The present invention relates to a locking system for a safety switch having an actuator, as specified in the preamble of claim 1.
Safety switches with a read head and an actuator, each having a first and/or second component set with electric and/or electronic structural elements which may be caused to interact without electric contact and as a result control the safety switch, have been disclosed in DE 197 11 588 A1, for example. Safety switches such as these may be used to monitor movable protective devices such as doors, covers, grates, and the like of machinery and equipment. As a rule the safety switch interrupts one or more electric circuits when the relevant protective device is transferred to a safer operating state, is switched off, for example, or switching on of the device is prevented.
The actuator generally is introduced in a channel formed by the read head. When assembled, the actuator in the read head may be mechanically locked and as a result the protective device may be kept locked. Locking in the state of the art is accomplished as a result of extension of a rod directly through an opening in the actuator or blocking of a control gear in the read head operating in conjunction with the actuator. In order for it to be possible to apply the locking forces required, 1000 N, for example, as a function of the application the locking system and accordingly the safety switch must be designed to be sufficiently rugged from the mechanical viewpoint.
As an alternative or in addition to the mechanical locking the locking may be effected by electromagnetic forces, which are, of course, heavily dependent on the distance between the electromagnet and the associated counterelement, and in particular decrease sharply with increase in distance. The fouling of the safety switch and of the locking system which occurs may impair provision of high locking forces and other aspects of operation in fouling environments such as in the vicinity of metal-cutting machine tools.
DE 199 53 898 A1 discloses an access protection device having a U-shaped holding magnet. A configuration having a rotatable U-shaped permanent magnet is described for the exemplary embodiment, a configuration such that a first reed contact detects the rotary position of the permanent magnet, that is, engagement or disengagement of the magnetic locking action, while a second reed contact detects the presence or absence of the counterelement, that is, whether the protective door is closed or not.
DE 198 40 620 C1 discloses a contact-free safety switch having a Hall sensor mounted on the read head and a permanent magnet mounted on the actuator. The Hall sensor monitors the closed position, the switching threshold of the Hall sensor being adjustable by means of a trimming resistor.
The object of the present invention is solution of the problem of further improvement in the locking systems of a safety switch, especially the problem of reliable monitoring of locking by electromagnetic forces.
The problem is solved by the locking system specified in claim 1. Particular forms of configuration are specified in the dependent claims.
In the case of a locking system of a safety switch having a read head and an actuator each having a first and/or second component set with electric and/or electronic structural elements which may be alternately engaged and disengaged without the use of electric contacts so that the safety switch may be controlled, the problem is solved in that the actuator on the read head may be locked by means of a switchable electromagnet operating in conjunction with a counterelement, and in that the locking may be controlled by means of a sensor element the output signal of which depends on the magnetic field which may be generated by the electromagnet.
None of the state-of-the-art publications disclose a sensor element which provides an analog output signal by which the intensity of the magnetic field of an electromagnet and accordingly the locking force generated may be monitored. In use of an electromagnet as claimed for the invention this locking force is adjustable, and continuously adjustable by means of suitable electric actuation. In contrast, only one switching state or one position is determined discretely and digitally by the known sensor elements in the state of the art so as to establish whether the permanent magnet has been rotated to the locking position or whether the protective door is closed. The adjustability of the locking force also permits automatic association, in particular under program control, of different operating conditions of the machine to be monitored with different locking forces for the respective protective mechanism.
Electric contact-free interaction of read head and actuator may be effected with all known processes of the state of the art, in the simplest case by damping of electromagnetic waves, especially those of an electromagnetic field. As an alternative, use may be made of a so-called transponder system in which identification signals are exchanged electrically, free of contact, between read head and actuator. In the state of the art the three-dimensional area of response of the interactive system is used only to a limited extent and a relatively precise orientation of read head and actuator toward each other in the assembled state is required.
The locking is not effected at all or at any rate is not effected exclusively by a bar which may be moved transversely to the direction of movement of the actuator, but rather by the action of an electromagnetic force on the counterelement. The electromagnet may be switched by the safety switch itself and/or an associated control mechanism and/or the machine associated with the safety switch. The level of the locking force may be adjusted, for example, as a function of the operating state of the associated machine. By preference the counterelement and/or the electromagnet is mounted so as to be pivotable relative to the base element. During locking the electromagnet and the actuator are positioned so close to each other that sufficiently high locking forces may be achieved. In addition, the first and/or second component set preferably is integrated with the respective counterelement, so that interaction of the component sets is reliably ensured even under adverse conditions, for example, even in the event of angular displacement of the protective mechanism.
In one particular embodiment the sensor element is mounted in the actuator. By preference the actuator furthermore has the base element, the counterelement, and the second component set; in particular, these elements form the actuator. As an alternative or in addition, the read head as well may have one or more sensor elements. It is conceivable, for example, that the damping of the magnetic field generated by the electromagnet could be measured directly in the read head.
