1. Technical Field
The present invention relates to an electromagnetic relay, and especially to a structure for fitting a fixed contact terminal.
2. Related Art
As a conventional electromagnetic relay, for example, there is one formed by erecting a first fixed contact support 4 and a contact spring connection pin 5 in parts extending from a first flange 12 of a coil body 1, as shown in FIGS. 1 and 2 of Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2001-521273.
However, when an attempt is made to reduce a size, especially a floor area, of the foregoing electromagnetic relay, it is not possible to reduce the size due to difficulties in ensuring spaces to install the first fixed contact support 4 and the contact spring connection pin 5.
One or more embodiments of the present invention provides an electromagnetic relay with a small floor area.
An electromagnetic relay according to one or more embodiments of the present invention is an electromagnetic relay in which an electromagnet block, formed by winding a coil around a spool with at least one end provided with a guard portion and inserting an iron core through a through hole of the spool, is mounted on the upper surface of a base such that a shaft center of the iron core is in parallel with the base, and a movable contact, provided at a free end of a movable touch piece configured to rotate based on magnetization and demagnetization of the electromagnet block, is brought into contact with or separated from a fixed contact, wherein a press-fitting portion is press-fitted into a press-fitting hole provided at the edge of the outward surface of the guard portion along the shaft center of the iron core, the press-fitting portion extending to the lateral side from a fixed contact terminal that has the fixed contact.
According to one or more embodiments of the present invention, the fixed contact terminal can be press-fitted and fixed to the guard portion of the spool, whereby it is possible to save the space to install the fixed contact terminal, so as to obtain an electromagnetic relay with a smaller floor area than that of the conventional example.
According to one or more embodiments of the present invention, the fixed contact may be arranged between a pair of press-fitting portions extending in parallel.
According to one or more embodiments of the present invention, a pair of press-fitting portions of the fixed contact terminal is respectively press-fitted into the press-fitting holes of the spool, whereby the fixed contact can be firmly supported. Hence it is possible to obtain an electromagnetic relay with high alignment accuracy and no dispersion of operation characteristics.
According to one or more embodiments of the present invention, the fixed contact terminal may be at least either one of a normally open fixed contact terminal and a normally closed fixed contact terminal respectively having a normally open fixed contact and a normally closed fixed contact which are opposed to each other with the movable contact provided therebetween.
According to one or more embodiments of the present invention, it is possible to obtain an electromagnetic relay having the normally open fixed contact and/or the normally closed fixed contact, and having a small floor area.
According to one or more embodiments of the present invention, the fixed contact terminals are a normally closed fixed contact terminal and a normally open fixed contact terminal respectively having a normally closed fixed contact and a normally open fixed contact which are opposed to each other with the movable contact provided therebetween, and press-fitting holes to be press-fitted with press-fitting portions of the normally closed fixed contact terminal and the normally open fixed contact terminal may be arranged in upper and lower parts at the edge of the front surface of the guard portion.
According to one or more embodiments of the present invention, the press-fitting portions of the normally closed fixed contact terminal and the normally open fixed contact terminal are arranged in the upper and lower parts along the edge of the front surface of the guard portion, whereby it is possible to obtain an electromagnetic relay having a small lateral width as well as a small floor area.
According to one or more embodiments of the present invention, the press-fitting portions may be respectively cut from a pair of corners formed by bending each-side edge of the normally open fixed contact terminal in the same direction.
According to one or more embodiments of the present invention, there is exerted the effect of being able to obtain an electromagnetic relay having a normally open fixed contact terminal with high rigidity and a good material layout.
Embodiments of the present invention will be described in accordance with the accompanying drawing of
As shown in
As shown in
As shown in
In particular, as shown in
As shown in
The movable touch piece 41 is made up of a conductive plate spring flexed in a substantially L-shape. One end thereof is provided with a movable contact 42, while a vertical portion thereof is caulked and fixed to a movable iron piece 43. Then, the other end of the movable touch piece 41 is caulked and fixed to a horizontal portion of the yoke 34, thereby to rotatably support the movable iron piece 43 and the movable touch piece 41 around the leading edge of the horizontal portion of the yoke 34 as a fulcrum.
