Electromagnetic relay

Abstract
An electromagnetic relay includes: a pair of fixed contact terminals, each of which has a fixed contact; a movable contact spring having a pair of movable pieces and a coupler coupling the pair of movable pieces, each of the movable pieces having a movable contact that contacts and is separated from the fixed contact; an armature having a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the movable contact spring by a rotation operation; and an electromagnetic device driving the armature, wherein the hanging portion has a projection to fix the movable contact spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the movable contact spring when a current flows between the fixed contact and the movable contact.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2014-152870 filed on Jul. 28, 2014, the entire contents of which are incorporated herein by reference.


FIELD

A certain aspect of the embodiments is related to an electromagnetic relay.


BACKGROUND

It is known that an electromagnetic repulsion force may occur at a contact spot between a movable contact and a fixed contact of an electromagnetic relay because of a direction of a current flowing between the movable contact and the fixed contact. The electromagnetic repulsion force operates such that the movable contact gets away from the fixed contact. Therefore, there is known electromagnetic relays to generates a contact force of a movable contact and a fixed contact during energization of an overcurrent (for example, see Japanese Laid-open Patent Publications No. 2013-41815, No. 2013-25906, No. 2012-256482, No. 2013-84425, No. 2012-199112, No. 2010-10056 and No. 2012-199133 and Japanese Laid-open utility model Publication No. 8-2906). And, there is known an electromagnetic relay that has a divided movable spring and an armature (for example, see Japanese Laid-open Patent Publication No. 2002-100275).


SUMMARY

According to an aspect of the present invention, there is provided an electromagnetic relay including: a pair of fixed contact terminals, each of which has a fixed contact; a movable contact spring that has a pair of movable pieces and a coupler that couples the pair of movable pieces, each of the pair of movable pieces having a movable contact that contacts and is separated from the fixed contact; an armature that has a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the movable contact spring by a rotation operation; and an electromagnetic device that drives the armature, wherein the hanging portion has a projection to fix the movable contact spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the movable contact spring when a current flows between the fixed contact and the movable contact.


According to another aspect of the present invention, there is provided an electromagnetic relay including: a pair of fixed contact terminals, each of which has a fixed contact; a connection plate that has a pair of movable contacts, each of which contacts and is separated from the fixed contact; a plate spring to which the connection plate is fixed; an armature that has a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the connection plate and the plate spring by a rotation operation; and an electromagnetic device that drives the armature, wherein the hanging portion has a projection to fix the plate spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the plate spring and the connection plate when a current flows between the fixed contact and the movable contact.


According to another aspect of the present invention, there is provided an electromagnetic relay including: a fixed contact terminal that has a fixed contact; a connection plate that has a movable contact contacting and separated from the fixed contact; an electromagnet; and an armature that has an adsorbing portion to be adsorbed to an iron core provided in the electromagnet and a hanging portion extending downward from the adsorbing portion, and moves the connection plate by a rotation operation according to an excitation of the electromagnet, wherein: the connection plate is fixed to a face of the hanging portion that is opposite to another face of the hanging portion facing the fixed contact terminal; the hanging portion has an extension portion that extends from a position to which the connection plate is fixed toward a position at which the movable contact of the connection plate is provided; and a clearance is formed between the extension portion and the connection plate when the movable contact separates from the fixed contact.


The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 illustrates an exploded view of an electromagnetic relay (a relay) in accordance with a first embodiment;



FIG. 2 illustrates a perspective view of a relay;



FIG. 3A illustrates an internal structure of a case 10;



FIG. 3B illustrates a side view of an armature 16;



FIG. 4A illustrates a front view of a movable contact spring 18;



FIG. 4B illustrates a side view of a movable contact spring 18;



FIG. 5A illustrates a front view of fixed contact terminals 22a and 22b;



FIG. 5B illustrates a side view of fixed contact terminals 22a and 22b;



FIG. 6A schematically illustrates a direction of a current flowing in a relay;



FIG. 6B illustrates an arc extinction viewed from a fixed contact terminal 22a side;



FIG. 6C illustrates an arc extinction viewed from a fixed contact terminal 22b side;



FIG. 7A schematically illustrates a direction of a current flowing in a relay;



FIG. 7B illustrates an arc extinction viewed from a fixed contact terminal 22a side;



