AC power using DC-to-AC (DC/AC) conversion circuitry and distributed transformers, with electromagnetic connectors configured as previously described. A system configured in accordance with the present disclosure can eliminate the use of a separate PWM for each I/O device, replacing multiple PWMs with, for example, a single PWM located on the backplane. Thus, a typical connector and power transformer configuration can be replaced with magnetic circuits (e.g., tightly coupled transformers). Each magnetic circuit can be configured as two portions (e.g., halves) of a transformer, where one portion (e.g., half) of the transformer is located in each module, and the other portion (e.g., half) is located in the backplane. The portion of the transformer in the backplane can comprise, for example, the primary coil and a portion of the core. The portion of the transformer in each module can comprise the secondary coil and a mating core. Electrical power in the primary coil is extracted by the secondary coil, and can then be rectified and used to power and/or communicate with circuitry in each module.


A system configured in accordance with the present disclosure can be implemented as a communications control system that includes a switch fabric having a serial communications interface (e.g., a serial or Multidrop Bus (MDB) with a master and multiple slaves) and a parallel communications interface (e.g., a parallel or point-to-point bus implemented using a cross switch, or the like). The serial communications interface and the parallel communications interface can be used for connecting multiple Input/Output (I/O) modules to communications/control modules, and to one another.


Example Implementations


FIGS. 1 through 5 illustrate example electromagnetic connectors 100 of connector assemblies 102 in accordance with example implementations of the present disclosure. The electromagnetic connectors 100 can be used in any application where it is desirable to couple electrical circuits together for transmitting electrical signals and/or electrical power from one circuit to another, while maintaining isolation between the circuits. For instance, the electromagnetic connectors 100 can be used in applications including, but not necessarily limited to: industrial control systems/process control systems (e.g., to connect I/O devices with power and/or communications signal transmission circuitry), telecommunications (e.g., for audio, broadband, video, and/or voice transmission), information/data communications (e.g., for connecting computer networking equipment, such as Ethernet equipment, modems, and so forth), computer hardware interconnection (e.g., for connecting peripherals, such as joysticks, keyboards, mice, monitors, and so on), game consoles, test/measurement instruments, electrical power connectors (e.g., for power transmission from AC mains), and the like.


Each one of the electromagnetic connectors 100 is configured to form a magnetic circuit portion 104, which includes a core member 106 and one or more coils 108 disposed about (e.g., around and/or within) the core member 106. For the purposes of the present disclosure, it should be noted that “core member” is used to refer to an incomplete part of a magnetic core, which is completed by another core member when the electromagnetic connectors 100 are coupled together. Each electromagnetic connector 100 is configured to mate with another electromagnetic connector 100 of a connector assembly 102 for transmitting power and/or communications signals between components that are connected via the electromagnetic connectors 100. For example, a first I-shaped or E-shaped core member 106 of an electromagnetic connector 100 is configured to mate with a second I-shaped or E-shaped core member 106 of another electromagnetic connector 100 to transmit communications signals between the first electromagnetic connector 100 and the second electromagnetic connector 100.


In implementations where one core member 106 is configured to contact another core member 106, the contact surfaces may be substantially flat, but this configuration is provided by way of example only and is not meant to limit the present disclosure. Thus, other implementations may be provided, including implementations designed to increase the surface area of contact between core members and/or to provide self-alignment of the core members (e.g., by configuring a portion of one core member for insertion into another core member). For example, one core member comprises a tapered pin configured for insertion into a tapered hole of another core member, where the outside periphery and/or an end of the tapered pin is configured to contact a portion of the interior wall and/or a bottom surface of the tapered hole. In some embodiments, electromagnetic connectors 100 furnish an interference fit configuration, e.g., where one or more coils 108 are disposed around a first core member 106, and one or more other coils 108 are disposed within a second core member 106. The interference fit can be established using connectors having geometries including, but not necessarily limited to: conical, concentric, eccentric, geometric, sloped for friction fit, and so forth.


In embodiments of the disclosure, the first core member 106 is not necessarily configured to contact the second core member 106 when the first electromagnetic connector 100 is mated with the second electromagnetic connector 100. One or more gaps may be provided between various points of a particular pair of mating core members 106. For example, as illustrated in FIG. 1, in an embodiment with two I-shaped core members 106, an air gap AG is provided between the first I-shaped core member 106 and the second I-shaped core member 106. For example, a first core member 106 is supported proximal to, but not necessarily in electrical contact with, a second core member 106. Further, an air gap AG may be provided by mating an E-shaped core member 106 with a C-shaped core member, a U-shaped core member, an I-shaped core member, and so forth. For example, the middle leg of one E-shaped core member can be configured to extend through both a first circuit board with a first coil comprising a planar winding, and a second circuit board with second coil comprising a planar winding, where the outer legs of the E-shaped core member are configured to contact the legs of another U-shaped core member. In this configuration, the coil disposed of the U-shaped core member can be positioned between the legs of the “U.” However, planar windings are provided by way of example only and are not meant to be restrictive of the present disclosure. Thus, a coil 108 may comprise other windings, such as insulated copper windings wrapped around or within a core member 106, and so forth.


It should be noted that while the core members 106 are shown as I-shaped and E-shaped in the accompanying figures, these shapes are provided by way of example only and are not meant to limit the present disclosure. Thus, a core member 106 and/or the combined form of two mating core members 106 may comprise other shapes and/or core geometries, including but not necessarily limited to: a “C”/“U” core, an “EFD” core, an “EP” core, an “ER” core, a pot core, a toroidal core, a ring/bead core, and so forth. For example, the shape of a core member 106 may be selected based upon a coupling/operating frequency. Further, a core member 106 can be implemented as a planar core (e.g., with a planar winding). In implementations, the core member 106 may be formed in or on a circuit board, e.g., along with a coil 108 formed as a planar winding, such that the core member 106 is electrically insulated from the coil 108 by one or more portions of the circuit board.


One or more core members 106 of the electromagnetic connectors 100 can be formed from an iron slurry material. However, this material is provided by way of example only and is not meant to limit the present disclosure. Thus, a core member 106 may comprise any material having a magnetic permeability suitable for confining and guiding magnetic fields generated by a coil 108, including, but not necessarily limited to: soft magnetic materials (i.e., magnetic materials with low hysteresis, such as silicon steel), ferromagnetic metals (e.g., iron), ferrimagnetic compounds (e.g., ferrites), and so forth.


One or more coils 108 of the first electromagnetic connector 100 can be tightly coupled to one or more coils 108 of the second electromagnetic connector 100 with a magnetic circuit formed from the magnetic circuit portion 104 of the first electromagnetic connector 100 and the magnetic circuit portion 104 of the second electromagnetic connector 100. The magnetic circuit is configured to induce a signal in one or more of the coils 108 of the first electromagnetic connector 100 when one or more of the coils 108 of the second electromagnetic connector 100 is energized, and to induce a signal in one or more of the coils 108 of the second electromagnetic connector 100 when one or more of the coils 108 of the first electromagnetic connector 100 is energized, allowing power and/or communications signals to be transmitted between components that are connected via the electromagnetic connectors 100. In implementations, the coils 108 can be tightly coupled (e.g., using an iron core to provide a coupling coefficient of about one (1)), critically coupled (e.g., where energy transfer in the passband is optimal), or overcoupled (e.g., where a secondary coil is close enough to a primary coil to collapse the primary coil's field).