In the normally open fixed contact terminal 50, as shown in
In the normally closed fixed contact terminal 55, a pair of press-fitting portions 57 extends in parallel in a horizontal direction from the upper corners located to both sides of the normally closed fixed contact 56 having been caulked and fixed, and from the corner of the lower edge thereof, the terminal portion 58 extends to the lower side. Press-fitting receiving portions 57a to come into press-contact with the press-fitting holes 24b of the spool 21 are provided in upper and lower parts in the press-fitting portion 57, while a push-out preventive rib 57b for preventing push-out of chips from the press-fitting hole 24b is provided on a base of the press-fitting receiving portion 57a. Further, a taper surface 57c for facilitating a press-fitting operation is formed on each side surface of the press-fitting portion 57.
As shown in
Next, a procedure for assembling the foregoing constitutional components will be described.
First, the coil 30 is wound around the body 22 of the spool 21, while a leader line thereof is bound to a binding portion 38 of the coil terminal 37 press-fitted into the press-fitting groove 23c of the guard portion 23 and soldered, and thereafter the binding portion 38 is bent inward. Then, the iron core 31 is inserted through the through hole 22a provided in the body 22 of the spool 21, and the projecting other end is caulked and fixed to the vertical portion 35 of the yoke 34, to complete the electromagnet block 20. Subsequently, the other end of the movable touch piece 41 caulked and fixed with the movable iron piece 43 is caulked and fixed to the horizontal portion of the yoke 34. Further, the press-fitting portion 52 of the normally open fixed contact terminal 50 is press-fitted into the press-fitting hole 24a, provided at the edge of the outward surface of the guard portion 24 of the electromagnet block 20, along the shaft center of the iron core 31, to contactably and separably arrange the movable contact 42 on the normally open fixed contact 51. At this time, a contact distance between the normally open fixed contact 51 of the normally open fixed contact terminal 50 and the movable contact 42 can be adjusted by means of a press-fitting amount of the press-fitting portion 52, thereby to allow adjustment of the operation characteristics such as an operating voltage and a restoration voltage.
Subsequently, the electromagnet blocks 20, 20 are respectively aligned in the pair of aligning recessed portions 12, 12 of the base 10 such that the shaft center of the iron core 31 is in parallel with the upper surface of the base 10. Then, the seal-retaining rib 23b of the spool 21 is fitted to the notch 13 of the base 10 while the terminal portions 53, 58 of the normally open fixed contact terminal 50 and the normally closed fixed contact terminal 55 are fitted to the notches 14, 15 (
Moreover, the press-fitting portion 57 of the normally closed fixed contact terminal 55 is press-fitted into the press-fitting hole 24b of the guard portion 24 along the shaft center of the iron core 31. A contact distance between the normally closed fixed contact 56 of the normally closed fixed contact terminal 55 and the movable contact 42 can be adjusted by means of a press-fitting amount of the press-fitting portion 57 at this time, thereby to allow adjustment of the operation characteristics such as an operating voltage and a restoration voltage.
According to one or more embodiments of the present invention, the operation characteristics can be accurately adjusted while the press-fitting portion 57 of the normally closed fixed contact terminal 55 is press-fitted into the press-fitting hole 24b of the spool 21, thereby to facilitate an assembly operation and an adjustment operation, leading to improvement in productivity and yield. For this reason, internal constitutional components are not required to have high dimensional accuracy, thereby to facilitate manufacturing of the internal constitutional components. It is to be noted that the internal constitutional components refer to components constituting the electromagnet block, such as the coil wound around the spool, the iron core and the yoke, and components constituting the contact mechanism portion such as the movable touch piece and the fixed touch piece.
Further, since the press-fitting portions 52, 57 can be press-fitted into the press-fitting holes 24a, 24b arranged in upper and lower parts along each-side edge of the guard portion 24, it is possible to save spaces to install the normally open fixed contact terminal 50 and the normally closed fixed contact terminal 55, so as to obtain an electromagnetic relay with a small floor area, especially a small lateral width.
It is to be noted that, although the configuration has been formed where the contacts are arranged in the order of the normally open fixed contact 51, the movable contact 42 and the normally closed fixed contact 56 from the side close to the electromagnet block 20 (cf.
