This application claims priority of Taiwanese Application No. 103111790, filed on Mar. 28, 2014.
The invention relates to an electromagnetic relay assembly, and more particularly to an electromagnetic relay assembly operable to be mechanically positioned between a circuit making position and a circuit breaking position.
A relay in general is an electrically operated switch capable of using a relatively small amount of electrical current to control an electronic device operated under a relatively large electrical current. As shown in
In order to alleviate the aforesaid drawback, a conventional magnetic latching relay is proposed in Chinese Patent No. CN203038857U. The conventional magnetic latching relay includes a permanent magnet to attract and position an armature at a circuit making position. However, since the armature is positioned only by magnetic attraction of the permanent magnet, the armature may be displaced, arising in safety concerns due to undesired or unavoidable vibration of the relay.
Therefore, an object of the present invention is to provide an electromagnetic relay assembly that may alleviate at least one of the aforesaid drawbacks of the prior art.
According to the present invention, an electromagnetic relay assembly includes a housing, an electromagnetic unit, a switch assembly and a switch control unit.
The electromagnetic unit is disposed in the housing, and includes a magnetic spool, a coil wound on the magnetic spool, and an armature pivotally disposed on the magnetic spool.
The switch assembly includes first and second conductive plates mounted to the housing, and a switching unit disposed in the housing to switch the first and second conductive plates between electrically connected and disconnected states.
The switch control unit is disposed between the switching unit and the armature, and includes a sliding member that is slidably disposed in the housing to move between first and second positions, and a locking member. The sliding member is connected to the switching unit and has a guide groove formed with a first locking site and a second locking site. The locking member is movably mounted to the housing and has a locking portion that is inserted into the guide groove to move between the first and second locking sites.
The switching unit provides a resilient force to push the sliding member to the first position and to place the locking portion in the first locking site such that the sliding member is locked in the first position where the switching unit switches the first and second conductive plates to the electrically disconnected state.
When the coil is energized, the sliding member is moved by the armature to the second position, and the locking portion is placed in the second locking site such that the sliding member is locked in the second position where the switching unit is actuated by the sliding member to switch the first and second conductive plates to the electrically connected state.
Other features and advantages of the present invention will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The housing has a housing base 1 and a housing cover 2 detachably covering the housing base 1.
The electromagnetic unit 3 is disposed in the housing and includes a magnetic spool 31, a coil 32 wound on the magnetic spool 31, and an armature 34 pivotally disposed on the magnetic spool 31. In the first embodiment, the electromagnetic unit 3 further includes two terminals 33 electrically coupled to the coil 32 for receiving an external current signal. In this embodiment, the electromagnetic unit 3 is mounted on the housing base 1. When the coil 32 is electrified or energized, the magnetic spool 31 is excited to generate a magnetic field such that the armature 34 is magnetically attracted by the magnetic spool 31.
In the first embodiment, the switch control unit 4 is disposed between the switching unit 5 and the armature 34, and includes a sliding groove 41, a sliding member 42 slidably disposed in the housing, a locking member 43 and a retaining plate 44.
The sliding groove 41 is formed in the housing base 1. In this embodiment, the sliding groove 41 is disposed parallel to an axial direction of the magnetic spool 31.
Referring to
The guide groove 422 is annular and has a groove wall 4221 opposite to an opening of the guide groove 422. The groove wall 4221 is formed with a plurality of inclined tooth-like portions 423 that are arranged annularly. In this embodiment, the guide groove 422 has an outer profile substantially conforming to a heart shape. Alternatively, the guide groove 422 may be configured to have other shapes, such as a lightning shape or a triangle shape.
In the first embodiment, each of the inclined tooth-like portions 423 has a slanting surface 424 and a shoulder surface 425 adjoining the slanting surface 424 of an adjacent one of the inclined tooth-like portions 423. The first and second locking sites 426,427 are aligned with each other along an axis (L) of symmetry of the guide groove 422. Each of the first and second locking sites 426, 427 is situated on the shoulder surface 425 of one of the inclined tooth-like portions 423.
The locking member 43 is movably mounted to the housing, and has a locking portion 432 that is inserted into the guide groove 422 to move between the first and second locking sites 426, 427. When the locking portion 432 slides along the groove wall 4221 to one of the first and second locking sites 426, 427, the shoulder surface 425 prevents a backward movement of the locking portion 432, so that the locking portion 432 moves only forward to slide along the inclined tooth-like portions 423 one after the other.
In the first embodiment, the locking member 43 further has a pivot portion 431 inserted movably into the elongate opening 421. The pivot portion 431 may pivotally extend through the housing base 1 to the elongate opening 421. In such an arrangement, the pivot portion 431 not only guides the sliding movement of the sliding member 42, but also prevents separation of the locking member 43 from the housing base 1.