Independently of the number and configuration of the one or more sensor elements, the safety switch may be controlled by direct or indirect coupling of the output signal of the sensor and by interaction of the first and second component sets. Direct coupling is effected, for example, when the first and/or second set may be operated only if the sensor element provides a suitable output signal. Indirect coupling is effected, for example, if the output signal of the first and/or second component set is received by superordinate control electronics and the output signal of the sensor element is also received independently of this circumstance. Linking of the two output signals then occurs in the superordinate control electronics, which, for example, determines if an operating state of the machine to be monitored exists for which the output signal of the sensor element is relevant.
In one preferred embodiment of the invention the sensor element may assume two switching states as a function of the magnetic field which may be generated by the electromagnet. By preference the second component set mounted in the actuator is controlled by the switching states of the sensor element. This yields the advantage that the actuator may be developed without external electric connections. All the electric or other connections required are preferably mounted within the actuator so as to be protected from disruptive influences of a mechanical or other nature from coming from the exterior. The sensor element may also be mounted directly on or in the second component set of the actuator or may be integrated into it. It is, of course, advantageous in many applications for the sensor element of the second component set to be positioned some distance away on the actuator. By preference at least one sensor element is mounted in an edge area of the actuator in order for it to be possible to determine not just one or in any event only one axial distance from the electromagnet but also displacement in a direction perpendicular to the direction of movement of the relative movement between electromagnet and actuator.
In one preferred embodiment of the invention a generator coil is mounted in the actuator for provision of electric energy for the second component set. This generator coil generally receives an electromagnetic signal from the first component set of the read head and from this signal generates the voltage required or the current required for operation of the electric and/or electronic components.
In one especially simple embodiment of the invention the sensor element is connected electrically in series to the generator coil. This makes it possible to switch on the power supply for the second component set in the actuator only if the sensor element detects a sufficiently high or sufficiently low magnetic field generated by the electromagnet.
If several sensor elements are mounted on the actuator and/or the read head, their output signals may be interconnected as desired to monitor the locking. Three-dimensional or in any event two-dimensional distribution of the several sensor elements in keeping with the respective requirements and geometric relationships, for example, on the mounting surface of the actuator in particular, is advantageous. The relative position of the actuator in relation to the electromagnet in the locked state may also be determined in this way.
The position of one or more of the sensor elements may be adjusted by individual or collective adjustment means. The adjustment may generally be made in all three spatial directions and/or in rotary directions. In many applications, however, the possibility of adjustment in the direction of the relative movement of actuator and electromagnet or at an angle of 90° to such movement is a consideration of importance.
In one particular embodiment the sensor element has a reed contact and/or a Hall element; in particular the sensor element may be in the form of a reed contact or a Hall element. A Hall element presents the advantage over a reed contact not only that one or more switching points may be assigned but also that an analog output signal relating to the intensity of the magnetic field generated by the electromagnet may be produced.
Other advantages, features, and details of the invention are presented in the dependent claims and the following description, in which several exemplary embodiments are described in detail with reference to the drawings. The features mentioned in the claims and in the description may be essential to the invention either individually or in any combination.
a a first exemplary embodiment of the second component, in which a generator coil and a transponder are mounted,
b a second exemplary embodiment of the second component in which the transponder is connected directly to the generator coil,
The electromagnet 7 has a more or less cylindrical housing which forms on its side facing the actuator 3 a more or less cylindrical and preferably planar mounting surface 8. The housing of the electromagnet 7 is in the form radial externally of an annular and preferably planar edge 9 which is separated from the first mounting surface 8 by an annular groove 28. The first mounting surface 8, the annular edge 9, and the front surface 6 preferably are positioned in one plane.
The first component set 10 is mounted so as to be stationary above the electromagnet 7 in the head housing 4, and in particular is detachably or non-detachably secured by a threaded connection of the head housing 4. The wiring between the first component set 10, the electromagnet 7, and the connection for the plug-and-socket connector 5 preferably is mounted inside the head housing 4. A cable clip 11 for securing the connecting lines for the plug-and-socket connector 5 is mounted on a side surface on the head housing 4. The preferably planar front surface or third mounting surface 23 (
The counterelement 12 forms a preferably planar second mounting surface 15 which may be brought into areal contact with the first mounting surface 8 of the read head 2 during the locking process. The preferably planar front surface or fourth mounting surface 24 (
The actuator 3 is secured, for example, on a protective mechanism by means of the base element 13 for a machine switchable by the safety switch. The counterelement 12 together with the second component set 14 may be pivoted relative to this protective device about the three spatial directions x, y, z shown in
In the embodiment illustrated the second component set 14 has no connecting lines, so that establishment of electric contact with the actuator 3 is not necessary. By preference energy is conducted to the second component set 14 in the actuator 3 by way of the first component set 10 mounted in the read head 2 for the purpose of reading out identification data stored in the second component set 14 and transmitting such data back to the first component set 10. In a simplified embodiment the second component set 14 may only damp, as desired, an alternating electromagnetic field generated by the first component set 10 and as a result announce to the first component set 10 and the read head 2 respectively the presence of the of the second component set 14 and accordingly the closed position of the protective mechanism.
