A polarization twister is typically described as a device that rotates the polarization of a linear incident field by some angle (e.g., by an angle of 90 degrees). These devices are constructed using multiple non-resonant layers, each layer having an array of infinite wires. The layers are typically separated by quarter-wavelength foam spacers. The polarization of each array of infinite wires is rotated a fixed number of degrees from its preceding neighbor. Each wire grid re-radiates the component of incident E-field that is co-polarized with the grid. The polarization of the first layer is orthogonal to the incident E-field. The polarization of the next layer is slightly rotated so that a fraction of the incident field is twisted and then reflected back or transmitted forward. Since the grids are separated by a distance of ¼ wavelength, the reflected components tend to cancel, somewhat.
For many systems, where polarization purity and low reflection are desired, this crude approach is not sufficient. The performance of such polarization twisters, even when several layers are used, is inadequate for many applications. The poor performance of these devices results in the production of unwanted field components such as, for example, partial reflection of the incident field, incomplete rotation (e.g., rotation less than or greater than 90 degrees), poor transmission through the layers, etc.
The present invention solves these and other problems by providing an improved apparatus and method to twist the field polarization of an electromagnetic wave, with good transmission and low reflection over a desired frequency band. In one embodiment a linearly polarized field is rotated by 90 degrees. The improved apparatus is typically thinner and less costly than the prior art because fewer layers are needed to twist the polarization while maintaining good performance characteristics.
In one embodiment, a transmission twister rotates the polarization of a linearly-polarized incident field to produce a transmitted field. In one embodiment, the transmission twister rotates the polarization by 90 degrees. In one embodiment, the transmission twister produces low reflection of a desired incident polarization. In one embodiment, the transmission twister has a transmission coefficient (with respect to the desired incident field polarization and a correspondingly rotated transmitted field polarization) close to unity.
In one embodiment, a reflection twister rotates the polarization of an electromagnetic wave having a linearly-polarized incident field to produce a reflected field with a polarization rotated with respect to the incident field. In one embodiment, the transmission twister rotates the polarization by 90 degrees.
In one embodiment, the reflection twister operates in a desired frequency band. In the operating band, an incident field (e.g., an incident E-field) is rotated from a first polarization to a second polarization with high efficiency, producing little reflected field co-polarized with the incident field. In one embodiment, the reflection twister uses a resonant polarization-twisting Frequency Selective Surface (FSS) layer above a ground plane. In one embodiment, each element of the polarization-twisting FSS includes two crossed dipoles that are connected so that one dipole loads the other dipole near its center.
It is known that a ground plane reflects Right-Hand Circular Polarization (RHCP) as Left-Hand Circular Polairzation (LHCP), and vice versa. In one embodiment, the reflection twister reflects RHCP as RHCP, and reflects LHCP as LHCP.
In one embodiment, the transmission polarization twister operates in a desired frequency band. In the operating band, an electromagnetic wave having an incident field (e.g., an incident E-field) is twisted from a first polarization to a second polarization with good efficiency, producing little or no undesired reflected field and little transmitted field co-polarized with the incident field. In one embodiment, the transmission twister uses three Frequency Selective Surface (FSS) layers arranged as a middle layer with two outer FSS layers (one on either side of the middle layer) and, optionally, two spacers. In one embodiment, the two outer FSS layers are linearly-polarized arrays (e.g., linearly-polarized wires or slots), and the middle layer is a polarization-twisting FSS array. In one embodiment, the two outer FSS layers are dipole arrays, and the middle layer is a polarization-twisting FSS array. In one embodiment, one or both of the two outer FSS layers are slot arrays, and the middle layer is a polarization-twisting FSS array of slots or wire elements. In one embodiment, one or both of the two outer FSS layers are non-resonant grids, and the middle layer is a polarization twisting FSS array. In one embodiment, each element of the polarization twisting FSS includes two crossed dipoles that are connected so that one dipole loads the other dipole near its center. In one embodiment, the middle layer is a polarization twisting FSS array comprising loop-type elements. In one embodiment, the middle layer is a polarization twisting FSS array comprising bowtie loop-type elements.
The advantages and features of the disclosed invention will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawings listed below.
A reflection twister is shown in FIG. 2. The reflection twister has a polarization-twisting FSS 201 (such as, for example, the polarization-twisting FSS layers shown in FIGS. 4B and/or 8B) located above a groundplane 202. The polarization-twisting FSS layer 201 rotates the polarization of an incident field to produce transmitted and reflected fields where the polarization of at least a portion of the incident field has been rotated by a desired rotation. The polarization-twisting FSS layer 201 can be constructed using FSS elements such as loaded dipoles (or slots), V dipoles (or slots), bent dipoles (or slots), asymmetrical loops (wires or slots), rectangular loops (wires or slots), dipoles (or slots) rotated by some angle (e.g., 45 degrees) with respect to the incident field, etc. In one embodiment, each polarization-twisting FSS element of the array 201 is a dipole loaded with a cross-polarized dipole. At resonance, the dipole is matched by the cross-polarized dipole load. In one embodiment, each polarization-twisting FSS element is a slot loaded with a cross-polarized slot. In one embodiment, a dielectric spacer is placed between the FSS and the ground plane. In one embodiment, the FSS 201 and/or the ground plane 202 are bonded to the dielectric spacer.