In implementations, one or both of the core members 106 and/or coils 108 can be at least partially (e.g., fully or partially) mechanically encased within one or more layers of material. Further, in some embodiments, one or more layers of material (e.g., a protective layer 110) are disposed of the first core member 106 for separating the first core member 106 from the second core member 106 when the first electromagnetic connector 100 is mated with the second electromagnetic connector 100. The protective layer 110 can be fabricated of a non-conductive/insulating material, such as a coating of thin film plastic material. The protective layer (e.g., non-conductive/insulating material) can be applied using techniques including, but not necessarily limited to: coating, painting, deposition, and so forth. In some embodiments, the protective layer 110 comprises a layer of five one-thousandths inch (0.005 in.) thick Lexan. In embodiments of the disclosure, the protective layer 110 is configured to protect the core member 106 and/or the coil 108 of the electromagnetic connector 100 from corrosion, mechanical damage (e.g., fracture), and so forth. Encasement may be especially useful when a core member 106 is constructed from a brittle material. For instance, the core member 106 can be tightly encased in a protective layer formed of a plastic material. In this manner, when damage to the core member (e.g., cracks or breaks in the core member) occurs, the pieces of material can be maintained in substantial contact with one another within the casing. Thus, damage to the core material may not significantly decrease performance.



FIGS. 2 through 5 illustrate systems 112 in accordance with example implementations of the present disclosure that are configured for use with process control systems technology, and so forth. For example, a system 112 is illustrated that may be used with a distributed control system comprised of controller elements and subsystems, where the subsystems are controlled by one or more controllers distributed throughout the system. The system 112 can include a switch fabric comprising a serial communications interface and/or a parallel communications interface for furnishing communications between one or more backplanes 114 and one or more modules 116. Each backplane 114 has a number of electromagnetic connectors 100, where each one of the electromagnetic connectors 100 includes a core member 106 and one or more coils 108 disposed of the core member 106 (e.g., as previously described). Each one of the electromagnetic connectors 100 included with a backplane 114 is configured to mate with another electromagnetic connector 100 included with a module 116, such as an industrial element, and so forth. For example, the system 112 can be implemented with electromagnetic connector 100 interconnects in an Industrial Control System (ICS)/Process Control System (PCS) to connect I/O devices to power and/or communications signal transmission circuitry.


When the electromagnetic connectors 100 are mated, a core member 106 of the backplane 114 and a core member 106 of a module 116 are configured to couple the coils 108 via the magnetic circuit. The magnetic circuit is configured to induce a signal in one or more coils 108 of the module 116 when a coil 108 of backplane 114 is energized (e.g., with an AC signal from a DC/AC converter). The signal induced in coils 108 of the module 116 can be used to power and/or furnish communications with one or more electrical circuits 118, as shown in FIG. 2. It should be noted that while the backplane 114 is described as inducing a signal in the module 116, this implementation is provided by way of example only and is not meant to be restrictive of the present disclosure. Thus, the magnetic circuit can also be used to induce a signal in one or more coils 108 of the backplane 114 when a coil 108 of module 116 is energized to furnish communications with backplane 114. Further, the coils 108 included with mating electromagnetic connectors 100 can be energized in an alternating sequence (e.g., one after another) to provide bidirectional communication, and so forth.


In embodiments of the disclosure, the module 116 and/or the backplane 114 includes multiple electrical circuits 118, where two or more of the electrical circuits 118 each separately connect to a coil 108 disposed about a core member 106 of an electromagnetic connector 100. In this manner, communications between the backplane 114 and one or more modules 116 can be implemented in the manner of a passive hub 120. For example, the backplane 114 and the module 116 can communicate using multiple communications channels 122, each of which can be implemented using, for instance, a controller 124 (e.g., a microcontroller), as shown in FIG. 3. When a coil 108 disposed in the backplane 114 is energized, a signal is induced in each coil 108 associated with each communications channel 122 of the module 116. Further, when a coil 108 disposed in the module 116 is energized, a signal is induced in one or more coils 108 associated with the backplane 114. In this manner, communication is furnished between multiple controllers 124. In embodiments of the disclosure, two or more of the electrical circuits 118 are at least substantially identical (e.g., identical, electrically equivalent, and so forth) to provide redundancy within the backplane 114 and/or a module 116.


In some implementations, the electrical circuits 118 are implemented in a single, monolithic printed circuit board (PCB) 126, e.g., with multiple I-shaped and/or E-shaped core members 106 and coils 108 of electromagnetic connectors 100 supported by the PCB 126, as shown in FIG. 4. In implementations, the core members can be mechanically isolated from the PCB 126 (e.g., not touching the PCB 126). However, this configuration is provided by way of example only and is not meant to be restrictive of the present disclosure. In some embodiments, one or more biasing members 128 (e.g., a spring) are included for biasing a core member 106, as shown in FIG. 5B. For example, in the illustrated embodiment, a core member 106 is biased towards another core member 106. However, in other embodiments, a core member 106 is biased away from another core member 106, biased into alignment with another core member 106, and so forth.


The system 112 can be configured for connecting one or more I/O modules 116 (e.g., as slave devices) and transmitting data to and from the I/O modules 116. The I/O modules 116 can comprise input modules, output modules, and/or input and output modules. For instance, input modules can be used to receive information from input instruments in the process or the field, while output modules can be used to transmit instructions to output instruments in the field. For example, an I/O module 116 can be connected to a process sensor, such as a sensor for measuring pressure in piping for a gas plant, a refinery, and so forth. In implementations, the I/O modules 116 can be used to collect data and control systems in applications including, but not necessarily limited to: industrial processes, such as manufacturing, production, power generation, fabrication, and refining; infrastructure processes, such as water treatment and distribution, wastewater collection and treatment, oil and gas pipelines, electrical power transmission and distribution, wind farms, and large communication systems; facility processes for buildings, airports, ships, and space stations (e.g., to monitor and control Heating, Ventilation, and Air Conditioning (HVAC) equipment and energy consumption), large campus industrial process plants, such as oil and gas, refining, chemical, pharmaceutical, food and beverage, water and wastewater, pulp and paper, utility power, mining, metals; and/or critical infrastructures.


In implementations, the I/O module 116 can be configured to convert analog data received from the sensor to digital data (e.g., using Analog-to-Digital Converter (ADC) circuitry, and so forth). An I/O module 116 can also be connected to a motor and configured to control one or more operating characteristics of the motor, such as motor speed, motor torque, and so forth. Further, the I/O module 116 can be configured to convert digital data to analog data for transmission to the motor (e.g., using Digital-to-Analog (DAC) circuitry, and so forth). In implementations, one or more of the I/O modules 116 can comprise a communications module configured for communicating via a communications sub-bus, such as an Ethernet bus, an H1 field bus, a Process Field Bus (PROFIBUS), a Highway Addressable Remote Transducer (HART) bus, a Modbus, and so forth. Further, two or more of the I/O modules 116 can be used to provide fault tolerant and redundant connections for a communications sub-bus.


