1. Field of the Invention
This invention generally relates to borehole telemetry. More particularly, the invention relates to an electrically insulating gap sub assembly used for electromagnetic telemetry between surface and subsurface locations or between multiple subsurface locations.
2. Description of the Related Art
During a typical drilling operation, a wellbore is formed by rotating a drill bit attached at an end of a drill string. To provide for a more efficient drilling operation, various techniques may be employed to evaluate subsurface formations, such as telemetry, as the wellbore is formed. Generally, telemetry is a system for converting the measurements recorded by a wireline or measurements-while-drilling (MWD) tool into a suitable form for transmission to the surface. In the case of wireline logging, the measurements are converted into electronic pulses or analog signals that are sent up the cable. In the case of MWD, they are usually converted into an amplitude or frequency-modulated pattern of mud pulses. Some MWD tools use wirelines run inside the drill pipe. Others use wireless telemetry in which signals are sent as electromagnetic waves through the Earth. Wireless telemetry is also used downhole to send signals from one part of a MWD tool to another. The most commonly used drilling telemetry methods can be arranged into several distinct groups such as wireline, mud pulse, or electromagnetic (EM).
In the first telemetry group, wireline communication involves one or more insulated cables that has a wide bandwidth and thus can communicate large amounts of data quickly, but the cable must be pulled out of the hole when adding additional sections of drill pipe. This is time consuming and reduces overall drilling efficiency. It also may not be possible to rotate the drill string with the wireline cable in the hole.
In the second telemetry group, mud pulse telemetry, the drilling fluid is utilized as the transmission medium. As the drilling fluid is circulated in the wellbore, the flow of the drilling fluid is repeatedly interrupted to generate a varying pressure wave in the drilling fluid as a function of the downhole measured data. A drawback of the mud pulse technique is that the data transmission rates are very slow. Transmission rates are limited by poor pulse resolution as pressure pulses attenuate along the borehole and by the velocity of sound within the drilling mud. Further, while mud pulse systems work well with incompressible drilling fluids such as a water-based or an oil-based mud, mud pulse systems do not work well with gasified fluids or gases typically used in underbalanced drilling.
In the third telemetry group, electromagnetic (EM) telemetry, relatively low frequency (4-12 Hz) electromagnetic waves are transmitted through the earth to the surface where the signal is amplified, filtered, and decoded. Communication may also be accomplished in the reverse direction.
In a typical EM operation, generating and receiving the electromagnetic waves downhole involves creating an electrical break between an upper section and a lower section of a drill string to form a large antenna. Thereafter, sections of this antenna are energized with opposite electrical polarity often using a modulated carrier wave that contains digital information. The resulting EM wave travels through the earth to the surface where a potential difference may be measured between a rig structure and a point on the surface of the earth at a predetermined distance away from the rig.
Typically, the electrical break in the drill string is accomplished by a device referred to as a gap sub assembly. Generally, the gap sub assembly must electrically insulate the upper and lower sections of the drill string and yet be structurally capable of carrying high torsional, tensile, compressive, and bending loads. The known gap sub assembly includes an external non-conductive section with composite coatings to isolate the upper and lower sections. However, these coatings generally lack sufficient abrasion resistance when in contact with the abrasive rock cuttings and require frequent maintenance or replacement. In addition, the composite coatings typically do not provide a significant beneficial effect to the bending or compressive strength of the design. Additionally, the known gap sub assembly is expensive to manufacture. Furthermore, the known gap sub assembly is bulky and cumbersome to employ during a drilling operation.
Therefore, a need exists for a gap sub assembly that is capable of withstanding the abrasive environment of a wellbore. Further, there is a need for a gap sub assembly that is capable of withstanding the bending and compressive loading that occurs during a drilling operation. Furthermore, there is a need for a gap sub assembly that is cost effective to manufacture. Further yet, a need exists for a gap sub assembly that is compact and may be easily employed during a drilling operation.
This invention overcomes the problem of creating an electrical break in the drill string in a compact and cost effective yet highly robust method.
In one embodiment, an apparatus for use with an EM telemetry system is provided, comprising: a housing; a mandrel; a dielectric material disposed between the housing and the mandrel; and a first non-conductive gap ring disposed between the housing and the mandrel.
