This application relates generally to systems and methods for controlling diffraction of electromagnetic waves from metal edges and corners.
Antennas are often installed on conducting surfaces that are usually called ground planes. In many applications the ground plane is finite and is often terminated by an edge in the form of a sharp bend or corner. In the limiting case where the included angle of the bend goes to zero, there is a knife edge or half-plane. A radiating antenna will usually excite TM (transverse magnetic relative to the plane of incidence) mode waves which will travel along the ground plane with the Electric field (E field) normal to the surface until an edge reached. Then the TM wave will diffract, resulting in electromagnetic power being scattered into shadow regions, such as below the antenna ground plane. Such radiation into the shadow region is known as a backlobe. Edge diffraction may also result in increased side lobe levels (SLL) for directive antennas, when compared with a case where the ground plane is substantially infinite in planar size.
Edge diffraction is also responsible for a certain amount of spill-over loss in feed antennas (horns or patch arrays) for reflector, lens, or other quasi-optical antenna systems.
One means of suppressing edge diffraction for half-planes is to use a tapered periodic surface (TPS). This is a class of patterned, quasi-periodic, conductive surface where the period changes with distance from the edge such that the surface impedance gradually transforms from the essentially a zero surface impedance of a good ground plane to an infinite surface impedance beyond the edge. (TPS are described by Munk in section 9.6, Finite Antenna Arrays and FSS, 2003, John Wiley and Sons. Also, see U.S. Pat. No. 5,606,335 by Errol K. English et al.) A TPS generally requires a dedicated area along the edge whose width is a minimum of two or more wavelengths. Many antennas reside on very small ground planes where there is not enough space to use a TPS. A TPS can be used for a half-plane and not, for example, on a conducting wedge of non-zero included angle.
Resistive cards (R-card) have sometimes been used at edges of conductive ground planes to mitigate diffraction. However, the R-card material must be located at least one half of a free-space wavelength away from the edge of the antenna to avoid degradation of antenna radiation efficiency. Furthermore, R-card treatments must be augmented with volumetric absorbers (so-called radar absorbing material) in the case where the ground plane edge is not a half-plane but a corner with non-zero dihedral angle.
Magnetically-loaded radar absorbing material (MAGRAM) has been used at edges to suppress edge diffraction. However, this material is also RF lossy as it is composed of an iron or ferrite loaded insulator such as rubber or silicone. It is relatively heavy, and it cannot be used in the near field of an antenna without degrading the antenna radiation efficiency.
There exist certain situations where the enhancement of the diffraction coefficient is needed to improve the electromagnetic coupling around a corner. For instance, this may be desirable to obtain a more omni-directional antenna pattern for a communication antenna mounted on the side of a building. None of the above methods (TPS, R-card, or MAGRAM) will enhance the diffraction coefficient at an edge.
Herein, a method and apparatus either to suppress or enhance the scattering of electromagnetic waves from edges formed by conductive wedges of arbitrary dihedral angle is disclosed.
An apparatus is disclosed, including an electrically conductive structure having an edge; and, a reactive region disposed substantially adjacent to the edge. The reactive region produces a lower relative magnetic permeability in a first frequency band above a design frequency, and a higher relative permeability in a second frequency band below a design frequency. In an aspect, an antenna may be disposed on the electrically conductive structure.
In an aspect, an apparatus may include an electrically conductive wedge having two substantially planar surfaces having an included dihedral angle, and a reactive edge treatment of a self-resonant structure (SRS) disposed on at least one of the surfaces of the wedge between a radiating structure and an edge of the wedge.
In another aspect, an antenna system may include a conductive ground plane, an antenna mounted on the ground plane; and a reactive edge treatment which may be an array of capacitively-loaded loops. The loops may be oriented such that a loop normal axis is parallel to an edge of the ground plane.
A method of suppressing (enhancing) hard polarization electromagnetic diffraction from an edge includes the steps of: providing an array of electrically-small loops having a self-resonant frequency; disposing the loops along the edge of the wedge such that an axis normal to a plane of a loop of the array of loops is parallel to the edge; selecting the self-resonant frequency of the array of loops to be below (above) the frequency range where the suppression (enhancement) is desired; and, positioning the array of loops to be less than one free-space wavelength from the edge at the self-resonant frequency.
Reference will now be made in detail to several examples; however, it will be understood that the claimed invention is not limited to such examples. In the following description, numerous specific details are set forth in the examples in order to provide a thorough understanding of the subject matter of the claims which, however, may be practiced without some or all of these specific details. In other instances, well known process operations or structures have not been described in detail in order not to unnecessarily obscure the description.