Each I/O module 116 can be provided with a unique identifier (ID) for distinguishing one I/O module 116 from another I/O module 116. In implementations, an I/O module 116 can be identified by its ID when it is connected to the system 112. Multiple I/O modules 116 can be used with the system 112 to provide redundancy. For example, two or more I/O modules 116 can be connected to a sensor and/or a motor. Each 1/O module 116 can include one or more ports 130 furnishing a physical connection to hardware and circuitry included with the I/O module 116, such as the PCB 126, and so forth.


One or more of the I/O modules 116 can include an interface for connecting to other networks, including but not necessarily limited to: a wide-area cellular telephone network, such as a 3G cellular network, a 4G cellular network, or a Global System for Mobile communications (GSM) network; a wireless computer communications network, such as a Wi-Fi network (e.g., a Wireless LAN (WLAN) operated using IEEE 802.11 network standards); a Personal Area Network (PAN) (e.g., a Wireless PAN (WPAN) operated using IEEE 802.15 network standards); a Wide Area Network (WAN); an intranet; an extranet; an internet; the Internet; and so on. Further, one or more of the I/O modules 116 can include a connection for connecting an I/O module 116 to a computer bus, and so forth.


Data transmitted by the system 112 can be packetized, i.e., discrete portions of the data can be converted into data packets comprising the data portions along with network control information, and so forth. The system 112 can use one or more protocols for data transmission, including a bit-oriented synchronous data link layer protocol such as High-Level Data Link Control (HDLC). In a specific instance, the system 112 can implement HDLC according to an International Organization for Standardization (ISO) 13239 standard, or the like. Further, two or more systems 112 can be used to implement redundant HDLC. However, it should be noted that HDLC is provided by way of example only and is not meant to be restrictive of the present disclosure. Thus, the system 112 can use other various communications protocols in accordance with the present disclosure.


Referring now to FIGS. 5A and 5B, the backplane 114 and the module 116 include two (2) E-core connector assemblies 102 and three (3) I-core connector assemblies 102. The E-core connector assemblies 102 are substantially identical, where one serves as a primary source of power for the module 116 and the other serves as a backup source of power for the module 116. With reference to the three I-core connector assemblies 102, one provides high-frequency communication from the backplane 114 to the module 116, one provides high-speed communication from the module 116 to the backplane 114, and one provides relatively lower frequency bidirectional communication for monitoring and/or supervisory functions. As shown, each I-core electromagnetic connector 100 disposed in a module 116 has five (5) windings, with one (1) winding included with an I-core electromagnetic connector 100 disposed in the backplane 114. The I-core electromagnetic connectors 100 form connector assemblies 102 comprising multi-winding transformers with impedances balanced between the various loads. However, the use of two electromagnetic power transfer assemblies and three electromagnetic communication assemblies is provided by way of example only and is not meant to limit the present disclosure. In other embodiments, fewer or more such assemblies are provided.


CONCLUSION

Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. An electromagnetic connector configured to form a first magnetic circuit portion, the electromagnetic connector comprising: a first core member including at least one of a magnetic material, a ferromagnetic material, or a ferrimagnetic material; anda coil disposed about the first core member, the coil configured to connect to an electrical circuit, the electromagnetic connector configured to mate with a second electromagnetic connector, the second electromagnetic connector configured to form a second magnetic circuit portion, the second electromagnetic connector comprising a second core member and a plurality of coils disposed about the second core member, the first core member and the second core member configured to couple the plurality of coils to the coil with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion when the electromagnetic connector is mated with the second electromagnetic connector, the magnetic circuit configured to induce identical communications signals in a first coil of the plurality of coils and the coil when a second coil of the plurality of coils is energized.
  • 2. The electromagnetic connector as recited in claim 1, wherein the electrical circuit is fabricated on a printed circuit board.
  • 3. The electromagnetic connector as recited in claim 2, wherein the printed circuit board is configured to support the first core member and the coil.
  • 4. The electromagnetic connector as recited in claim 1, further comprising at least one layer of material disposed of the first core member for separating the first core member from the second core member when the electromagnetic connector is mated with the second electromagnetic connector.
  • 5. The electromagnetic connector as recited in claim 1, wherein the first core member comprises an I-shaped core member.
  • 6. The electromagnetic connector as recited in claim 5, wherein the I-shaped core member is configured to mate with a second I-shaped core member.
  • 7. A device comprising: an electrical circuit; andan electromagnetic connector configured to form a first magnetic circuit portion, the electromagnetic connector comprising a first core member and a coil disposed about the first core member, the first core member including at least one of a magnetic material, a ferromagnetic material, or a ferrimagnetic material, the coil configured to connect to the electrical circuit, the electromagnetic connector configured to mate with a second electromagnetic connector, the second electromagnetic connector configured to form a second magnetic circuit portion, the second electromagnetic connector comprising a second core member and a plurality of coils disposed about the second core member, the first core member and the second core member configured to couple the plurality of coils to the coil with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion when the electromagnetic connector is mated with the second electromagnetic connector, the magnetic circuit configured to induce identical communications signals in a first coil of the plurality of coils and the coil when a second coil of the plurality of coils is energized.
  • 8. The device as recited in claim 7, further comprising a printed circuit board, wherein the electrical circuit is fabricated on the printed circuit board.
  • 9. The device as recited in claim 8, wherein the printed circuit board is configured to support the first core member and the coil.
  • 10. The device as recited in claim 7, further comprising at least one layer of material disposed of at least one of the first core member or the second core member for separating the first core member from the second core member when the first electromagnetic connector is mated with the second electromagnetic connector.
  • 11. The device as recited in claim 7, wherein at least one of the first core member or the second core member comprises an I-shaped core member.
  • 12. The device as recited in claim 11, wherein at least the other one of the at least one of the first core member or the second core member comprises a second I-shaped core member configured to mate with the I-shaped core member.
  • 13. An industrial control system comprising: an industrial element comprising a plurality of electrical circuits and a first electromagnetic connector configured to form a first magnetic circuit portion, the first electromagnetic connector comprising a first core member and at least one coil disposed about the first core member, the at least one coil configured to connect to an electrical circuit;a backplane comprising a second electromagnetic connector, the second electromagnetic connector configured to form a second magnetic circuit portion, the second electromagnetic connector comprising a second core member and at least one coil disposed about the second core member; anda hub formed by mating the first electromagnetic connector with the second electromagnetic connector, the first core member and the second core member configured to couple the at least one coil of the industrial element to the at least one coil of the backplane with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion when the first electromagnetic connector is mated with the second electromagnetic connector, at least one of the at least one coil of the industrial element or the at least one coil of the backplane comprising a second coil, the magnetic circuit configured to induce identical signals in the at least one coil of the industrial element and the at least one coil of the backplane when the second coil is energized.
  • 14. The industrial control system as recited in claim 13, further comprising a printed circuit board, wherein the electrical circuit is fabricated on the printed circuit board.
  • 15. The industrial control system as recited in claim 14, wherein the printed circuit board is configured to support the first core member and the at least one coil of the industrial element.
  • 16. The industrial control system as recited in claim 13, further comprising at least one layer of material disposed of at least one of the first core member or the second core member for separating the first core member from the second core member when the first electromagnetic connector is mated with the second electromagnetic connector.
  • 17. The industrial control system as recited in claim 13, wherein at least one of the first core member or the second core member comprises an I-shaped core member.
  • 18. The industrial control system as recited in claim 17, wherein at least the other one of the at least one of the first core member or the second core member comprises a second I-shaped core member configured to mate with the I-shaped core member.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/248,006, filed Aug. 26, 2016, and titled “ELECTROMAGNETIC CONNECTOR FOR AN INDUSTRIAL CONTROL SYSTEM,” which itself is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/959,888, filed Aug. 6, 2013, and titled “ELECTROMAGNETIC CONNECTOR FOR AN INDUSTRIAL CONTROL SYSTEM,” which itself is a continuation-in-part under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/875,858, filed May 2, 2013, and titled “Electromagnetic Connectors;” U.S. patent application Ser. No. 13/341,176, filed Dec. 30, 2011, and titled “COMMUNICATIONS CONTROL SYSTEM WITH A SERIAL COMMUNICATIONS INTERFACE AND A PARALLEL COMMUNICATIONS INTERFACE;” U.S. patent application Ser. No. 13/341,161, filed Dec. 30, 2011, and titled “SWITCH FABRIC HAVING A SERIAL COMMUNICATIONS INTERFACE AND A PARALLEL COMMUNICATIONS INTERFACE;” and U.S. patent application Ser. No. 13/341,143, filed Dec. 30, 2011, and titled “ELECTROMAGNETIC CONNECTOR FOR AN INDUSTRIAL CONTROL SYSTEM.” U.S. patent application Ser. No. 13/959,888 is also a continuation-in-part of International Application No. PCT/US2012/072056, filed Dec. 28, 2012, and titled, “ELECTROMAGNETIC CONNECTOR AND COMMUNICATIONS/CONTROL SYSTEM/SWITCH FABRIC WITH SERIAL AND PARALLEL COMMUNICATIONS INTERFACES.” U.S. patent application Ser. Nos. 15/248,006; 13/959,888; 13/875,858; 13/341,176; 13/341,161; and Ser. No. 13/341,143; and International Application No. PCT/US2012/072056 are herein incorporated by reference in their entireties.