In the first embodiment, the retaining plate 44 urges the locking portion 432 to contact against the groove wall 4221 so as to prevent the locking portion 432 of the locking member 43 from being separated from the annular groove 422.
When the sliding member 42 is in the first position, the locking portion 432 of the locking member 43 is positioned to the first locking site 426 (as shown in
Referring to
In the first embodiment, the first contact member 54 is mounted to the housing base 1 and is aligned in a spaced-apart manner with the second contact member 55.
The switching unit 56 is connected to the first conductive plate 51, and has a conductive substrate 561, an active plate 562 and a passive plate 565. The conductive substrate 561, the active plate 562 and the passive plate 565 may be made of a metal material so as to enable flow of the electrical current therethrough.
In the first embodiment, the conductive substrate 561 is mounted on the housing base 1 and is connected to the first conductive plate 51.
The active plate 562 is connected between the conductive substrate 561 and the sliding member 42. The active plate 562 has a connection portion 563 pivotally connected to the conductive substrate 561, and a force-transmitting portion 564 in contact with the sliding member 42.
The passive plate 565 is connected to the conductive substrate 561. Preferably, the passive plate 565 is connected to the active plate 562 to make electrical contact with the second conductive plate 52. When the sliding member 42 slides between the first position and the second position, the passive plate 565 is movable relative to the conductive substrate 561. In the first embodiment, the passive plate 565 has a contact portion 566 to connect to the second conductive plate 52, and a force-receiving portion 567 distal from the contact portion 566. The contact portion 566 of the passive plate 565 is connectable to one of the first contact member 54 and the second contact member 55. The force-receiving portion 567 of the passive plate 565 and the force-transmitting portion 564 of the active plate 562 are connected to each other. When the sliding member 42 is in the first position, the contact portion 566 of the passive plate 565 is connected to the first contact member 54. In such a condition, the passive plate 565 is disconnected from the second conductive plate 52, and thus the first conductive plate 51 is not electrically coupled to the second conductive plate 52. When the sliding member 42 is in the second position, the contact portion 566 of the passive plate 565 is connected to the second contact member 54. As a result, the passive plate 565 is connected to the second conductive plate 52, and thus the first conductive plate 51 is electrically coupled to the second conductive plate 52.
In the first embodiment, the switching unit 56 further has a resilient plate 45 connected between the conductive substrate 561 and the passive plate 565. In this embodiment, the resilient plate 45 is a curved plate spring made of a metal material, and is compressed when the resilient plate 45 is assembled between the conductive substrate 561 and the contact portion 566 of the passive plate 565. As a result, when the sliding member 42 is in the first position, the resilient plate 45 pushes upward the passive plate 565 to contact against the first contact member 54. When the sliding member 42 is in the second position, the resilient plate 45 pushes downward the passive plate 565 to contact against the second contact member 55.
To sum up, the electromagnetic relay assembly according to the present invention provides the following advantages and effects:
1. By virtue of sliding of the locking portion 432 of the locking member 43 in the guide groove 422, the sliding member 42 can be assuredly locked in the first position or in the second position, and the switch assembly 5 can therefore be constantly switched to the electrically connected or disconnected state.
Accordingly, even in a severe vibration environment, the electromagnetic relay according to the present invention is safe to use.
2. By virtue of the resilient member 45, the contact portion 566 of the passive plate 565 can be biased to move between the first contact member 54 and the second contact member 55 and to contact tightly against the first contact member 54 or the second contact member 55 without requiring additional positioning elements, thereby reducing the spatial volume to accommodate assembly components.
3. By virtue of the third conductive plate 53 in the third embodiment, the electromagnetic relay assembly may have two operating circuits, thereby increasing flexibility during use.
While the present invention has been described in connection with what are considered the most practical embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
103111790 A | Mar 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2343548 | Graves, Jr. | Mar 1944 | A |
6545575 | Hirabayashi et al. | Apr 2003 | B1 |
8258901 | Hao | Sep 2012 | B2 |
Number | Date | Country |
---|---|---|
H11176304 | Jul 1999 | JP |
200123472 | Jan 2001 | JP |
277758 | Jun 1996 | TW |
201019364 | May 2010 | TW |
M485492 | Sep 2014 | TW |
Entry |
---|
TW Search report in corresponding TW application No. 103111790 dated Nov. 25, 2015 (2 pages) [w/English translation]. |
Number | Date | Country | |
---|---|---|---|
20150279599 A1 | Oct 2015 | US |