The present application claims priority under 35 U.S.C. §119 of Japanese Application No. 2010-096361, filed on Apr. 19, 2010, the disclosure of which is expressly incorporated by reference herein in its entirety.
1. Field of the Invention
The present invention relates to an electromagnetic encoder. Particularly, the present invention relates to a highly-accurate and low-cost electromagnetic encoder which is suitable for calipers, indicators, linear scales, micrometers, and the like, can achieve great signal strength by reducing offsets with a small scale width, that is, an encoder width, and is strong with variation in a pitching direction.
2. Description of Related Art
As disclosed in Related Art 1 and Related Art 2, and as
As shown in
However, since the above-described configuration requires three lines of scale coils and makes wiring of the scale coils longer, generated induction current is attenuated by impedance of the scale coils themselves and it is difficult to obtain strong signals.
In order to address such circumstances, the present applicant proposed, in Related Art 3, that a plurality of transmitting coils, receiving coils, and scale coils are symmetrically provided relative to the center of the scale, and one of the scale coils symmetrically provided relative to the center of the scale is displaced by a ½ phase relative to the other scale coil.
Related Art 1: Japanese Patent Application Publication No. H10-318781
Related Art 2: Japanese Patent Application Publication No. 2003-121206 (FIG. 1, FIG. 2 and FIG. 3)
Related Art 3: Japanese Patent Application Publication No. 2009-186200
However, since a plurality of lines of scale coils are required in a scale width direction, the scale width, that is, the encoder width becomes large, while the length is small. In addition, the encoder is weak with variation in a pitching direction, while it is strong with a yaw direction.
The present invention is provided to address such circumstances of the conventional technologies. An advantage of a non-limiting feature of the present invention is to provide a highly-accurate and low-cost electromagnetic encoder which can achieve great signal strength by reducing offsets with a small scale width, that is, an encoder width, and is strong with variation in a pitching direction.
According to the present invention, in order to address the conventional circumstances, an electromagnetic encoder includes a number of scale coils arranged on a scale along a measuring direction; and a transmitting coil and receiving coils arranged on a grid to be movable relative to the scale in the measuring direction, in which a relative movement amount between the scale and the grid is detected based on variation in magnetic flux detected by the receiving coils via the scale coils at the time of exciting the transmitting coil. The receiving coils are provided in the measuring direction to be a plurality of sets, one of the sets of the receiving coils being displaced by a ½ phase of a scale pitch relative to the other set of the receiving coils.
According to the present invention, the receiving coils are connected so as to take the output difference of the plurality of sets of the receiving coils.
According to the present invention, the electromagnetic encoder further includes a plurality of tracks having a different scale pitch in which the scale coils, the transmitting coil and the receiving coils are provided, so that the absolute position can be measured.
According to the present invention, it is possible to downsize an encoder by reducing a scale width, that is, an encoder width. Also, since the entire length of the transmitting coils can be made smaller than that of Related Art 3, the receiving signal strength can be increased. Further, the total area of the encoder can be reduced, and thereby a small-sized encoder can be provided. Furthermore, it is possible to achieve an encoder that is strong with variation in a pitching direction by providing a plurality of receiving coils along a measuring direction.
The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of non-limiting features of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of non-limiting features of the present invention. In this regard, no attempt is made to show structural details of non-limiting features of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description is taken with the drawings making apparent to those skilled in the art how the forms of non-limiting features of the present invention may be embodied in practice.
Embodiments of non-limiting features of the present invention will be described in detail with reference to the attached drawings.
As shown in
The two sets of the receiving coils 20A and 20B have a common shape, and are connected so as to output difference between signals of the receiving coils 20A and 20B.
When electric current is caused to flow through the transmitting coil 24, signals having a waveform where the positive and the negative are inverted with the same offset appear in the receiving coils 20A and 20B as shown in
Next, a second embodiment of a non-limiting feature of the present invention will be explained.
As shown in
According to the second embodiment, it is possible to achieve an encoder that can accurately measure an absolute position with a small scale width of two tracks.
The number of the track is not limited to two. Three or more tracks may be provided to increase the measuring area.
In the above-described embodiments, the shape of the receiving coil is rhomboid. However, the shape of the receiving coil is not limited to this. Other shapes such as sine wave shapes or shapes similar thereto may be used.
In the above-described embodiments, the scale coil has a shape of a rectangular frame. However, the shape of the scale coil is not limited to this. For example, the scale coil may have a plate shape in which an electrode is provided within a rectangle.
In the first embodiment, a pair of receiving coils is provided in a measuring direction (horizontal direction of
In the second embodiment, two pairs of receiving coils are provided in a measuring direction (horizontal direction of
Application of a non-limiting feature of the present invention is not limited to a low-cost encoder. The present invention can be applied to a general electromagnetic encoder.
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to exemplary embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular structures, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
The present invention is not limited to the above described embodiments, and various variations and modifications may be possible without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-096361 | Apr 2010 | JP | national |