Then, by fitting the casing 60 to the base 10, the pair of electromagnet blocks 20, 20 is partitioned by the insulating rib 62 (
According to one or more embodiments of the present invention, it is possible to accurately align the electromagnet blocks 20, 20 in predetermined positions on the base 10, so as to obtain an electromagnetic relay with little dispersion of operation characteristics.
Further, according to one or more embodiments of the present invention, as shown in
It is to be noted that, although the case has been described where a total of four engaging receiving portions 23d, 24d are provided in the guard portions 23, 24, at least one engaging receiving portion may be provided, and two or three may be provided. Especially in the case of providing two engaging receiving portions, it may be beneficial to arrange those on a diagonal line. However, the present invention is not limited to such a configuration.
Finally, a sealing member is injected and solidified to be sealed via the taper surface 16 provided along the peripheral edge of the bottom surface of the base 10 shown in
According to one or more embodiments of the present invention, a space between the base 10 and the casing 60 is blocked by the seal-retaining ribs 23b, 24c provided in the guard portions 23, 24. Further, the seal-retaining projected portion 35a provided on the outward surface of the yoke 34 is in contact with the inner side surface of the casing 60. Hence it is possible to prevent the sealing member from getting into the casing 60, and prevent the sealing member from adhering to the internal constitutional component such as the movable touch piece 41.
Next, the operation of the electromagnetic relay according to one or more embodiments of the present invention will be described.
That is, as shown in
Then, by applying a voltage to the coil 30 to magnetize it, the movable iron piece 43 is sucked to the magnetic pole portion 32 of the iron core 31 to rotate against the spring force of the movable touch piece 41. Therefore, after the contacts are opened as the movable contact 42 is separated from the normally closed fixed contact 56 and it then comes into contact with the normally open fixed contact 51, the movable iron piece 43 is adsorbed to the magnetic pole portion 32 of the iron core 31 (
Subsequently, when the magnetization of the coil 30 is released (demagnetization), the contacts are opened as the movable contact 42 is separated from the normally open fixed contact 51 due to the spring force of the movable touch piece 41, and the movable iron piece 43 rotates in a reverse direction while the movable contact 42 comes into contact with the normally closed fixed contact 56, to restore the original state.
Although the electromagnetic relay including the normally open fixed contact terminal and the normally closed fixed contact terminal has been described in one or more of the foregoing embodiments, it may be applied to an electromagnetic relay having either one of the normally open fixed contact terminal and the normally closed fixed contact terminal.
Further, it may not be restricted to the case of providing a pair of electromagnet blocks, but may be applied to the case of providing one electromagnet block.
Moreover, it may naturally be applied to an electromagnetic relay where the shaft center of the electromagnet block is arranged so as to be orthogonal to the upper surface of the base.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-046860 | Mar 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4959627 | Iizumi et al. | Sep 1990 | A |
5274348 | Vernier et al. | Dec 1993 | A |
5392015 | Matsuoka et al. | Feb 1995 | A |
5673012 | Stadler et al. | Sep 1997 | A |
5757255 | Noda et al. | May 1998 | A |
6002312 | Dittmann et al. | Dec 1999 | A |
6116558 | Yano | Sep 2000 | A |
6225880 | Kern | May 2001 | B1 |
6337614 | Tsutsui | Jan 2002 | B1 |
6359537 | Ichikawa et al. | Mar 2002 | B1 |
6781490 | Funayama et al. | Aug 2004 | B2 |
6995639 | Minowa et al. | Feb 2006 | B2 |
8362857 | Tsutsui et al. | Jan 2013 | B2 |
20020036556 | Matsuda | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
1049126 | Nov 2000 | EP |
1246214 | Oct 2002 | EP |
2001-521273 | Nov 2001 | JP |
2004-071582 | Mar 2004 | JP |
2007-207601 | Aug 2007 | JP |
Entry |
---|
Extended European Search Report in counterpart European Application No. 14151060.2 dated May 30, 2014 (7 pages). |
Examination Report in corresponding Chinese Patent Application No. 201410042854.6 dated Jul. 24, 2015, with translation (10 pages). |
Number | Date | Country | |
---|---|---|---|
20140253266 A1 | Sep 2014 | US |