FIG. 7C illustrates an arc extinction viewed from a fixed contact terminal 22b side;



FIG. 8A illustrates a side view of a relay 1 viewed from a first movable piece 18a side;



FIG. 8B illustrates an enlarged view of a fixed contact terminal 22a, a movable contact spring 18 and an armature 16;



FIG. 8C and FIG. 8D illustrate a partially enlarged view of a movable contact spring 18 and an armature 16;



FIG. 9 illustrates a perspective view of a relay 110 in accordance with a second embodiment;



FIG. 10A illustrates a structure diagram of a plate spring 180 and a connection plate 181;



FIG. 10B illustrates a structure diagram of an armature 160;



FIG. 10C illustrates a condition where a plate spring 180 and a connection plate 181 are attached to an armature 160;



FIG. 10D illustrates a side view of a plate spring 180, a connection plate 181 and an armature 160;



FIG. 11A illustrates a modified embodiment of an armature 16;



FIG. 11B illustrates a modified embodiment of an armature 160;



FIG. 12A illustrates a cross sectional view taken along a line A-A of FIG. 11A;



FIG. 12B illustrates a cross sectional view of an armature 16 and a movable contact spring 18 without a side wall;



FIG. 12C illustrates a cross sectional view taken along a line A-A of FIG. 11B; and



FIG. 12D illustrates a cross sectional view of an armature 160, a connection plate 181 and a plate spring 180 without a bottom wall.





DESCRIPTION OF EMBODIMENTS

The above-mentioned electromagnetic relays generate a contact force between a movable contact and a fixed contact during energization of an overcurrent. However, current paths are formed around the fixed contact and the movable contact. Therefore, there is a problem that the electromagnetic relays have a large size. Moreover, new components (for example, an iron piece) to generate the contact force between the movable contact and the fixed contact are attached to a fixed terminal or a movable spring. Therefore, the number of components increases. And there is a problem that a manufacturing cost increases.


A description will now be given of embodiments of the present invention with reference to the drawings.



FIG. 1 illustrates an exploded view of an electromagnetic relay (hereinafter referred to as a relay) in accordance with a first embodiment. FIG. 2 illustrates a perspective view of the relay.


A relay 1 in accordance with the first embodiment is a relay that handles a high voltage of a direct current. For example, the relay 1 is used as a relay for battery pre-charge (for preventing an inrush current to a main relay contact) of an electric car. The high voltage of a direct current does not mean a high voltage regulated by IEC (International Electrotechnical Commission) but means a voltage more than 12 VDC or 24 VDC used in a general electric car.


It is necessary for the relay 1 to surely extinguish an arc generated between a fixed contact and a movable contact at a shutting off of a load of a high voltage of a direct current. With respect to a general relay handling a high voltage of a direct current, a polar character is designated to a connection of a load side. However, in the relay 1 acting as a relay for a battery pre-charge, a current direction is reversed during a battery charge and during a discharge. Therefore, it is necessary not to designate a polar character of the connection of the load side. Accordingly, it is necessary for the relay 1 to extinguish an arc despite the direction of the current flowing between the movable contact and the fixed contact. A use application of the relay 1 is not limited to an electric car. But, the relay 1 can be used for various devices or various facilities.


As illustrated in FIG. 1, the relay 1 has a case 10, a permanent magnet 12 for extinguishing a magnetism, a hinge spring 14, an armature 16, a movable contact spring 18, an insulating cover 20, fixed contact terminals 22 (22a and 22b), an iron core 24, a spool 26, a base 28, a coil 30, a pair of coil terminals 32 (32a and 32b) and a yoke 34, The pair of coil terminals 32 (32a and 32b) supplies a current for exciting an electromagnet structured with the iron core 24, the spool 26 and the coil 30.


As illustrated in FIG. 3A, in the case 10, a magnet holder 101 is formed. The permanent magnet 12 is supported in the magnet holder 101. The permanent magnet 12 supported in the magnet holder 101 is located between the fixed contact terminals 22a and 22b as illustrated in FIG. 2. The case 10 is omitted in FIG. 2. For example, a face of the permanent magnet 12 acting as a north polar is directed toward the fixed contact terminal 22b side. And another face of the permanent magnet 12 acting as a south polar is directed toward the fixed contact terminal 22a side. The face acting as the north polar and the face acting as the south polar may be reversed. The permanent magnet 12 may be a samarium-cobalt magnet that is excellent at a residual magnetic flux density, a holding power and a heat resistance property. In particular, a heat of an arc is conducted to the permanent magnet 12. Therefore, the samarium-cobalt magnet that has superior heat resistance property to a neodymium magnet is used.