When describing a particular example, the example may include a particular feature, structure, or characteristic, but every example may not necessarily include the particular feature, structure or characteristic. This should not be taken as a suggestion or implication that the features, structure or characteristics of two or more examples should not or could not be combined, except when such a combination is explicitly excluded. When a particular feature, structure, or characteristic is described in connection with an example, a person skilled in the art may give effect to such feature, structure or characteristic in connection with other examples, whether or not explicitly described.
Controlling diffraction at ground plane edges is useful for general antenna pattern control; for example, sidelobe level reduction and backlobe level reduction. Suppression of edge diffraction may also improve the radiation efficiency of body-worn antennas whose ground plane is placed in close proximity (fraction of a free-space wavelength) to living tissue
Controlling edge diffraction may also help to isolate co-situated antennas. Often two or more antennas will be mounted on the same conductive body, for example on ships, antenna towers, or vehicles where space is limited. Even if there is no line-of-sight between antennas separated on a ground plane edge, diffraction may allow some amount of electromagnetic coupling. Similarly, cross-polarized antennas that would be minimally coupled on an infinite ground plane may couple to each other through edge diffraction on a finite ground plane, since the scattering from the ground plane edge may de-polarize the incident signal. Suppression of edge diffraction may lower mutual coupling between co-situated antennas, improving system isolation, or reducing the electromagnetic interference (EMI).
Consider the two antennas radiating on finite ground planes as shown in
A substantially linear array of electrically-small, capacitively-loaded loops may be disposed close to the edge of the wedge. The loops may be substantially planar, and may be oriented such that their axes are essentially parallel to the edge. Hence, the plane of the loops is approximately perpendicular to the faces of the wedge. The loops are oriented so as to couple with the incident magnetic field of the TM (to the plane of incidence field) mode, also known in the literature as the of TEz (transverse electric to z) polarization, where the z axis is parallel to the edge. This polarization is also known as the “hard polarization.” The loops may be in electrical contact with a face of the conductive wedge. Alternatively, the loops may not be in electrical contact with the wedge.
The edge treatment is termed a reactive edge treatment because the capacitively-loaded loops are resonant structures that store electromagnetic energy without being intentionally lossy. The array of resonant loops may have a well defined self-resonant frequency (SRF) determined by the loop dimensions, proximity to its neighboring loops, proximity to the edge, and the value of lumped constant series capacitance.
The loop SRF may be reduced further by including a lumped constant series loading inductor in the loop circuit. The hard diffraction coefficient may be enhanced over a band of frequencies whose upper frequency limit is the loop SRF. The diffraction coefficient may also be suppressed over a band of frequencies whose lower frequency limit is the loop SRF.
In an aspect, the capacitively-loaded loops may be essentially identical and uniformly spaced so as to create a one dimensional periodic structure whose periodic axis is disposed parallel to the edge of the wedge.
In another aspect, where λ0 is the free-space wavelength at the loop SRF, the loops are spaced apart λ0/8 or less. The loops may have physical dimensions of side length or diameter that is λ0/8 or smaller. In sill another aspect, the distance between the edge of the wedge and the center of the loops may be less than λ0/2. The reactive edge treatment may be electrically small and may be used for edges where the available area is limited.
A face of the conductive wedge may contain more than one linear array of capacitively-loaded loops. Arrays of loops may be disposed on one or both faces of the conductive wedge; a loop may be electrically connected to both faces of the conductive wedge.
In another aspect, the multiple arrays of loops, if periodic, may have dissimilar periods.
The included angle of the conductive wedge may be reduced to zero to yield a half-plane structure. The half-plane may serve as a design model for a conductive layer in a printed wiring board where the edge of the half-plane is an edge of a finite-dimension metal layer of the printed circuit board. The conductive loops may be surface mounted wires or thru-hole mounted wires attached to printed wiring boards. The capacitive loads may be discrete capacitors of surface mount technology or thru-hole mount technology. Alternatively, the capacitive loads may be realized with printed patches or printed coplanar inter-digital capacitors. In another alternative, the capacitive loads may be electronically variable so as to implement a tunable reactive edge treatment where the SRF, or the frequency of operation, may be rapidly adjusted.
The loops may be disposed at discrete locations but the capacitive loads may distributed along an axis that is parallel to the edge, and the capacitive loads may have the form of inter-digital capacitors or continuously overlapping traces.
One will appreciate that the term loop as used herein may include the conductor and any discrete or distributed inductive or capacitive loading, including mutual coupling between loops so as to provide a self resonant circuit (SRC). The loading may be introduced at any location in the loop that is convenient for manufacturability, and may be at one of the ends thereof that connect to a surface of the conductive wedge. Where the term loop is used, the loop element is considered to include the loading elements, and the connection of the loop to the conductive surface may be made through one or more loading elements.