US Referenced Citations (294)
Number Name Date Kind
1778549 Conner Oct 1930 A
1961013 Saraceno May 1934 A
2540575 Finizie Feb 1951 A
3702983 Chace et al. Nov 1972 A
4079440 Ohnuma et al. Mar 1978 A
4082984 Iwata Apr 1978 A
4337499 Cronin et al. Jun 1982 A
4403286 Fry et al. Sep 1983 A
4508414 Kusui et al. Apr 1985 A
4628308 Robert Dec 1986 A
4656622 Lea Apr 1987 A
4672529 Kupersmit Jun 1987 A
4691384 Jobe Sep 1987 A
4882702 Struger et al. Nov 1989 A
4929939 Varma et al. May 1990 A
4932892 Hatch Jun 1990 A
5013247 Watson May 1991 A
5229652 Hough Jul 1993 A
5325046 Young et al. Jun 1994 A
5378166 Gallagher, Sr. Jan 1995 A
5385487 Beitman Jan 1995 A
5385490 Demeter et al. Jan 1995 A
5388099 Poole Feb 1995 A
5422558 Stewart Jun 1995 A
5469334 Balakrishnan Nov 1995 A
5519583 Kolling et al. May 1996 A
5546463 Caputo et al. Aug 1996 A
5590284 Crosetto Dec 1996 A
5602754 Beatty et al. Feb 1997 A
5603044 Annapareddy et al. Feb 1997 A
5719483 Abbott et al. Feb 1998 A
5724349 Cloonan et al. Mar 1998 A
5735707 O' Groske et al. Apr 1998 A
5773962 Nor Jun 1998 A
5860824 Fan Jan 1999 A
5896473 Kaspari Apr 1999 A
5909368 Nixon et al. Jun 1999 A
5951666 Ilting et al. Sep 1999 A
5958030 Kwa Sep 1999 A
5963448 Flood et al. Oct 1999 A
5980312 Chapman et al. Nov 1999 A
6009410 LeMole et al. Dec 1999 A
6046513 Jouper et al. Apr 2000 A
6124778 Rowley et al. Sep 2000 A
6178474 Hamano et al. Jan 2001 B1
6219789 Little et al. Apr 2001 B1
6220889 Ely et al. Apr 2001 B1
6347963 Falkenberg et al. Feb 2002 B1
6393565 Lockhart et al. May 2002 B1
6435409 Hu Aug 2002 B1
6453416 Epstein Sep 2002 B1
6480963 Tachibana et al. Nov 2002 B1
6490176 Holzer et al. Dec 2002 B2
6574681 White et al. Jun 2003 B1
6597683 Gehring et al. Jul 2003 B1
6643777 Chu Nov 2003 B1
6680904 Kaplan et al. Jan 2004 B1
6695620 Huang Feb 2004 B1
6799234 Moon et al. Sep 2004 B1
6812803 Goergen Nov 2004 B2
6814580 Li et al. Nov 2004 B2
6828894 Sorger et al. Dec 2004 B1
6840795 Takeda et al. Jan 2005 B1
6988162 Goergen Jan 2006 B2
7164255 Hui Jan 2007 B2
7172428 Huang Feb 2007 B2
7200692 Singla et al. Apr 2007 B2
7234963 Huang Jun 2007 B1
7254452 Davlin et al. Aug 2007 B2
7402074 LeBlanc et al. Jul 2008 B2
7415368 Gilbert et al. Aug 2008 B2
7426585 Rourke Sep 2008 B1
7460482 Pike Dec 2008 B2
7510420 Mori Mar 2009 B2
7526676 Chou et al. Apr 2009 B2
7529862 Isani et al. May 2009 B2
7536548 Batke et al. May 2009 B1
7554288 Gangstoe et al. Jun 2009 B2
7587481 Osburn, III Sep 2009 B1
7614909 Lin Nov 2009 B2
7619386 Sasaki et al. Nov 2009 B2
7622994 Galal Nov 2009 B2
7660998 Walmsley Feb 2010 B2
7670190 Shi et al. Mar 2010 B2
7685349 Allen et al. Mar 2010 B2
7730304 Katsube et al. Jun 2010 B2
7746846 Boora et al. Jun 2010 B2
7790304 Katsube et al. Jun 2010 B2
7761640 Hikabe Jul 2010 B2
7774074 Davlin et al. Aug 2010 B2
7811136 Hsieh et al. Oct 2010 B1
7815471 Wu Oct 2010 B2
7822994 Hamaguchi Oct 2010 B2
7839025 Besser et al. Nov 2010 B2
7872561 Matumoto Jan 2011 B2
7948758 Buhler et al. May 2011 B2
7960870 Besser et al. Jun 2011 B2
7971052 Lucas et al. Jun 2011 B2
8013474 Besser et al. Sep 2011 B2
8019194 Morrison et al. Sep 2011 B2
8032745 Bandholz et al. Oct 2011 B2
8062070 Jeon et al. Nov 2011 B2
8125208 Gyland Feb 2012 B2
8132231 Amies et al. Mar 2012 B2
8143858 Tsugawa et al. Mar 2012 B2
8149587 Baran et al. Apr 2012 B2
8157569 Liu Apr 2012 B1
8181262 Cooper et al. May 2012 B2
8189101 Cummings et al. May 2012 B2
8212399 Besser et al. Jul 2012 B2
8266360 Agrawal Sep 2012 B2
8281386 Milligan et al. Oct 2012 B2
8287306 Daugherty et al. Oct 2012 B2
8295770 Seil et al. Oct 2012 B2
8310380 Aria et al. Nov 2012 B2
8380905 Djabbari et al. Feb 2013 B2
8390441 Covaro et al. Mar 2013 B2
8465762 Lee et al. Jun 2013 B2
8480438 Mattson Jul 2013 B2
8560147 Taylor et al. Oct 2013 B2
8587318 Chandler et al. Nov 2013 B2
8651874 Ku et al. Feb 2014 B2
8677145 Maletsky et al. Mar 2014 B2
8694770 Osburn, III Apr 2014 B1
8777671 Huang Jul 2014 B2
8862802 Calvin et al. Oct 2014 B2
8868813 Calvin et al. Oct 2014 B2
8971072 Calvin et al. Mar 2015 B2
9071082 Nishibayashi et al. Jun 2015 B2
9318917 Kubota et al. Apr 2016 B2
9436641 Calvin et al. Sep 2016 B2
9465762 Calvin et al. Oct 2016 B2
9467297 Clish et al. Oct 2016 B2
9812803 Toyoda et al. Nov 2017 B2
10103875 Roth et al. Oct 2018 B1
20020070835 Dadafshar Jun 2002 A1
20020080828 Ofek et al. Jun 2002 A1
20020080829 Ofek et al. Jun 2002 A1
20020084698 Kelly et al. Jul 2002 A1
20020086678 Salokannel et al. Jul 2002 A1
20020095573 O'Brien Jul 2002 A1
20020097031 Cook et al. Jul 2002 A1
20020116619 Maruyama et al. Aug 2002 A1
20020171525 Kobayashi et al. Nov 2002 A1
20020182898 Takahashi et al. Dec 2002 A1
20020189910 Yano et al. Dec 2002 A1
20030005289 Gougeon et al. Jan 2003 A1
20030040897 Murphy et al. Feb 2003 A1
20030074489 Steger et al. Apr 2003 A1
20030094855 Lohr et al. May 2003 A1
20030105601 Kobayashi et al. Jun 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030166397 Aura Sep 2003 A1
20030202330 Lopata et al. Oct 2003 A1
20030204756 Ransom et al. Oct 2003 A1