With reference to FIG. 1 again, the hinge spring 14 is formed in a reverse L-shape if viewed from a side face. The hinge spring 14 has a horizontal portion 14a that biases a hanging portion 16b of the armature 16 downward and a hanging portion 14b that is fixed to a vertical portion 34b of the yoke 34.


As illustrated in FIG. 3B, the armature 16 is a magnetic substance having a V shape if viewed from a side face. The armature 16 has a flat plate 16a adsorbed to the iron core 24 and the board-shaped hanging portion 16b that extends downward from the flat plate 16a via a bent portion 16c. On the hanging portion 16b, a projection 16f for fixing the movable contact spring 18 to the hanging portion 16b by caulking is provided on a first face of the hanging portion 16b that faces the insulating cover 20 or an electromagnetic device 31 described later. The hanging portion 16b has an upper portion 16b1 that extends from the bent portion 16c to the projection 16f and a lower portion 16b2 that extends downward from the projection 16f. As described later, the lower portion 16b2 acts as a pulling portion that pulls the movable contact spring 18. Moreover, as illustrated in FIG. 1 and FIG. 2, a through hole 16d is formed in a center of the bent portion 16c such that the horizontal portion 14a of the hinge spring 14 projects. In the flat plate 16a, a cutout portion 16e with which a projection 34c of the yoke 34 is engaged is formed.


The armature 16 rotates under a condition that the cutout portion 16e engaged in the projection 34c of the yoke 34 acts as a supporting point. When a current flows in the coil 30, the iron core 24 adsorbs the flat plate 16a. In this case, the horizontal portion 14a of the hinge spring 14 is in touch with the hanging portion 16b and is pressed from the hanging portion 16b upward. When the current of the coil 30 is shut off, the hanging portion 16b is pressed downward by a restoring force of the horizontal portion 14a of the hinge spring 14. Thus, the flat plate 16a is separated from the iron core 24. Here, a face of the flat plate 16a facing the iron core 24 or the insulating cover 20 is referred to as a first face. A face of the flat plate 16a opposite to the first face is referred to as a second face. A face of the hanging portion 16b facing the insulating cover 20 or the electromagnetic device 31 is referred to as a first face. And a face of the hanging portion 16b opposite to the first face is referred to as a second face.



FIG. 4A illustrates a front view of the movable contact spring 18. FIG. 4B illustrates a side view of the movable contact spring 18.


As illustrated in FIG. 4A, the movable contact spring 18 is a conductive plate spring having a lateral U shape if viewed from a front, and has a pair of movable pieces (a first movable piece 18a and a second movable piece 18b) and a coupler 18c coupling upper edges of the first movable piece 18a and the second movable piece 18b in a horizontal direction.


The first movable piece 18a is bent twice at a position 18da closer to a lower edge than a center thereof and at a position 18ea closer to the lower edge than the position 18da. The second movable piece 18b is bent twice at a position 18db closer to the lower edge than the center and at a position 18eb closer to the lower edge than the position 18db. Here, a portion of the first movable piece 18a that is lower than the position 18ea is a lower portion 18a3. A portion of the first movable piece 18a between the position 18ea and the position 18da is a center portion 18a1. A portion of the first movable piece 18a that is upper than the position 18da is an upper portion 18a2. Similarly, a portion of the second movable piece 18b that is lower than the position 18eb is a lower portion 18b3. A portion of the second movable piece 18b between the position 18eb and the position 18db is a center portion 18b1. A portion of the second movable piece 18b that is upper than the position 18db is an upper portion 18b2.


A movable contact 36a made of a material with an excellent arc resistance is provided in the center portion 18a1 of the first movable piece 18a. A movable contact 36b made of a material with an excellent arc resistance is provided in the center portion 18b1 of the second movable piece 18b. The first movable piece 18a and the second movable piece 18b are bent in a direction where the upper portion 18a2 and the lower portion 18a3 of the first movable piece 18a and the upper portion 18b2 and the lower portion 18b3 of the second movable piece 18b are bent in a direction getting away from the fixed contact terminals 22a and 22b.