The loops may have the shapes of a partial circle, a “U”, a hairpin, or the like depending on the specific design, and a portion of the electromagnetic aspect of the loop may be provided by a electromagnetic image formed with respect to the conductive surface.
The descriptions herein are easier to understand as presented for the case of transmission of electromagnetic energy. However, based on the principle of electromagnetic reciprocity, the apparatus and methods described herein are equally applicable to the reception of electromagnetic energy, and the radiation pattern computed for the transmitting case may be used for the receiving case as well.
The reactive edge treatment may be built into a printed circuit board that also contains one or more printed antenna elements and used to suppress side lobe levels and back lobe levels.
An array of capacitively loaded conductive loops may be in electrical contact with the surfaces of the wedge 210. An array of loops 206a may be disposed essentially parallel to the edge 202, and the axes of the loops are substantially parallel to the edge 202 so as to permit coupling with the incident magnetic field Hinc. For example, the array of capacitively loaded loops 206a may be a periodic array of uniformly spaced loops with period P1 defining their separation distance, where all loops may have the same value of loading capacitance Ca. Alternatively, the array of loops 206a may not be identical, but the individual loop resonant frequencies may be substantially the same. For instance, the loop areas and values of loading capacitors Ca may differ, but the product of self inductance times the load capacitance of each loop may be substantially the same. Where the term substantially is used, a variation of approximately plus or minus 10 percent from a nominal value would be understood.
The capacitors 212 that load the loops 206a are represented schematically in
The loops are electrically small. That is, the largest loop dimension may be of the order of λ0/8 or smaller where λ0 is the free space wavelength at the loop SRF. Also, the distance between adjacent loops may also be of the order of λ0/8 or smaller. In another aspect, the linear arrays of loops may be positioned within λ0/2 distance from the edge 202.
a) shows an embodiment having multiple rows of capacitively-loaded loops on face 300 or 301 of the conductive wedge 310. Each row of loops may be tuned so that a self-resonant frequency (SRF) may be a unique frequency. This configuration may provide a multi-band response for suppression of the diffraction coefficient. In an example, the row of loops closest to the edge may have the highest SRF. (see curve 1315 of
In another aspect, the row of loops farthest from the edge has the largest loop area, a wider spacing between loops, and a lower SRF.
b) shows an embodiment where loops 306c and 306d, of different sizes, are nested such that the volume occupied by the smaller loops is essentially enclosed by the volume occupied by the larger loops.
c) shows an embodiment where capacitively-loaded loops are disposed at the edge such that each end of a conductive loop 306e is electrically connected to an opposite face of the wedge.
d) shows an embodiment where the capacitively-loaded loops are disposed away from either face of the wedge, and each loop is electrically connected by wires 307 to a face of the wedge. In another embodiment, the electrical connections 307 are absent and that the loops may be electrically isolated from the conductive wedge.
The operation of the capacitively-loaded loops is such that, for frequencies below their self-resonant frequency (SRF), the loops effectively increase the magnetic permeability of the region occupied by the array of loops. Such enhancement of permeability occurs over a range of frequencies below the SRF of the loop array, and may enhance the hard diffraction coefficient associated with the edge 202. Thus, scattered electromagnetic fields in the shadow region may be increased in magnitude relative the case of the same wedge 210 without the reactive edge treatment of the loop array.
Conversely, for frequencies above the SRF of the loop array, the effective permeability of the region occupied by the loops decreases below unity and may become negative. This decrease in permeability may occur over a broader bandwidth than the enhancement described above, and it may suppress the hard diffraction coefficient associated with the edge. Thus, for frequencies higher that the SRF, the scattered electromagnetic fields Es and Hs, in the shadow region may be decreased in magnitude relative the case of the same wedge 210 without the reactive edge treatment of the loop array.
Thus, by positioning the SRF of a reactive edge treatment above or below the operating frequency of an antenna, the scattering of electromagnetic energy from an edge of a finite dimensioned structure may be increased or decreased, respectively.
The electromagnetic performance of the structures may be understood by numerical simulation using a finite difference time domain (FDTD) algorithm.
a) shows the geometry for the baseline workspace where no reactive edge treatment is present.
Another set of numerical simulations was performed using a transmission line matrix (TLM) method code known as Microstripes™ version 7.1 (available from Flomerics, Southborough, Mass.). The workspace used in these simulations is shown in
In
The loading capacitance for the loops may be provided by a capacitor that achieves the desired SRF. For instance,
Parallel-plate capacitance tuning is a tuning mechanism for Split Ring Resonators and such structures as well as other so-called Artificial Magnetic Molecules (AMM) could also be used as components of this edge diffraction system. Such artificial magnetic molecules are an example of metamaterials. The array of loops as described herein may also be considered a metamaterial with engineered effective anisotropic dispersive permeability.