20050001589 Edington et al. Jan 2005 A1
20050019143 Bishman Jan 2005 A1
20050091432 Adams et al. Apr 2005 A1
20050102535 Patrick et al. May 2005 A1
20050144437 Ransom et al. Jun 2005 A1
20050144440 Catherman et al. Jun 2005 A1
20050162019 Masciarelli et al. Jul 2005 A1
20050182876 Kim et al. Aug 2005 A1
20050189910 Hui Sep 2005 A1
20050229004 Callaghan Oct 2005 A1
20060015590 Patil et al. Jan 2006 A1
20060020782 Kakii Jan 2006 A1
20060108972 Araya May 2006 A1
20060119315 Sasaki et al. Jun 2006 A1
20060155990 Katsube et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20070072442 DiFonzo et al. Mar 2007 A1
20070076768 Chiesa et al. Apr 2007 A1
20070123304 Pattenden et al. May 2007 A1
20070123316 Little May 2007 A1
20070143838 Milligan et al. Jun 2007 A1
20070174524 Kato et al. Jul 2007 A1
20070177298 Jaatinen et al. Aug 2007 A1
20070194944 Galera et al. Aug 2007 A1
20070214296 Takamatsu et al. Sep 2007 A1
20070229302 Penick Oct 2007 A1
20070260897 Cochran et al. Nov 2007 A1
20080067874 Tseng Mar 2008 A1
20080077976 Schulz Mar 2008 A1
20080123669 Oliveti et al. May 2008 A1
20080140888 Blair et al. Jun 2008 A1
20080181316 Crawley Jul 2008 A1
20080189441 Jundt et al. Aug 2008 A1
20080194124 Di Stefano Aug 2008 A1
20080303351 Jansen et al. Dec 2008 A1
20090036164 Rowley Feb 2009 A1
20090061678 Minoo et al. Mar 2009 A1
20090066291 Tien et al. Mar 2009 A1
20090083843 Wilkinson, Jr. et al. Mar 2009 A1
20090091513 Kuhn Apr 2009 A1
20090092248 Rawson Apr 2009 A1
20090121704 Shibahara May 2009 A1
20090204458 Wiese et al. Aug 2009 A1
20090217043 Metke et al. Aug 2009 A1
20090222885 Batke et al. Sep 2009 A1
20090234998 Kuo Sep 2009 A1
20090239468 He et al. Sep 2009 A1
20090245245 Malwankar et al. Oct 2009 A1
20090254655 Kidwell et al. Oct 2009 A1
20090256717 Iwai Oct 2009 A1
20090278509 Boyles et al. Nov 2009 A1
20090287321 Lucas et al. Nov 2009 A1
20090288732 Gielen Nov 2009 A1
20100052428 Imamura et al. Mar 2010 A1
20100066340 Delforge Mar 2010 A1
20100082869 Lloyd et al. Apr 2010 A1
20100122081 Sato et al. May 2010 A1
20100148721 Little Jun 2010 A1
20100149997 Law et al. Jun 2010 A1
20100151816 Besehanic et al. Jun 2010 A1
20100153751 Tseng et al. Jun 2010 A1
20100197366 Pattenden et al. Aug 2010 A1
20100197367 Pattenden et al. Aug 2010 A1
20100233889 Kiani et al. Sep 2010 A1
20100262312 Kubota et al. Oct 2010 A1
20110010016 Giroti Jan 2011 A1
20110066309 Matsuoka et al. Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110080056 Low et al. Apr 2011 A1
20110082621 Berkobin et al. Apr 2011 A1
20110089900 Hogari Apr 2011 A1
20110140538 Jung et al. Jun 2011 A1
20110150431 Klappert Jun 2011 A1
20110185196 Asano et al. Jul 2011 A1
20110196997 Ruberg et al. Aug 2011 A1
20110197009 Agrawal Aug 2011 A1
20110202992 Kiao et al. Aug 2011 A1
20110285847 Riedel et al. Nov 2011 A1
20110291491 Lemmens et al. Dec 2011 A1
20110296066 Xia Dec 2011 A1
20110313547 Hernandez et al. Dec 2011 A1
20120028498 Na et al. Feb 2012 A1
20120046015 Little Feb 2012 A1
20120053742 Tsuda Mar 2012 A1
20120102334 O'Loughlin et al. Apr 2012 A1
20120124373 Dangoor et al. May 2012 A1
20120143586 Vetter et al. Jun 2012 A1
20120159210 Hosaka Jun 2012 A1
20120236769 Powell et al. Sep 2012 A1
20120242459 Lambert Sep 2012 A1
20120265361 Billingsley et al. Oct 2012 A1
20120271576 Kamel et al. Oct 2012 A1
20120274273 Jacobs et al. Nov 2012 A1
20120282805 Ku et al. Nov 2012 A1
20120284354 Mukundan et al. Nov 2012 A1
20120284514 Lambert Nov 2012 A1
20120295451 Hyun-Jun et al. Nov 2012 A1
20120297101 Neupartl et al. Nov 2012 A1
20120311071 Karaffa et al. Dec 2012 A1
20120322513 Pattenden et al. Dec 2012 A1
20120328094 Pattenden et al. Dec 2012 A1
20130011719 Yasui et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130031382 Jau et al. Jan 2013 A1
20130070788 Deiretsbacher et al. Mar 2013 A1
20130170258 Calvin et al. Jul 2013 A1
20130173832 Calvin et al. Jul 2013 A1
20130211547 Buchdunger et al. Aug 2013 A1
20130212390 Du et al. Aug 2013 A1
20130224048 Gillingwater et al. Aug 2013 A1
20130233924 Burns Sep 2013 A1
20130244062 Teramoto et al. Sep 2013 A1
20130290706 Socky et al. Oct 2013 A1
20130291085 Chong et al. Oct 2013 A1
20140015488 Despesse Jan 2014 A1
20140068712 Frenkel et al. Mar 2014 A1
20140075186 Austen Mar 2014 A1
20140091623 Shippy et al. Apr 2014 A1
20140095867 Smith et al. Apr 2014 A1
20140097672 Takemura et al. Apr 2014 A1
20140129162 Hallman et al. May 2014 A1
20140131450 Gordon et al. May 2014 A1
20140142725 Boyd May 2014 A1
20140280520 Baier et al. Sep 2014 A1
20140285318 Audeon et al. Sep 2014 A1
20140312913 Kikuchi et al. Oct 2014 A1
20140327318 Calvin et al. Nov 2014 A1
20140335703 Calvin et al. Nov 2014 A1
20140341220 Lessmann Nov 2014 A1
20150046701 Rooyakkers et al. Feb 2015 A1
20150048684 Rooyakkers et al. Feb 2015 A1
20150115711 Kouroussis et al. Apr 2015 A1
20150365240 Callaghan Dec 2015 A1
20160065656 Patin et al. Mar 2016 A1
20160069174 Cannan et al. Mar 2016 A1
20160172635 Stimm et al. Jun 2016 A1
20160224048 Rooyakkers et al. Aug 2016 A1
20160301695 Trivelpiece et al. Oct 2016 A1
