This application claims priority to Taiwanese Patent Application No. 108102131, filed on Jan. 19, 2019.
The disclosure relates to a relay, and more particularly to an electromagnetic relay and a method of making the same.
Referring to
However, because the movable terminal member 14 is composed of a plate body 141 and a contact 142 attached to the plate body 141, and the plate body 141 is made of a single piece having a uniform thickness and including a spring plate 143 and a leg 144, in order to maintain the resiliency of the movable terminal member 14, the thickness of the plate body 141 cannot be thickened. Therefore, a permissible current of the electromagnetic relay 100 is limited by the thickness of the movable terminal member 14 and cannot be increased.
Therefore, an object of the present disclosure is to provide an electromagnetic relay that can increase a permissible current.
Accordingly, an electromagnetic relay of this disclosure includes a base, an electromagnet unit, an armature unit, a movable terminal unit and a stationary terminal member.
The electromagnet unit includes an electromagnet disposed on the base. The armature unit is movably connected to the electromagnet, and includes a magnetically attractive member magnetically attractable by the electromagnet. The movable terminal unit is mounted on the armature unit, and includes a first terminal member and a first contact disposed on the first terminal member. The first terminal member is a two-piece structure composed of a spring plate, and a first leg fixedly joined to the spring plate and extending through the base. The spring plate has an operating portion connected to the armature unit, a bent portion bent from the operating portion toward the electromagnet, and a connection portion bent from the bent portion and fixed to the first leg. The operating portion and the bent portion form therebetween a first included angle ranging from 75 degrees to 85 degrees.
The bent portion and the connection portion form therebetween a second included angle ranging from 80 degrees to 95 degrees. The first leg has a thickness greater than a thickness of the spring plate. A ratio of the thickness of the first leg to the thickness of the spring plate ranges from 2 to 4. The stationary terminal member is mounted on the base and partly extends through the base. The stationary terminal member has a second contact facing and contactable with the first contact.
When the electromagnet is energized and drives the armature unit to push the spring plate, the spring plate resiliently moves toward the stationary terminal member, and the first contact contacts the second contact. When the electromagnet is de-energized, the first contact moves away from the second contact.
Another object of this disclosure is to provide a method of making the electromagnetic relay that can increase a permissible current.
Accordingly, a method of making the electromagnetic relay of this disclosure includes the step of preparing a mold assembly that includes a mold, and a punch movable relative to the mold, the punch having at least one stamping head; preparing and positioning the first leg on the mold; preparing the spring plate having the connection portion; disposing the spring plate on the mold in such a manner that the connection portion of the spring plate is stacked on the first leg; driving the punch to move the stamping head toward the mold and to stamp the spring plate against the first leg, thereby joining the spring plate to the first leg to form the first terminal member; attaching the first contact to the first terminal member for forming a movable terminal unit; preparing the base, the electromagnet, the armature unit and the stationary terminal member; and assembling together the base, the electromagnet, the armature unit, the first terminal unit and a stationary terminal member.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:
Referring to
The electromagnet unit 3 includes an electromagnet disposed on the base 2 for generating an electromagnetic force when energized.
The armature unit 4 is movably connected to the electromagnet 31, and includes a magnetically attractive member 41, a push member 42 and a resilient member 43. The magnetically attractive member 41 is magnetically attractable by the electromagnet 31, and has an insert portion 411. The push member 42 is connected to the magnetically attractive member 41 and is spaced apart from the electromagnet 31. The resilient member 43 is resiliently disposed on the magnetically attractive member 41 and extends through the base 2. The push member 42 has an insert slot 421 provided on one side thereof for insertion of the insert portion 411 therein, and two spaced-apart positioning studs 423 protruding from the other side thereof and opposite to the insert slot 421. The resilient member 43 is a metal elastic sheet that biases the magnetically attractive member 41 to move away from the electromagnet 31.
Referring to
The first leg 512 has a joining portion 516, and a leg portion 517 that extends downwardly from one end of the joining portion 516 and that is exposed from the base 2. The joining portion 516 has an engaging protrusion 518 formed into a rivet to be fixedly joined to the engaging hole 5150 of the connection portion 515, and a recess 519 that is formed in aback surface thereof opposite to the engaging protrusion 518 and that is aligned with the engaging protrusion 518 along a line perpendicular to the back surface. The number of each of the engaging protrusion 518 and the recess 519 in this embodiment is one, but may be two, three or more than three in other embodiment. As long as the number of the protrusion 518 corresponds with the number of the engaging hole 5150 and may be riveted thereto, any number thereof is acceptable. The first leg 512 has a thickness (t1) greater than a thickness (t2) of the spring plate 511. The thickness (tl) of the first leg 512 ranges from 0.3 mm to 0.5 mm. The thickness (t2) of the spring plate 511 ranges from 0.1 mm to 0.15 mm. A ratio of the thickness (tl) of the first leg 512 to the thickness (t2) of the spring plate 511 ranges from 2 to 4. In this embodiment, the ratio of the thickness (t1) of the first leg 512 to the thickness (t2) of the spring plate 511 is 3. Because the thickness (t1) of the first leg 512 is thicker than that of the leg 144 of the plate body 141 (see
The stationary terminal member 6 is mounted on the base 2, is proximate to the movable terminal unit 5, and partly extends through the base 2. The stationary terminal member 6 has a second contact 62 facing and contactable with the first contact 52 to be in electrical conduction with each other.