The arrays of resonant loops need not be disposed external to the printed wiring board.
Reactive edge treatments in the form of capacitively-loaded loops may be realized using any printed-wiring board technology including organic laminates, plastic laminates, ceramic substrates such as low temperature co-fired ceramics (LTCC), glass substrates, alumina, semiconductor substrates such as Si or GaAs, and the like.
The numerical examples shown above resonate near about 4 GHz, but that SRF may be lowered as far as desired for a particular application by increasing the loop dimensions and/or the load capacitance values. Conversely, the SRF may be increased into the millimeter wave bands and beyond by reducing dimensions and component values. The component values may be achieved by either distributed or lumped circuit elements. The resonant circuit may be comprised of both distributed and lumped circuit elements. Where a loop is described, it should be understood to comprise at least an inductive value and a capacitive value to form a resonant circuit. The term “loaded loop” is sometimes used to emphasize that the structure has both inductance and capacitance and achieves a self resonance, although the resonant frequency may be modified by the mutual impedance of adjacent loops or other components. The loading may include capacitors such as SMT chip capacitors, multi-turn inductive coils and the like.
Reducing the operational frequency of the loop reactive edge treatments to frequencies such as the HF band (3 MHz to 30 MHz) or the VHF bands (30 MHz to 300 MHz) requires a substantial increase in the LC product of the loaded loops. One means of achieving increased loop inductance is to add magnetically permeable material to the loops. Alternatively, the self inductance of individual loaded loops may be increased by placing a lumped discrete inductor in series with the loop. This may be achieved using SMT components on a printed wiring board implementation, or by fabricating a printed wiring board with meanderline inductors or spiral inductors as part of the interconnecting traces that form the loops. The loop portion of the inductive loading element may also be a multi-turn coil.
The loop reactive edge treatment may be used for antenna pattern control, such as sidelobe level reduction and backlobe level reduction; for improvement of antenna efficiency for body-worn antennas; for antenna pattern shaping for improved efficiency of feed antennas, mitigation of antenna mutual coupling between neighboring antennas; for suppression of electromagnetic interference (EMI), and the like. System applications for this reactive edge treatment may include all types of commercial and military command, control, and communication systems using antennas, such as handheld and portable RFID readers, wireless access points, MIMO antenna systems in high data rate mobile platforms, radar systems such as air traffic control, automotive, air-to air, and the like, and point-to-point terrestrial microwave links using reflector antennas.
The above examples generally describe antennas where of loaded loop edge treatments are used and where the treatments are found in an external environment. However, the approach may be also be used for internal applications where EMI suppression is desired. In an aspect, multiple printed circuit boards may be stacked inside a metal enclosure such as in a blade server. Undesired coupling between circuits on different boards, or blades, may be reduced by using loaded loop reactive edge treatment at the edges of one or more printed circuit boards.
The steps for designing a reactive edge treatment for enhancement (suppression) of edge diffraction include: selecting an appropriate physical size and shape for the electrically-small loops at a desired operating frequency: the loop shapes may be any polygonal shape, and in the limit, curved such as circular or semi-circular, or the like; disposing the locations of the loops along the edge of a conductive wedge such that the normal axes of the loops are substantially parallel to the edge; selecting the self-resonant frequency of the array of loops to coincide with the upper (lower) edge of the frequency range where enhancement (suppression) is desired. Determining the position of the array of loops so that the loops are disposed less than about one free-space wavelength from the edge of the wedge at the loop self-resonant frequency. More than one row of capacitively-loaded loops may be used near the edge to achieve a multi-band response, as shown in
In an aspect, different types of discrete capacitors and discrete inductors may be used in the embodiments of the loaded loops. The loops may be formed using square wire as opposed to round wire. The individual loops may be traces on printed wiring boards where the normals to the boards are oriented parallel to the edge. The patch layers may contain patterns more elaborate than simple rectangular patches, such as circular, polygonal, or even inter-digital patches. The ratios of dimensions shown in the figures are merely for illustrative purposes and do not serve to limit the physical appearance of any component. Furthermore, the realizations of the capacitively-loaded loop embodiments may involve the use of additional layers such as solder masks and metal platings in printed wiring boards to make a manufacturable product. The effect of these additional layers may be viewed as a perturbation to the coupling performance predicted by the above numerical methods.
Although only a few exemplary embodiments of this invention have been described in detail above, one will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
This application claims the benefit of U.S. Provisional application No. 60/872,082, entitled “Reactive Edge Treatment,” filed on Nov. 30, 2006, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60872082 | Nov 2006 | US |