The present invention relates generally to a single bulb unit which emits electromagnetic energy. In certain embodiments, Applicant's bulb produces visible light. In other embodiments, Applicant's bulb emits electromagnetic radiation in one or more non-visible portions of the spectrum, such as infrared radiation and/or ultraviolet radiation.
Low voltage light bulbs typically comprise one or more incandescent elements in a glass envelope. At best, such incandescent bulbs have short lifetimes. In addition, such incandescent light bulbs are fragile, and if dropped have even shorter lifetimes. In addition, these incandescent light bulbs are inefficient at converting electric energy into visible light, i.e. photons. The brightness of an incandescent light bulb is generally ay function of the voltage applied. In flashlight applications, to get a brighter light one needs to use more batteries. However, a different low voltage incandescent light bulb is required for each discrete number of battery cells.
Alkaline batteries typically provide a voltage of about 1.5 volts per cell. An incandescent bulb that is designed to be powered by one cell will burn out if powered by two or more cells in series. On the other hand, a bulb designed to operate using 4.5 volts, provided for example from three alkaline cells in series, will not produce much light if powered by a single cell. When powered by two cells such a device will produce a light having a yellowish cast due to the lower temperature filament. When powered by a single cell the light emitted from such a device will be very dim. Therefore, in order to provide sufficient light output, a different light bulb is needed for each combination of battery cells.
The required multiplicity of light bulbs is further compounded with use of rechargeable batteries. Nickel Cadmium cells (NICAD, for example, typically have a voltage of about 1.2 volts per cell. A bulb designed for use with three alkaline cells, however, will not provide sufficient light if powered by three NICAD cells. Thus, a different light bulb is required for each combination of NICAD cells. Needless to say, a single bulb using incandescent technology that can be usefully operated over a large input voltage range would be highly desirable. Applicant's invention comprises such a light bulb.
It is known in the art that light emitting diodes, i.e. LEDs, can overcome some of the limitations inherent with incandescent light bulbs. However, the applied voltage must be high enough to overcome the characteristic voltage drop of the LED. Typically, a preferred method to operate an LED is to use a voltage higher than the turn on voltage of the LED, and to limit the current through the LED with a current limiting resistor. This requires using a voltage higher than that actually required by the LED. Such a method, however, prevents LEDs from being used as lighting elements with very low voltage systems. In addition to voltage-related problems, light emitting diodes can be destroyed by driving too much current through the device. Thus, use of an LED requires adjustment of both the voltage and current supplied to that LED.
Prior art LED light bulbs are designed for use with only one specific voltage. This specified voltage must necessarily exceed the voltage drop of the LED. In addition, these prior art devices include one or more LEDs in combination with one or more dropping resistor(s) to limit the current to the LED(s). Typically such prior art LED light bulbs require three battery cells in series to provide more than four volts to light a white LED.
The difficulties inherent with use of such prior art LED light bulbs are also compounded if rechargeable batteries are used. As noted above; Nickel Cadmium cells (NICAD) typically have a voltage of about 1.2 volts per cell. Using three such NICAD cells only provides about 3.6 volts, which is marginal for some white LEDs. Use of four cells, however, can result in premature LED device failure. Therefore, use of NICAD cells to power an LED light bulb requires four NICAD cells in combination with one or more current limiting resistors. Such a combination is necessarily designed for a specific voltage based upon the voltage drop of the LED and the current limiting resistor(s).
Thus, use of such prior art LED light bulbs is subject to constraints almost identical to use of incandescent bulbs. What is needed is an LED light bulb that can be used over a wide range of input voltages. Such a device can be used interchangeably with, for example, a flashlight using one, two, or three, batteries, where those batteries may be of the non-rechargeable or rechargeable type. Applicant's invention comprises such an LED light bulb.
Applicant's invention includes a bulb, comprising a housing; one or more power input terminals disposed on that housing; a voltage converter disposed within the housing, where the voltage converter is electrically connected to the one or more power input terminals; and one or more electromagnetic radiation emitting elements/devices disposed within the housing, where the one or more electromagnetic radiation emitting elements/devices are electrically connected to the voltage converter.