20180190427 Rooyakkers et al. Jul 2018 A1
Foreign Referenced Citations (145)
Number Date Country
2162746 Apr 1994 CN
1408129 Apr 2003 CN
1440254 Sep 2003 CN
1571335 Jan 2005 CN
1702582 Nov 2005 CN
1839581 Sep 2006 CN
101005359 Jul 2007 CN
101069407 Nov 2007 CN
101262401 Sep 2008 CN
101322089 Dec 2008 CN
101447861 Jun 2009 CN
101533380 Sep 2009 CN
101576041 Nov 2009 CN
201515041 Jun 2010 CN
101809557 Aug 2010 CN
101919139 Dec 2010 CN
101977104 Feb 2011 CN
102035220 Apr 2011 CN
102237680 Nov 2011 CN
202205977 Apr 2012 CN
102480352 May 2012 CN
1934766 Jun 2012 CN
102546707 Jul 2012 CN
102809950 Dec 2012 CN
102812578 Dec 2012 CN
103376766 Oct 2013 CN
103682883 Mar 2014 CN
103701919 Apr 2014 CN
104025387 Sep 2014 CN
203932181 Nov 2014 CN
104185969 Dec 2014 CN
204243110 Apr 2015 CN
105556762 May 2016 CN
104025387 Jul 2018 CN
102013213550 Jan 2015 DE
0473336 Mar 1992 EP
507360 Oct 1992 EP
1176616 Jan 2002 EP
1241800 Sep 2002 EP
1246563 Oct 2002 EP
1571559 Sep 2005 EP
1877915 Jan 2008 EP
1885085 Feb 2008 EP
2179364 Apr 2010 EP
2317743 May 2011 EP
2450921 May 2012 EP
2557657 Feb 2013 EP
2557670 Feb 2013 EP
1885085 Mar 2013 EP
2613421 Jul 2013 EP
2777796 Sep 2014 EP
2806319 Nov 2014 EP
S57-168816 May 1984 JP
S5974413 May 1984 JP
S59177226 Nov 1984 JP
H0163190 Apr 1989 JP
4-245411 Sep 1992 JP
H05346809 Dec 1993 JP
7105328 Apr 1995 JP
07-320963 Dec 1995 JP
08-037121 Feb 1996 JP
8-037121 Feb 1996 JP
08-098274 Apr 1996 JP
8241824 Sep 1996 JP
8322252 Dec 1996 JP
H09182324 Jul 1997 JP
11-89103 Mar 1999 JP
11-098707 Apr 1999 JP
11-235044 Aug 1999 JP
H11230504 Aug 1999 JP
11-312013 Nov 1999 JP
2001292176 Oct 2001 JP
2001307055 Nov 2001 JP
2002134071 May 2002 JP
2000252143 Sep 2002 JP
2002280238 Sep 2002 JP
2002343655 Nov 2002 JP
2002359131 Dec 2002 JP
3370931 Jan 2003 JP
2003047912 Feb 2003 JP
2003068543 Mar 2003 JP
2003-142327 May 2003 JP
2003152703 May 2003 JP
2003152708 May 2003 JP
2003216237 Jul 2003 JP
2004501540 Jan 2004 JP
2004303701 Oct 2004 JP
2005038411 Feb 2005 JP
2005513956 May 2005 JP
2005151720 Jun 2005 JP
2005250833 Sep 2005 JP
2005275777 Oct 2005 JP
2005531235 Oct 2005 JP
2005327231 Nov 2005 JP
2005332406 Dec 2005 JP
2006060779 Mar 2006 JP
2006180460 Jul 2006 JP
2006223950 Aug 2006 JP
2006238274 Sep 2006 JP
2007034711 Feb 2007 JP
2007096817 Apr 2007 JP
2007519150 Jul 2007 JP
2007238696 Sep 2007 JP
2007252081 Sep 2007 JP
2008215028 Sep 2008 JP
2008257707 Oct 2008 JP
2008538668 Oct 2008 JP
4245411 Mar 2009 JP
2009157913 Jul 2009 JP
2009163909 Jul 2009 JP
2010503134 Jan 2010 JP
4439340 Mar 2010 JP
20150515407 May 2010 JP
2010135903 Jun 2010 JP
2011078249 Apr 2011 JP
2011217037 Oct 2011 JP
2011223544 Nov 2011 JP
5013019 Aug 2012 JP
2012190583 Oct 2012 JP
2012195259 Oct 2012 JP
2013021798 Jan 2013 JP
2013170258 Sep 2013 JP
2014507721 Mar 2014 JP
2014080952 May 2014 JP
2015023375 Feb 2015 JP
2016512039 Apr 2016 JP
6189479 Aug 2017 JP
10-20020088540 Nov 2002 KR
20050014790 Feb 2005 KR
20060034244 Apr 2006 KR
1007053800000 Apr 2007 KR
100807377 Feb 2008 KR
201310344 Mar 2013 TW
2005070733 Aug 2005 WO
2006059195 Jun 2006 WO
2007041866 Apr 2007 WO
2007148462 Dec 2007 WO
2008083387 Jul 2008 WO
2009032797 Mar 2009 WO
2011104935 Sep 2011 WO
2013033247 Mar 2013 WO
2013102069 Jul 2013 WO
2014179556 Nov 2014 WO
2014179566 Nov 2014 WO
2015020633 Feb 2015 WO
Non-Patent Literature Citations (123)
Entry
International Search Report dated Apr. 29, 2013 for PCT/US2012/072056.
Office Action dated Mar. 1, 2017 for Chinese Appln. No. 201410182071.8.
Office Action dated May 31, 2017 for Chinese Appln. No. 201410383686.7.
Office Action for Chinese Application No. 201410802889.5, dated Jul. 26, 2018.
Office Action for Canadian Application No. 2,875,517, dated May 4, 2015
European Search Report for European Application No. 14196406.4, dated Sep. 23, 2015.
Extended Search Report for European Application No. 16165112.0, dated Sep. 6, 2016.
Examination Report for European Application No. 16165112.0, dated Feb. 16, 2018.
Notice of Reason for Rejection for Japanese Application No. 2014-243827, dated Jan. 24, 2019.
Office Action for Chinese Application No. 2015103905202.2, dated Jun. 20, 2018.
Office Action for Chinese Application No. 2015103905202.2, dated Mar. 6, 2019.
Search Report for European Application No. 15175744.0, dated Apr. 26, 2016.
Partial Search Report for European Application No. 15175744.0, dated Dec. 14, 2015.
Office Action for Canadian Application No. 2,875,518, dated Jun. 3, 2015.
Office Action for Canadian Application No. 2,875,518, dated Apr. 22, 2016.
European Search Report for EP Application No. 14196408.0, dated Nov. 24, 2015.
Office Action for Canadian Application No. 2,875,515, dated Jul. 5, 2017.
Office Action for Canadian Application No. 2,875,515, dated Feb. 10, 2017.
Office Action for Canadian Application No. 2,875,515, dated Jun. 1, 2016.
Office Action for Canadian Application No. 2,875,515, dated Oct. 6, 2016.
Office Action for Chinese Application No. 201410799473.2, dated Oct. 12, 2018.
Examination Report for European Application No. 14196409.8, dated Jan. 22, 2018.