Optionally, the mandrel is bonded to the housing with the dielectric material. The housing and the mandrel may be configured to remain axially coupled in the event of failure of the dielectric material. The housing and the mandrel section may be attached by a threaded connection so that the housing and the mandrel remain axially coupled in the event of failure of the dielectric material. The dielectric material may be disposed in the threaded connection. The apparatus may further comprise an anti-rotation member configured so that the housing and the mandrel remain rotationally coupled in the event of failure of the dielectric material. The anti-rotation member may comprise at least one non-conductive torque pin disposed between the housing and the mandrel. The first gap ring may be fabricated from a toughened ceramic material. The first gap ring may provide structural support in bending and compression. The first gap ring is may be preloaded in compression between the housing and the mandrel to provide a seal between the housing and the mandrel. The dielectric material may be epoxy.
Further, the mandrel may comprise a first section and a second section coupled by a threaded connection. The housing may comprise a first section and a second section coupled by a threaded connection. The first gap ring may be disposed between the second section of the housing and the second section of the mandrel. The apparatus may further comprise a second non-conductive gap ring disposed between the first section of the housing and the first section of the mandrel. The apparatus may further comprise a first seal assembly disposed between the second section of the housing and the first section of the mandrel. The first seal assembly may comprise a first sleeve made from a relatively high strength, high temperature plastic; and at least one elastomer sealing element disposed between the first sleeve and the second section of the housing and at least one elastomer sealing element disposed between the first sleeve and the first section of the mandrel. The apparatus may further comprise a second seal assembly similar to that of the first seal assembly. The apparatus may further comprise: a first compression ring disposed between the first gap ring and the mandrel and a second compression ring disposed between the first gap ring and the housing. The compression rings may be made from a relatively soft, strain-hardenable material.
In another embodiment, an apparatus for use with an EM telemetry system is provided, comprising: a housing; a mandrel; a dielectric material bonding the mandrel to the housing, wherein the apparatus is configured so that the housing and the mandrel remain coupled in the event of failure of the dielectric material.
In another embodiment, an apparatus for use with an EM telemetry system, comprising: a housing; a mandrel; means for electrically isolating the housing from the mandrel and for primarily coupling the housing to the mandrel; and means for secondarily coupling the housing to the mandrel in the event of failure of the primary coupling means.
In another embodiment, a method of receiving data from a wellbore, comprising: placing a gap sub assembly between an upper portion and a lower portion of a drill string, the gap sub assembly comprising: a housing; a mandrel; a dielectric material disposed between the housing and the mandrel; and a first non-conductive ring disposed between the housing and the mandrel; positioning the drill string and the gap sub assembly in the wellbore; energizing the upper portion and the lower portion of the drill string with opposite electrical polarity, thereby forming the electromagnetic wave; and measuring the electromagnetic wave at a predetermined point on the surface of the wellbore.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention generally provide a method and an apparatus for use in an EM telemetry system. For ease of explanation, the invention will be described generally in relation to drilling directional wells, but it should be understood, however, that the method and the apparatus are equally applicable in other telemetry applications. Furthermore, it should be noted that the principles of the present invention are applicable not only during drilling, but throughout the life of a wellbore such as logging, testing, completing, and producing the well.
In the embodiment illustrated, the electrical break in the drill string 60 is accomplished by a device referred to as the gap sub assembly 15. Generally, the gap sub assembly 15 is an electrical isolation joint disposed between the upper and lower sections 10, 20 of the drill string 60. Preferably, the gap sub assembly 15 is constructed and arranged to carry high torsional, tensile, compressive, and bending loads.
It has been determined that the transmission efficiency of EM telemetry system 100 can be improved by increasing the non-conductive length of the gap on the exterior and interior in the range of 2-3″ or more, compared with a very small gap, in the range of 1/32″. The improvement is especially pronounced when the gap sub assembly 15 is immersed in conductive drilling fluids, as is often the case. The reason for this is that as the gap length is increased, the electrical resistance of the fluid path between the sections 10, 20 increases, and more of the current flows through the formation and thus to the surface instead of through the fluid where it does not provide any transmission benefit.
The upper threaded member 102 and lower threaded member 101 serve as thread savers for the housing 103 and mandrel 104. For instance under normal operating conditions, the upper threaded member 102 and lower threaded member 101 remain torqued up to the housing 103 and mandrel 104 respectively. Thereafter, exposed threads 113 and 114 are then used to attach the drill string above and below the gap sub assembly 15. The sequence of mating and unmating of these threads is done frequently and causes wear which may require re-cutting the threads. Eventually when the upper threaded member 102 and the lower threaded member 101 become too short to further re-cut, they may easily be replaced without requiring the entire gap sub assembly 15 to be replaced. Alternatively, the housing 103 and the upper threaded member 102 may be formed as one-piece and the mandrel 104 and the lower threaded member 101 may also be formed as one-piece.