If a conjugate-matched element is located above a ground plane, then most (theoretically all) of the energy will end up in the load. In this case, the load is the cross-polarized dipole (or slot). Therefore, when the twister FSS 201 is properly located above the ground plane 202, then most of the reflected signal will be rotated 90 degrees from the incident polarization.
A transmission twister 300 is shown in FIG. 3. The transmission twister 300 includes a first FSS layer 301, a second FSS layer 302, and a third FSS layer 303. The polarization of the elements of the first FSS 301 is orthogonal to the polarization of the incident field (the input polarization) such that at least a portion of the incident field can pass through the first FSS layer 301. The elements of the second FSS 302 are polarization-twisting elements. The polarization of the elements of the third FSS 303 is orthogonal to the desired transmitted polarization (the output polarization) such that at least a portion of the transmission field can pass through the third FSS layer 303. The second FSS 302 is disposed between the first FSS 301 and the third FSS 303. In one embodiment, one or more dielectric spacers are used between the FSS layers 301-303. In one embodiment, one or more of the FSS layers 301-303 are bonded to the dielectric spacers. The elements of the first FSS layer 301 can be resonant or non-resonant wires (e.g., dipole-type elements, “infinite” wires, etc.), resonant or non-resonant slots, and the like. The elements of the second FSS layer 302 can be resonant wires, slots, and the like. The elements of the third FSS layer 303 can be resonant or non-resonant wires, resonant or non-resonant slots, and the like. The first, second, and third FSS layers 301-303 need not use the same type of FSS elements. Thus, some of the FSS layers 301-303 can use slot elements and some of the FSS layers 301-303 can use wire elements (e.g., dipoles).
In one embodiment, the first FSS layer 301 is a linearly-polarized array having elements that are cross-polarized with respect to the incident field (that is, elements that allow the desired incident polarization to pass through relatively unattenuated) and co-polarized with respect to the transmitted field (that is, elements that reflect the desired transmitted polarization). In one embodiment, the second FSS layer 302 is a polarization-twisting layer that rotates the polarization of the incident field. In one embodiment, the third FSS layer 303 is a linearly-polarized array having elements that are co-polarized with respect to the incident field (that is, elements that reflect the desired incident field polarization) and cross-polarized with respect to the transmitted field (that is, elements that allow the desired transmitted polarization to pass through relatively unattenuated). The polarization-twisting FSS layer 302 can be constructed using FSS elements such as loaded dipoles (or slots), V dipoles (or slots), bent dipoles (or slots), asymmetrical loops (wires or slots), rectangular loops (wires or slots), dipoles (or slots) rotated by some angle (e.g., 45 degrees) with respect to the incident field, etc.
In one embodiment, a first dielectric spacer is placed between the first FSS layer and the second FSS layer. In one embodiment, a second dielectric spacer is placed between the second FSS layer and the third FSS layer. In one embodiment, one or more of the FSS layers are bonded to the dielectric spacers.
The linearly-polarized dipole (or slot) FSS layers 401, 403 are broad-banded enough such that in the desired frequency band they approximate a ground plane to a first linear polarization and are approximately invisible to a second linear polarization rotated 90 degrees with respect to the first linear polarization. On the input side of the twister, the FSS elements (slots or wires) are cross-polarized to the incident E-field. On the output side of the twister the FSS elements (slots or wires) are co-polarized to the incident E-field.
As shown in the equivalent circuit model illustrated in
The linearly-polarized layers 801, 803 are broad-banded enough such that in the desired frequency band they approximate a ground plane to a first linear polarization and are approximately invisible to a second linear polarization rotated 90 degrees with respect to the first linear polarization. On the input side of the twister, the wires (or slots) are polarized to allow transmission of the incident field.
Although the foregoing has been a description and illustration of specific embodiments of the invention, various modifications and changes can be made thereto by persons skilled in the art without departing from the scope and spirit of the invention.
The present application claims priority benefit of U.S. Provisional Application No. 60/349,927, filed Jan. 17, 2002, titled “ELECTROMAGNETIC-FIELD POLARIZATION TWISTER.”
Number | Name | Date | Kind |
---|---|---|---|
3161879 | Hannan et al. | Dec 1964 | A |
3737904 | Mori et al. | Jun 1973 | A |
3754271 | Epis | Aug 1973 | A |
3771160 | Laverick | Nov 1973 | A |
4652891 | Bossuet et al. | Mar 1987 | A |
4728961 | Bossuet et al. | Mar 1988 | A |
4786914 | Wu et al. | Nov 1988 | A |
4926189 | Zaghloul et al. | May 1990 | A |
5208603 | Yee | May 1993 | A |
5434587 | Hannan | Jul 1995 | A |
5543809 | Profera, Jr. | Aug 1996 | A |
5563614 | Alden et al. | Oct 1996 | A |
5563616 | Dempsey et al. | Oct 1996 | A |
5767789 | Afzali-Ardakani et al. | Jun 1998 | A |
5959594 | Wu et al. | Sep 1999 | A |
6175449 | Menzel et al. | Jan 2001 | B1 |
6218978 | Simpkin et al. | Apr 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030227417 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60349927 | Jan 2002 | US |