Search Report for European Application No. 14196409.8, dated May 19, 2016.
Notice of Reason for Rejection for Japanese Application No. 2014-243830, dated Sep. 21, 2018.
Office Action for Canadian Application No. 2,920,133, dated Jan. 30, 2017.
Office Action for Canadian Application No. 2,920,133, dated Oct. 19, 2016.
Search Report for European Application No. 16154943.1, dated Jun. 17, 2016.
Partial European Search Report in European Application No. 17208183.8, dated Mar. 28, 2018.
Examination Report in European Application No. 17206183.8, dated Jun. 22, 2018.
Examination Report in European Application No. 17208183.8, dated Feb. 27, 2019.
Office Action for Chinese Appln. No. 201610239130.X, dated Feb. 14, 2018.
Office Action for Chinese Appln. No. 201610239130.X, dated Aug. 2, 2017.
Office Action for Chinese Application No. 201280065564.2, dated Aug. 3, 2016.
Office Action for Chinese Application No. 201280065564.2, dated Feb. 28, 2017.
Office Action for Chinese Application No. 201280065564.2, dated Oct. 19, 2017.
Partial Supplementary European Search Report in Application No. 12862174.5, dated Nov. 3, 2015.
European Search Report in Application No. 12362174,5, dated Feb. 15, 2016.
European Search Report in Application No. 17178867.2, dated Nov. 2, 2017.
Office Action for Japanese Application No. 2014-550508, dated Dec. 2, 2016.
Office Action for Japanese Application No. 2014-550508, dated Sep. 15, 2017.
Office Action for Chinese Application No. 201410383686.7, dated Feb. 23, 2018.
Office Action for Chinese Application No. 201480034066.0, dated May 3, 2017.
Search Report and Opinion for European Application No. 14166908.8, dated Jan. 7, 2015.
Extended Search Report for European Application No. 14180106.8, dated Jul. 13, 2015.
Examination Report for European Application No. 14180106.8, dated Jun. 28, 2017.
Supplementary Search Report for European Application No. 14791210.9, dated Dec. 6, 2016.
Office Action for Japanese Application No. 2014-080952, dated May 2, 2018.
Office Action for Japanese Application No. 2014-080952, dated Jan. 7, 2019.
Office Action for Japanese Application No. 2014-159475, dated Jul. 18, 2018.
Office Action for Japanese Application No. 2014-159475, dated Feb. 15, 2019.
Office Action for Japanese Application No. 2016-512039, dated Jun. 5, 2018.
Office Action for Japanese Application No. 2016-512039, dated Feb. 5, 2019.
International Search Report and Written Opinion for PCT/US2014/036368, dated Sep. 12, 2014.
Office Action for Chinese Appln No. 201380079515.9, dated Nov. 16, 2017.
Office Action for Chinese Appln No. 201380079515.9 dated Aug. 7, 2018.
Office Action for Chinese Appln No. 201380079515.9, dated Feb. 25, 2019.
Supplementary Search Report in European Application No. 13890953.6, dated Jan. 26, 2017.
Office Action for Japanese Application No. 2016-533280, dated Jun. 28, 2017.
Office Action for Japanese Application No. 2016-533280, dated Apr. 11, 2018.
Office Action for Japanese Application No. 2016-533280, dated Jan. 7, 2019.
International Search Report and Written Opinion for PCT/US2013/053721, dated May 12, 2014.
Office Action for Chinese Appln No. 201380079514.4, dated Feb. 5, 2018.
Office Action for Chinese Appln No. 201380079514.4, dated Nov. 5, 2018.
Examination Report for European Application No. 13891327.2, dated Sep. 26, 2018.
Supplementary Search Report for European Application No. 13891327.2, dated Jan. 10, 2017.
Reason for Rejection in Japanese Patent Application No. 2016-533279, dated Aug. 13, 2018.
Notice of Reasons for Rejection in Japanese Patent Application No. 2016-533279, dated Jul. 13, 2017.
Notice of Reason for Rejection in Japanese Patent Application No. 2016-533279, dated Mar. 1, 2018.
Fabien Fleuot, “Raspberry Pi + Mihini, Controlling an off-the-grid Electrical Installation, Part I,” Apr. 11, 2014, XP055290314.
Generex Systems Gmbh, “BACS—Battery Analysis & Care System,” Aug. 17, 2014, XF055290320.
Siemens, “Uninterruptible 24 V DC Power Supply High-Performance, communicative and integrated in TIA,” Mar. 31, 2015, XP055290324.
“Introduction to Cryptography,” Network Associates, Inc., PGP 6.5.1, 1990-1999, Retrieved © (ftp://ftp.pgpi.org/pub/pgP/6.5/docs/english/IntroToCrypto.Pdf) on Mar. 17, 2016, (refer to pp. 16-20).
Stouffer, et al. “Guide to Industrial Control Systems (ICS)Security,” NIST, Special Pub. 800-82, Jun, 2011, (refer to pp. 2-1 to 2-10)
Rodrigues, A, et al., “Scada Security Device,” Proceedings of the Seventh Annual Workshop on Cyber Security and Information Intelligence Research, CSIIRW '11, Jan. 1, 2011, XP055230335.
Zafirovic-Vukotic, M. et al., “Secure SCADA network supporting NERC CIP”, Power & Energy Society General Meeting, 2009, PES '09, IEEE, Piscataway, NJ, USA, Jul. 26, 2009, pp. 1-8, XP031538542.
Roman Kleinerman; Daniel Feldman (May 2011), Power over Ethernet (PoE): An Energy-Efficient Alternative (PDF), Marvell, retrieved Sep. 25, 2018 @ http://www.marvell.com/switching/assets/Marvell-PoE-An-Energy-Efficient-Alternative.pdf (Year: 2011).