In the exemplary embodiment illustrated a total of four sensor elements 31, 32, 33, 34 are mounted more or less centrally relative to the second mounting surface 15 and at the corners of an assumed isosceles triangle. Each of the sensor elements is embedded in or secured on a suitable disk, circular in the exemplary embodiment, of plastic or the like. This plastic disk has as adjusting means 30 an adjustment slot by means of which the position of the associated sensor element 31 may be adjusted in the direction of the z axis. The second sensor element 32 mounted in the center may be used to determine if a relevant magnetic field is at all present in the field surrounding the actuator 3. The first, third, and fourth sensor elements 31, 33, 34 located at the corners of the assumed isosceles triangle in addition make it possible to determine the position of the actuator 3, in particular that of the counterelement 12, relative to the magnetic field which may be present. The output signals of the sensor elements 31, 32, 33, 34 preferably are connected by use of the electric and/or electronic components in the second component set 14.
a illustrates a first exemplary embodiment of the second component set 14, in which embodiment a generator coil 35 and a transponder 36 are mounted. A reed contact 37 mounted outside the second component set 14 in the embodiment illustrated is connected electrically in series to the generator coil 35. In the event of approach of the reed contact 37 to the vicinity of the magnetic field generated by the electromagnet 7, the contact stud 42 of the reed contact 37 is deflected in the direction of actuation 43 and as a result the transponder 36 is connected electrically to the generator coil 35. In place of a make contact use may also be made of a break contact which short-circuits when the generator coil 35 is not actuated, thereby preventing exchange of signals between the first and second component sets 10, 14.
Both the second component set 14 and the reed contact 37 are mounted on or in the actuator so that movement of the reed contact 37 and accordingly of the actuator 3 is accompanied by approach of the second component set 14 to the first component set 10 mounted in the read head 2. A suitable transmitting coil in the first component set 10 sends an electromagnetic signal which is received in the generator coil 35 and is converted at least to some extent back to electric energy. By means of this electric energy a data signal stored in the transponder 36 is read out and transmitted back to the first component set 10 of the read head by means of the generator coil 35. However, this data signal may be read out only if the contact stud 42 has been deflected, such being the case only if the magnetic field generated by the electromagnet 7 is of an assigned strength such that, for example, locking to a sufficient extent is ensured.
b illustrates a second exemplary embodiment of the second component set 114 in which the transponder 136 is connected directly to the generator coil 135. Spaced a certain distance from the second component set 114 there is mounted as sensor element a Hall element 38, which is fed over the feed lines 44 from the transponder 136 and the output lines 45 of which are run back to the transponder 136 for evaluation.
The first sensor element 31 may be screwed into a threaded opening 41 in the counterelement, against the action of an energy storing element 40, in the exemplary embodiment a helical spring. Insertion is effected preferably by engagement of a tool into the adjusting slot 30, or optionally by use of a suitable coin. Establishment of electric contact with the electric sensor element 31 is for the sake of clarity of illustration not shown in
As a variation of the exemplary embodiment shown in
The adjusting means 30 may be actuated, above all in the direction of the z axis, by way of openings in the base element 13 and/or in the connecting element 19. The longitudinal axis of a reed contact 37 and/or the direction of switching of the latter may extend more or less in parallel with the z axis or enclose an angle more or less of 90° with this axis.
As an alternative or in addition, the first sensor element 31 in the actuator 3 may be in the form of a Hall element and measure the magnetic intensity present in the actuator 3 and respectively the associated magnetic induction, which also is a function of the distance d of the actuator 3 from the read head 2 and respectively from the electromagnet 7.
The magnetic field intensity measured by the other Hall element 39 and/or by the first sensor element 31 is a gauge of the locking force F acting between the read head 2 and the actuator 3, in the case of a rigidly mounted read head 2 acting in particular on the actuator 3 and in the direction of the read head 2. There may accordingly be assigned for the other Hall element 39 and/or the first sensor element 31 threshold values which when reached may signal the control mechanism of a machine not only that the protective mechanism is closed but also that there is present a locking force high enough to keep the protective mechanism reliably in the closed state. If the first sensor element 31 in the actuator 3 is used for this purpose, reaching of the assignable threshold value for the locking force F may be used to determine if an exchange of signals between the first and second component sets 10, 14 between actuator 3 and read head 2 is possible.
The value pair UHall/F generally determined with a prototype may be stored by means of electronic data storage in a reference table, or it may be found from the empirically determined values for the respective locking system 1. The measured values shown are based on a rated volume of the electromagnet 7. For this purpose a Hall voltage of approximately 2.87 volts was measured at a distance d=0.1 mm, this corresponding to a locking force of more than 900 N. At a distance d=1.1 mm a Hall voltage of approximately 2.50 volts was measured, this corresponding to a locking force of approximately 60 N.
Number | Date | Country | Kind |
---|---|---|---|
102 16 225.5 | Apr 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP03/03494 | 4/3/2003 | WO |