Applicants' invention further includes a method to emit electromagnetic radiation from a hand-carried device composing Applicant's bulb and one or more battery cells. Applicant's method supplies first DC power having a first voltage from the one or more battery cells to the bulb, converts within the bulb the first DC power to second DC power having a second voltage, supplies within the bulb the second DC power to one or more electromagnetic radiation emitting elements/devices, and emits electromagnetic radiation.
The invention will be better understood from a reading of the following detailed description taken in conjunction with the drawings in which like reference designators are used to designate like elements, and in which:
This invention is described in preferred embodiments in the following description with reference to the Figures, in which like numbers represent the same or similar elements. The invention will be described as embodied in an apparatus and method to provide a portable light-emitting assembly, i.e. a flash light. The following description of Applicant's apparatus and method is not meant, however, to limit Applicant's invention to portable devices or to devices emitting visible light, as the invention herein can be applied generally to electromagnetic radiation emitting devices.
Referring now to
In certain embodiments, electromagnetic energy emitting devices 120 comprise one or more pulsed laser diodes. Available peak output power ranges from 5 W to 175 W when operated a 160 ns pulse width. Significant increases in peak power are attainable at shorter pulse widths. Applicant's laser diode bulb is useful for use in, without limitation, laser range finding, speed determination, light detection and ranging (“LIDAR”), optical fusing, collision avoidance, high speed switching, and weapons simulation. In certain of these laser diode embodiments, electromagnetic energy emitting devices 120 emit radiation having wavelengths of about 805, 870, 905, 1550 nanometers, and combinations thereof.
In certain embodiments, Applicant's bulb includes one or more electromagnetic energy emitting devices 120 which emit radiation in the microwave frequency spectrum, i.e. frequencies from about 108 hertz to about 1011 hertz. In certain embodiments, Applicant's bulb includes one or more electromagnetic energy emitting devices 120 which emit radiation in the infrared frequency spectrum, i.e. frequencies from about 1011 hertz to about 1014 hertz. In certain embodiments, Applicant's bulb includes one or more electromagnetic energy emitting devices 120 which emit radiation in the ultraviolet frequency spectrum, i.e. frequencies from about 1015 to about 1016 hertz, and combinations thereof.
In certain embodiments, voltage converter assembly 110 converts DC power having a first voltage to DC power having a second voltage. In other embodiments, voltage converter assembly 110 converts AC power having a first voltage to DC power having a second voltage. In certain embodiments, the first voltage is greater than the second voltage. In certain embodiments, the AC input power has a voltage between about 12 volts and about 250 volts. In certain embodiments, the second voltage is greater than the first voltage, i.e. voltage converter assembly 110 comprises what is sometimes called a “boost” converter.
In certain embodiments, voltage converter assembly provides a regulated output. By “regulated output,” Applicant means the nominal output voltage changes less than about plus or minus 10 percent during operation as long as the input voltage is within a specified range. In certain embodiments, assembly 10 comprises a step-up/step-down converter which provides a regulated output of about 5V where the specified input voltage range is between about 0.8V and about 6V.
Referring now to
In step 1230, Applicant's light bulb transforms the first AC power into second AC power having the first frequency and a second voltage. In step 1240, Applicant's light bulb rectifies the second AC power into second DC power having the second frequency.
In certain embodiments, voltage converter 110 comprises one or more capacitors for transferring charge to boost the voltage. In certain embodiments, converter 110 uses inductors as energy storage elements to boost the voltage.
In certain embodiments, in step 1250 Applicant's light bulb regulates the second DC power provided by converter 110. Referring to
In certain embodiments, in step 1260 Applicant's light bulb filters the second DC power. In certain embodiments, Applicant's apparatus 110 further includes capacitor 240 to filter out a residual AC ripple component of the second DC power provided by converter 210. In certain embodiments; capacitor 240 comprises a low ESR Tantalum capacitor. In certain embodiments, capacitor 240 can be eliminated because the flicker of the lighting device will be well above human perception due to the high switching frequency of the converter 120.
In certain embodiments, in step 1270, Applicant's light bulb converts the second DC power to third DC power having a lower current. Referring again to
The value of the current limiting resistors is determined by several factors including the output voltage converter 110 (
An alternative embodiment of the invention uses current sources in place of the current limiting resistors. The current source or sources could also be integrated on a single substrate with the DC to DC converter in the optimal design. Likewise, the current sources could be separate components.