Referring to
Because the first terminal member 51 is composed of the spring plate 511 and the first leg 512 which are joined to form a two-piece structure, the thickness of the first leg 512 can be thickened without varying the thickness (t2) of the spring plate 511. Through this, the spring plate 511 can have a good elasticity and the permissible current can be increased. Further, the first included angle (θ1) is adjustable to obtain a desired elasticity, thereby enhancing the sensitivity of the electromagnetic relay of this disclosure.
Referring to
In step 91, a mold assembly 7 is prepared. The mold assembly 7 includes a mold 71, and a punch 72 movable relative to the mold 71. The mold 71 includes two positioning bosses 711 and a step portion 712 spaced apart from the positioning bosses 711. The step portion 712 has a height along a moving direction of the punch 72, which is greater than that of the positioning bosses 711. The punch 72 has a frusto-conical base 721 and two stamping heads 722. The frusto-conical base 721 has a tapered end 720 extending toward the mold 71. The tapered end 720 has two lateral flat portions 723 facing the mold 71, a middle region 725 which protrudes between the lateral flat portions 723 in a direction toward the mold 71 and which has a middle flat end face 7251 facing the mold 71, and two slope surfaces 724 sloping up respectively from the lateral flat portions 723 to the middle flat end face 7251. The stamping heads 722 extend downwardly from the middle flat end face 7251 and are spaced apart from each other.
In step 92, the first leg 512 having two engaging protrusions 518 and two recesses 519 formed in the back surface thereof opposite to the engaging protrusions 518, as shown in
In step 93, the spring plate 511 having two engaging holes 5150 and the connection portion 515 is prepared. The spring plate 511 is made by stamping a metal sheet (not shown).
In step 94, the spring plate 511 is disposed on the mold 71 such that the operation portion 513 thereof is supported by the step portion 712, and the engaging holes 5150 thereof respectively receive the engaging protrusions 518 of the first leg 512. That is, the connection portion 515 of the spring plate 511 is stacked on the first leg 512.
In step 95, the punch 72 is driven to move the stamping heads 722 toward the mold 71, as shown in
Specifically, the step of driving the punch to move the stamping heads 722 toward the mold 71 includes stamping the engaging protrusions 518 to form each engaging protrusion 518 into a rivet so that the spring plate 511 is riveted to the first leg 512. By virtue of the frusto-conical base 721 having the lateral flat portions 723 and the slope surfaces 724, the first and second included angles (θ1, θ2) of the spring plate 511 are prevented from being damaged during the stamping process.
In step 96, the first contact 52 is attached to the first terminal member 51 to form the movable terminal unit 5.
In step 97, the base 2, the electromagnet 31, the armature unit 4 and the stationary terminal member 6 are prepared.
In step 98, the base 2, the electromagnet 31, the armature unit 4, the movable terminal unit 5 and the stationary terminal member 6 are assembled together to form the electromagnetic relay of this disclosure.
Notably, the method of making the electromagnetic relay of this disclosure involves riveting the spring plate 511 and the first leg 512 to form the first terminal member 51 having a two-piece structure. In other embodiment, the spring plate 511 and the first leg 512 may be joined together by other joining methods, such as welding or soldering.
In sum, since the electromagnetic relay made from the method of this disclosure has the first terminal member 51 with a two-piece structure, by only increasing the thickness (tl) of the first leg 512, the permissible current of the electromagnetic relay of this disclosure can be increased, and the resiliency of the spring plate 511 can be maintained.
While the disclosure has been described in connection with what is considered the exemplary embodiment, it is understood that this disclosure is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
108102131 | Jan 2019 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2504912 | Wibell | Apr 1950 | A |
20080238591 | Takano | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
476084 | Feb 2002 | TW |
Entry |
---|
Aug. 6, 2019—(TW) Search Report of TW Patent Application No. 108102131. |
Number | Date | Country | |
---|---|---|---|
20200234901 A1 | Jul 2020 | US |