Additionally, if the dielectric material 109 adhesive bonds fail and/or the dielectric material 109 can no longer carry adequate compressive loads due to excessive temperature or fluid invasion, the metal on metal engagement of the threads 107 prevents the gap sub assembly 15 from physically separating. Therefore, the mandrel 104 will remain axially coupled to the housing 103 and may be successfully retrieved from the wellbore.
In the preferred embodiment, a primary external seal 110 is formed by torquing the lower threaded member 101 onto the mandrel 104 to compress the first gap ring 105 between the two halves of the gap sub assembly 15, thereby forming the primary external seal 110 on the faces of the first gap ring 105. The combination of high compressive stress, good surface finish, and low porosity in the first gap ring 105 produces a high pressure, high temperature seal that is compatible with the entire range of drilling fluids. In addition to the stress required between faces to seal under no-load conditions, a higher compressive stress is required to maintain face to face contact during bending and/or tension.
In an alternative embodiment, the primary external seal 110 may be formed by mechanically stretching the mandrel 104 by the use of a hydraulic cylinder (not shown) or other device. Thereafter, as the mandrel 104 is maintained in the stretched condition, the lower threaded member 101 can be threadingly advanced until it is in contact with the external gap ring 105, even though no significant torque has been applied. Upon releasing the stretch on the mandrel 104, the high compressive forces on the faces of the first gap ring 105 forms the primary external seal 110. In another alternative embodiment, the primary external seal 110 may be formed by cryogenically cooling the first gap ring 105 and subsequently mating the lower threaded member 101 thereto. As the first gap ring 105 warms up, it will expand creating the desired compressive forces to form the primary external seal 110.
The use of the first gap ring 105 in the gap sub assembly 15 of the present invention may provide several advantages. A first advantage is that it forms a structural element supporting the gap sub assembly 15 in bending and compression. A second advantage is that it provides a significant non-conductive external length which is virtually impervious to abrasion. A third advantage is that the first gap ring 105 is the primary external seal compatible with the full chemical and temperature range of drilling fluids.
As further shown on
As further shown in
During testing of an embodiment of the gap sub assembly 15, it was observed that when the preload was removed from the first gap ring 105 cracking resulted in the first gap ring 105. Since the cracks did not form until the preload was removed, operation of the first gap ring 105 is unaffected. However, the cracks would necessitate replacement of the gap ring 105 possibly every time the gap sub assembly 15 is dismantled. This is undesirable from a cost perspective since the preferred zirconia material is relatively expensive. It is believed that the cracking stems from surface imperfections in ends of the housing 103 and the lower threaded member 101 facing respective ends of the first gap ring 105. The relatively rough surface finish causes point loading between the first gap ring 105 and the housing 103 and lower threaded member 101.
To mitigate the point loading effect, each end of the housing 103 and the member 101 facing the first gap ring 105 would have to be machined to a relatively fine surface finish. Machining the required surface finish would be time consuming and expensive. However, addition of the compression rings 205A,B also mitigates the point loading effect. The preferred relatively soft material of the rings 205A,B conforms to the surface imperfections in the first gap ring 105 as the connection is torqued, thereby distributing the load over the entire respective surfaces of the first gap ring. The compression rings 205A,B will also preferably strain harden during torquing of the connection, thereby obtaining effects of increased strength and hardness which are beneficial to the service life of the compression rings. Therefore, compression rings 205A,B provide a simple and inexpensive fix to the cracking problem. Further, it is believed that the compression rings 205A,B may also minimize any torsional stress sustained by the first gap ring 105.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2151525 | Jun 1995 | CA | national |
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/491,569, filed Jul. 31, 2003. This application is a continuation-in-part of U.S. patent application Ser. No. 10/744,683, filed Dec. 23, 2003. U.S. patent application Ser. No. 10/744,683 has issued as U.S. Pat. No 7,093,680. U.S. patent application Ser. No. 10/744,683 is a continuation of U.S. patent application Ser. No. 10/161,310, filed Jun. 3, 2002. U.S. patent application Ser. No. 10/161,310 has issued as U.S. Pat. No. 6,672,383. U.S. patent application Ser. No. 10/161,310 is a divisional of U.S. patent application Ser. No. 09/777,090, filed on Feb. 5, 2001. U.S. patent application Ser. No. 09/777,090 has issued as U.S. Pat. No. 6,405,795. U.S. patent application Ser. No. 09/777,090 is a divisional of U.S. patent application Ser. No. 08/981,070, filed Dec. 10, 1997. U.S. patent application Ser. No. 08/981,070 has issued as U.S. Pat. No. 6,209,632. U.S. patent application Ser. No. 08/981,070 is the National Stage of International Application No. PCT/CA96/00407, filed Jun. 11, 1996. International Application No. PCT/CA96/00407claims benefit of Canadian Patent Application Serial No. 2,151,525, filed on Jun. 12, 1995.