The upper portion 18a2 and the upper portion 18b2 act as an arc runner that moves an arc generated between contacts to au upper space. The lower portions 18a3 and 18b3 act as an arc runner that moves an arc generated between contacts to a lower space.


The coupler 18c has a through hole 18e with which the projection 16f provided on the hanging portion 16b is engaged. When the projection 16f is engaged and caulked in the through hole 18e, the movable contact spring 18 is fixed to the first face of the hanging portion 16b of the armature 16.


The first movable piece 18a has a cut projection portion 18fa that projects toward the movable contact 36a from the lower portion 18a3 along a face of the lower portion 18a3 and is inclined with respect to the center portion 18a1. Moreover, the second movable piece 18b has a cut projection portion 18fb that projects toward the movable contact 36b from the lower portion 18b3 along a face of the lower portion 18b3 and is inclined with respect to the center portion 18b1. The cut projection portions 18fa and 18fb connected to the lower portions 18a3 and 18b3 reduce a distance between the movable contact 36a and the lower portion 18a3 (other than a contact) and a distance between the movable contact 36b and the lower portion 18b3. Therefore, an arc generated between the movable contact 36a and a fixed contact 38a and an arc generated between the movable contact 36b and a fixed contact 38b can quickly move to the lower portions 18a3 and 18b3 (other than a contact) respectively from a contact thereof. Therefore, the cut projection portions 18fa and 18fb can suppress exhausting of the contacts.



FIG. 5A illustrates a front view of the fixed contact terminals 22a and 22b. FIG. 5B illustrates a side view of the fixed contact terminals 22a and 22b.


The fixed contact terminals 22a and 22b are injected from above into the through hole (not illustrated) formed in the base 28 and are fixed to the base 28. The fixed contact terminals 22a and 22b are bent in a clank shape if viewed from a side face. The fixed contact terminals 22a and 22b respectively have an uppermost portion 22g, an upper portion 22e, an inclination portion 22f and a lower portion 22d. The lower portion 22d where the fixed contact terminals 22a and 22b are fixed to the base 28 acts as a supporting point. The upper portion 22e is bent so as to get away more from the movable contact spring 18 or the insulating cover 20 than the lower portion 22d. The fixed contacts 38a and 38b made of a material with an excellent arc resistance are respectively provided on the upper portions 22e of the fixed contact terminals 22a and 22b. A divided terminal 22c connected to a power supply or the like is provided on the lower portions 22d of the fixed contact terminals 22a and 22b.


The uppermost portion 22g is formed by bending the fixed contact terminals 22a and 22b at a position 22h that is upper than the fixed contacts 38a and 38b. In FIG. 5A and FIG. 5B, a portion upper than the position 22h is the uppermost portion 22g. A portion between the position 22h and the inclination portion 22f is the upper portion 22e.


The uppermost portion 22g is bent so as to get away from the movable contact spring 18 or the insulating cover 20 more than the upper portion 22e. The uppermost portion 22g acts as an arc runner that moves the arc generated between contacts to an upper space from the movable contacts 36a and 36b and the fixed contacts 38a and 38b.


With reference to FIG. 1 again, the insulating cover 20 is made of resin. A ceiling portion 20e of the insulating cover 20 has a through hole 20a that exposes a head portion 24a of the iron core 24. Fixed portions 20b and 20c having a projection shape are formed on the bottom of the insulating cover 20 to fix the insulating cover 20 to the base 28. The fixed portion 20b is engaged with an edge of the base 28. The fixed portion 20c is inserted into a hole of the base 28 that is not illustrated. A backstop 20d made of a resin is formed integrally with the insulating cover 20. When no current flows into the coil 30 (that is, the electromagnetic device 31 described later is off), the backstop 20d acting as a stopper is in touch with the movable contact spring 18. The backstop 20d suppresses generation of collision sound between metal components such as the movable contact spring 18 and the yoke 34. It is therefore possible to reduce an operation sound of the relay 1.


The iron core 24 is inserted into a through hole 26a formed in a head portion 26b of the spool 26. The coil 30 is wound around the spool 26 and is formed integrally with the base 28. The iron core 24, the spool 26 and the coil 30 form the electromagnetic device 31. The electromagnetic device 31 pulls the flat plate 16a of the armature 16 or cancels the pulling in accordance with on/off of a current. Thus, opening or closing operation of the movable contact spring 18 with respect to the fixed contact terminals 22a and 22b is performed. The pair of the coil terminals 32a and 32b is pressed into the base 28. The coil 30 is lumped on the pair of coil terminals 32a and 32b.