Inductor 220 is disposed on end portion 1420. Diode 230, converter 210, and capacitor 240 are disposed on the middle portion 1430. One or more LEDs 1450 are disposed on portion 1440. Substrate 1410 can be folded along fold lines 1425 and 1435, and then disposed with the base portion of Applicant's light bulb. In the embodiment of
Other packaging embodiments include using a wire lead frame. In these embodiments, the entire assembly is inserted in and soldered to, a metal base portion. That base portion is then encapsulated with a non-conductive filler. Such an encapsulant comprises, for example, an epoxy resin. In other embodiments, the components of
In certain embodiments, the base assembly comprises a single, molded, three-dimensional circuit substrate. In these embodiments, components 110, 150, 160, 170, 180, and optionally 1310, are disposed internally within that molded portion, and contacts 130 and 140 are disposed on the surface of that molded portion.
The performance of Applicant's flashlight comprising light bulb 110 differs dramatically from prior art hand-carried lighting devices. As those skilled in the art will appreciate, the voltage level provided by a series of batteries decreases over time. Referring now to
As a general matter, the voltage provided by one or more battery cells is inversely proportional to the duration of use.
Referring now to
Referring now to
Referring again to
Power input terminal 130 is attached to conductor 150. Conductor 150 is disposed within housing 190 and interconnects with power converter assembly 110. Power input terminal 140 is attached to conductor 160. Conductor 160 is disposed within housing 190 and interconnects with power converter assembly 110. As those skilled in the art will appreciate, the base portion may be configured as necessary to engage with any one of the plurality of well-known industry standard socket light bulb socket types.
In certain embodiments, the components disposed within and on housing 100 occupy the same physical form and volume as do standard incandescent light bulbs, and engage in standard sockets to fit into standard lighting fixtures such as flashlights and lanterns. The lamp base can be either a stamped metal that is used in “flashlight” bulbs today, such as an Edison screw style or a bayonet base, for example. In certain embodiments, power input terminals 130 and 140 are disposed on the outer surface of the base portion, and conductors 150 and 160 along with converter assembly 110 are internally disposed within the base portion.
In certain embodiments Applicant's light bulb apparatus includes a translucent or transparent cover for the lighting elements. In these embodiments, the cover portion surrounds and protects the one or more light emitting elements/devices. In certain embodiments, converter 110 may be disposed within the cover portion of Applicant's light bulb.
In certain embodiments, the cover portion diffuses the light emitted from the one or more light emitting elements/devices 120. Such a cover portion diffuses and combines the light emitted by the one or more light emitting elements/devices to provide a pleasing appearance. In the embodiments where the entire unit is constructed as a plastic injection molding the plastic cover is just a design element of the whole. The plastic cover can also be made to have a decorative appearance when the bulb will be decorative in function.
For example,
By “microprocessor,” Applicant means a device that provides DC power to one or more, but not continuously to each, individual LED comprising plurality of LEDs 120. In certain embodiments, microprocessor 1310 comprises a computer processor in combination with computer code, i.e. a combination of computer hardware and software to provide DC power to one or more, but not continuously to each, individual LED comprising plurality of LEDs 120. In certain embodiments, microprocessor 1310 comprises an application specific integrated circuit comprising “firmware” to provides DC power to one or more, but not continuously to each, individual LED comprising plurality of LEDs 120.
While the preferred embodiments of the present invention have been illustrated in detail, it should be apparent that modifications and adaptations to those embodiments may occur to one skilled in the art without departing from the scope of the present invention as set forth in the following claims.
This Application claims priority from a U.S. Provisional Application having Ser. No. 60/329,480 filed on Oct. 15, 2001, now abandoned and an International Application having Application No. PCT/US02/33234 filed on Oct. 15, 2002.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US02/33234 | 10/15/2002 | WO | 00 | 4/14/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/034458 | 4/24/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3953768 | Meredith et al. | Apr 1976 | A |
5646484 | Sharma et al. | Jul 1997 | A |
6147457 | Lohn et al. | Nov 2000 | A |
6296367 | Parsons et al. | Oct 2001 | B1 |
6791283 | Bowman et al. | Sep 2004 | B2 |
20020047645 | Miyagawa | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040190291 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60329480 | Oct 2001 | US |