Number | Name | Date | Kind |
---|---|---|---|
2000716 | Polk | May 1935 | A |
2096279 | Karcher | Oct 1937 | A |
2151525 | Pittman et al. | Mar 1939 | A |
2364957 | Douglas | Dec 1944 | A |
2388141 | Harrington | Oct 1945 | A |
2650067 | Martin | Aug 1953 | A |
2917704 | Arps | Dec 1959 | A |
2940787 | Goodner | Jun 1960 | A |
3831138 | Rammner | Aug 1974 | A |
3900827 | Lamel et al. | Aug 1975 | A |
3905010 | Fitzpatrick | Sep 1975 | A |
4015234 | Krebs | Mar 1977 | A |
4160970 | Nicolson | Jul 1979 | A |
4348672 | Givler | Sep 1982 | A |
4494072 | Jeter et al. | Jan 1985 | A |
4496174 | McDonald et al. | Jan 1985 | A |
4578675 | MacLeod | Mar 1986 | A |
4589187 | Stone et al. | May 1986 | A |
4625173 | Wisler et al. | Nov 1986 | A |
4674773 | Stone et al. | Jun 1987 | A |
4691203 | Rubin et al. | Sep 1987 | A |
4736204 | Davison | Apr 1988 | A |
4786086 | Guthrie et al. | Nov 1988 | A |
4790570 | De Gruijter | Dec 1988 | A |
4800385 | Yamazaki | Jan 1989 | A |
4861074 | Eastlund et al. | Aug 1989 | A |
4927186 | Zoboli | May 1990 | A |
4980682 | Klein et al. | Dec 1990 | A |
5130706 | Van Steenwyk | Jul 1992 | A |
5138313 | Barrington | Aug 1992 | A |
5163714 | Issenmann | Nov 1992 | A |
5184692 | Moriarty | Feb 1993 | A |
5251708 | Perry et al. | Oct 1993 | A |
5278550 | Rhein-Knudsen et al. | Jan 1994 | A |
5303773 | Czernichow et al. | Apr 1994 | A |
5394141 | Soulier | Feb 1995 | A |
5396232 | Mathieu et al. | Mar 1995 | A |
5448227 | Orban et al. | Sep 1995 | A |
5725061 | Van Steenwyk et al. | Mar 1998 | A |
5749605 | Hampton, III et al. | May 1998 | A |
5924499 | Birchak et al. | Jul 1999 | A |
6050353 | Logan et al. | Apr 2000 | A |
6098727 | Ringgenberg et al. | Aug 2000 | A |
6158532 | Logan et al. | Dec 2000 | A |
6209632 | Holbert et al. | Apr 2001 | B1 |
6223826 | Chau et al. | May 2001 | B1 |
6367323 | Camwell et al. | Apr 2002 | B1 |
6405795 | Holbert et al. | Jun 2002 | B2 |
6439324 | Ringgenberg et al. | Aug 2002 | B1 |
6572152 | Dopf et al. | Jun 2003 | B2 |
6657597 | Rodney et al. | Dec 2003 | B2 |
6672383 | Holbert et al. | Jan 2004 | B2 |
6801136 | Goodman et al. | Oct 2004 | B1 |
6926098 | Peter | Aug 2005 | B2 |
20020113432 | Dopf et al. | Aug 2002 | A1 |
20020189803 | Holbert et al. | Dec 2002 | A1 |
20040069574 | Rodney et al. | Apr 2004 | A1 |
20040134652 | Holbert | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
676449 | Dec 1963 | CA |
1217231 | Jan 1987 | CA |
1277027 | Nov 1990 | CA |
1323691 | Oct 1993 | CA |
2151525 | Jun 1995 | CA |
2174955 | Oct 1973 | FR |
2618912 | Feb 1989 | FR |
2618912 | Mar 1989 | FR |
1359445 | Jul 1974 | GB |
WO 8202754 | Aug 1982 | WO |
WO 9641931 | Dec 1996 | WO |
WO 9806924 | Feb 1998 | WO |
WO 0013349 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050068703 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60491569 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09777090 | Feb 2001 | US |
Child | 10161310 | US | |
Parent | 08981070 | US | |
Child | 09777090 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10161310 | Jun 2002 | US |
Child | 10744683 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10744683 | Dec 2003 | US |
Child | 10903909 | US |