The yoke 34 is made of a conductive material having an L shape if viewed from a side face and has a horizontal portion 34a fixed to a reverse face of the base 28 and a vertical portion 34b provided vertically to the horizontal portion 34a. From the bottom of the base 28, the vertical portion 34b is pressed into a through hole of the base 28 that is not illustrated and is pressed into a through hole of the insulating cover 20 that is not illustrated. Thus, as illustrated in FIG. 2, the projection 34c provided on both edges of the upper portion of the vertical portion 34b projects from the ceiling portion 20e of the insulating cover 20.



FIG. 6A schematically illustrates the direction of the current flowing in the relay 1 and, in particular, illustrates the condition where the fixed contact is off the movable contact. FIG. 6B illustrates an arc extinction viewed from the fixed contact terminal 22a side. FIG. 6C illustrates the arc extinction viewed from the fixed contact terminal 22b side. In FIG. 6A to FIG. 6C, the direction of the current (first direction) is illustrated with an arrow.


In FIG. 6A, at least one of the fixed contact terminals 22a and 22b is connected to a power supply side that is not illustrated. The other is connected to a load side that is not illustrated. When a current flows in the coil 30, the iron core 24 adsorbs the flat plate 16a and the armature 16 rotates under a condition that the projection 34c and the cutout portion 16e act as a supporting point. With the rotation of the armature 16, the hanging portion 16b and the movable contact spring 18 fixed to the hanging portion 16b rotate. And, the movable contacts 36a and 36b are in touch with the corresponding fixed contacts 38a and 38b. When a voltage is applied to the fixed contact terminal 22b under a condition that the movable contacts 36a and 36b are in touch with the fixed contacts 38a and 38b, the current flows in the fixed contact terminal 22b, the fixed contact 38b, the movable contact 36b, the second movable piece 18b, the coupler 18c, the first movable piece 18a, the movable contact 36a, the fixed contact 38a and the fixed contact terminal 22a in this order as illustrated in FIG. 6A. When the current flowing in the coil 30 is shut off, the restoring force of the hinge spring 14 rotates the armature 16 anticlockwise illustrated in FIG. 6B. Because of the rotation of the armature 16, the movable contacts 36a and 36b start to get away from the fixed contacts 38a and 38b respectively. However, the current flowing between the movable contact 36a and the fixed contact 38a and the current flowing between the movable contact 36b and the fixed contact 38b are not completely shut off. Thereby, an arc is generated between the fixed contacts 38a and 38b and the movable contacts 36a and 36b.


In the relay 1 illustrated in FIG. 6A to FIG. 6C, as illustrated in FIG. 6B, the direction of the magnetic field is a depth direction from the fixed contact terminal 22a to the fixed contact terminal 22b in a place where the current flows from the movable contact 36a to the fixed contact 38a. Therefore, an arc generated between the movable contact 36a and the fixed contact 38a is extended to a lower space by Lorentz force as indicated by an arrow A of FIG. 6B and is extinguished. On the other hand, in a place where the current flows from the fixed contact 38b to the movable contact 36b, as illustrated in FIG. 6C, the direction of the magnetic field is a depth direction from the fixed contact terminal 22a to the fixed contact terminal 22b. Therefore, an arc generated between the movable contact 36b and the fixed contact 38b is extended to an upper space by the Lorentz force as indicated by an arrow B of FIG. 6C and is extinguished.



FIG. 7A schematically illustrates the direction of the current flowing in the relay 1. FIG. 7B illustrates an arc extinction viewed from the fixed contact terminal 22a side. FIG. 7C illustrates the arc extinction viewed from the fixed contact terminal 22b side. In FIG. 7A to FIG. 7C, the direction of the current (a second direction) is indicated with an arrow. The direction of the current is opposite to that of FIG. 6A to FIG. 6C.