Molva, R, Ed et al., “Internet security architecture”, Computer Networks, Elsevier Science Publishers B. V., Amsterdam, NL, vol. 31, No. 3, Apr. 23, 1999, pp. 787-804, XP004304518.
Rodrigues, A., “SCADA Security Device: Design and Implementation”, Master of Science Thesis, Wichita State University, Dec. 2011.
CGI, White Paper on “Public Key Encryption and Digital Signature: How do they work?”, 2004 (refer to pp. 3-4).
Canadian Office Action for Application No. 2920133 dated Jan. 30, 2017.
Chinese Office Action for Application No. 2920133 dated Oct. 19, 2016.
Supplementary European Search Report for European Patent Application No. EP 14791210 dated Dec. 16, 2016, 11 pages.
Siemens AG: “ERTEC 400 I Enhanced Real-Time Ethernet Controller I Handbuch”,no. Version 1.2.2 pp. 1-98, XP002637652, Retrieved from the Internet: URL:http:IIcache.automation.siemens.comIdniiDUI DUxNDgzNwAA_21631481_HBIERTEC400_Handbuch_V122.pdf [retrieved on May 2, 2011].
Search Report for European Application No. 14196406.4, dated Nov. 4, 2015.
European Search Report dated Dec. 2, 2015 for EP Application No. 14196408.0.
European search report for European Patent Application No. EP14196406 dated Oct. 2, 2015, 6 pages.
European Search Report published Nov. 4, 2015 in Application No. EP14196406.4.
Examination Report for European Application No. 17178867.2, dated Mar. 13, 2019.
Examination Report for European Application No. 16165112.0, dated Apr. 17, 2019.
Examination Report for European Patent Application No. 16154943.1, dated May 16, 2019.
Extended European Search Report for Application No. EP14180106.8, dated Aug. 12, 2015.
Extended European Search Report for European Patent Application No. EP 14196409 dated May 31, 2016, 10pages.
Extended European Search Report for European Patent Application No. EP 16154943 dated Jun. 29, 2016, 9pages.
Extended European Search Report for European Patent Application No. EP 18176358 dated Sep. 11, 2018, 11 pages.
International Search Report and Written Opinion dated May 12, 2014 in International Application# PCT/US2013/053721.
Notice of Reason for Rejection for Japanese Patent Application No. 2014-243830, dated Jul. 10, 2019.
Notice of Reason for Rejection for JP Patent Application No. 2018-109151, dated Jun. 25, 2019.
Office Action for Chinese Application No. 2015103905202.2, dated Aug. 6, 2019.
Partial Supplementary European Search Report dated Nov. 10, 2015 in Application# EP12862174.5.
Office Action for Canadian Application No. 2,875,515 dated Feb. 17, 2016.
Office Action for Chinese Patent Application 201410802889.5, dated May 7, 2019.
Office Action for Canadian Application No. 2,920,133, dated Apr. 14, 2016.
Office Action for Chinese Application No. 20141079995.2, dated Jul. 3, 2019.
Partial European Search Report for European Patent Application No. EP 15175744 dated Jan. 4, 2016, 7 pages.
Baran, M. et al., “Overcurrent Protection on Voltage-Source-Converter-Based Multiterminal DC Distribution Systems,” IEEE Transactions on Power Delivery, vol. 22, No. 1, Jan. 2007, pp. 406-412.
Decision of Rejection for Patent Application No. 2014-243827, dated Nov. 28, 2019.
Decision of Rejection for Chinese Application No. 2015103905202.2, dated Nov. 5, 2019.
Examination Report for European Patent Application No. 1720883.8, dated Oct. 29, 2019.
Notice of Reason for Rejection for Patent Application No. 2016-021763, dated Nov. 27, 2019.
Office Action for Chinese Patent Application No. 201610236358.3, dated Sep. 4, 2019.
Office Action forChinese Patent Application 201410802889.5, dated Dec. 4, 2019.
Office Action from Chinese Patent Application No. 201610229230.4, dated Oct. 24, 2019.
Office Action from EP Application No. 14196406.4, dated Jul. 29, 2019.
Office Action for Japanese Application No. 2015-136186, dated Oct. 10, 2019.
Supplementary European Search Report for European Patent Application No. EP 13890953 dated Feb. 6, 2017, 9 pages.
Office Action for Japanese Application No. 2014-159475, dated Jun. 11, 2018.
Decision of Rejection for Japanese Application No. 2014-243830, dated Mar. 18, 2020.
Notice of Reason for Rejection for Japanese Application No. 2016-080207, dated Jun. 4, 2020.
Reason for Rejection for Japanese Application No. 2015-136186, dated May 7, 2020.
Summons to attend oral proceedings for European Application No. 14196409.8, dated Nov. 13, 2019.
Office Action for Japanese Application No. 2016-533280, dated Jun. 29, 2020.
Office Action for Chinese Patent Application No. 201610236358.3, dated Jun. 24, 2020.
Office Action from Chinese Patent Application No. 201610229230.4, dated Jul. 15, 2020.
Related Publications (1)
Number Date Country
20180166930 A1 Jun 2018 US
Continuations (2)
Number Date Country
Parent 15248006 Aug 2016 US
Child 15838857 US
Parent 13959888 Aug 2013 US
Child 15248006 US
Continuation in Parts (5)
Number Date Country
Parent 13875858 May 2013 US
Child 13959888 US
Parent 13341176 Dec 2011 US
Child 13875858 US
Parent 13341161 Dec 2011 US
Child 13341176 US
Parent 13341143 Dec 2011 US
Child 13341161 US
Parent PCT/US2012/072056 Dec 2012 US
Child 13341143 US