In FIG. 7A, as in the case of FIG. 6A, one of the fixed contact terminals 22a and 22b is connected to a power supply side that is not illustrated. The other is connected to a load side that is not illustrated. When a current flows in the coil 30, the iron core 24 adsorbs the flat plate 16a and the armature 16 rotates under a condition that the projection 34c and the cutout portion 16e act as a supporting point. With the rotation of the armature 16, the hanging portion 16b and the movable contact spring 18 fixed to the hanging portion 16b rotate. And, the movable contacts 36a and 36b are in touch with the corresponding fixed contacts 38a and 38b. When a voltage is applied to the fixed contact terminal 22a under a condition that the movable contacts 36a and 36b are in touch with the fixed contacts 38a and 38b, the current flows in the fixed contact terminal 22a, the fixed contact 38a, the movable contact 36a, the first movable piece 18a, the coupler 18c, the second movable piece 18b, the movable contact 36b, the fixed contact 38b and the fixed contact terminal 22b in this order as illustrated in FIG. 7A. When the current flowing in the coil 30 is shut off, the restoring force of the hinge spring 14 rotates the armature 16 anticlockwise illustrated in FIG. 7B. Because of the rotation of the armature 16, the movable contacts 36a and 36b start to get away from the fixed contacts 38a and 38b respectively. However, the current flowing between the movable contact 36a and the fixed contact 38a and the current flowing between the movable contact 36b and the fixed contact 38b are not completely shut off. Thereby, an arc is generated between the fixed contacts 38a and 38b and the movable contacts 36a and 36b.


In the relay 1 illustrated in FIG. 7A to FIG. 7C, as illustrated in FIG. 7B, the direction of the magnetic field is a depth direction from the fixed contact terminal 22a to the fixed contact terminal 22b in a place where the current flows from the fixed contact 38a to the movable contact 36a. Therefore, an arc generated between the movable contact 36a and the fixed contact 38a is extended to an upper space by Lorentz force as indicated by an arrow A of FIG. 7B and is extinguished. On the other hand, in a place where the current flows from the movable contact 36b to the fixed contact 38b, as illustrated in FIG. 7C, the direction of the magnetic field is a depth direction from the fixed contact terminal 22a to the fixed contact terminal 22b. Therefore, an arc generated between the movable contact 36b and the fixed contact 38b is extended to a lower space by the Lorentz force as indicated with an arrow B of FIG. 7C and is extinguished.


In FIG. 6A to FIG. 7C, the relay 1 of the embodiment can simultaneously extend the arc generated between the movable contact 36a and the fixed contact 38a and the arc generated between the movable contact 36b and the fixed contact 38b in the reverse direction spaces and extinguish the arcs despite the directions of the current flowing between the movable contact 36a and the fixed contact 38a and the current flowing between the movable contact 36b and the fixed contact 38b.


A supporting point of a movable member including the armature 16 and the movable contact spring 18 (for example, the cutout portion 16e) is located on the upper side of the movable contacts 36a and 36b or the fixed contacts 38a and 38b. A supporting point of the fixed contact terminals 22a and 22b (for example, the lower portion 22d) is located on the lower side of the movable contacts 36a and 36b or the fixed contacts 38a and 38b. Therefore, even if the arc generated between the movable contact 36a and the fixed contact 38a is extended toward an upper direction or a lower direction in accordance with the direction of the current flowing between the movable contact 36a and the fixed contact 38a, it is possible to secure the space for extending the arc. Similarly, even if the arc generated between the movable contact 36b and the fixed contact 38b is extended toward an upper direction or a lower direction in accordance with the direction of the current flowing between the movable contact 36b and the fixed contact 38b, it is possible to secure the space for extending the arc.



FIG. 8A illustrates a side view of the relay 1 viewed from the first movable piece 18a side. FIG. 8B illustrates an enlarged view of the fixed contact terminal 22a, the movable contact spring 18 and the armature 16. FIG. 8C and FIG. 8D illustrate a partially enlarged view of the movable contact spring 18 and the armature 16.


When a current flows in the coil 30, the iron core 24 adsorbs the flat plate 16a and the armature 16 rotates under a condition that the projection 34c and the cutout portion 16e act as a supporting point. Because of the rotation of the armature 16, the hanging portion 16b and the movable contact spring 18 fixed to the hanging portion 16b rotate. And as illustrated in FIG. 8A, the movable contact 36a is in touch with the fixed contact 38a.


In this case, the movable contact spring 18 is fixed with caulking by the projection 16f provided on the first face of the hanging portion 16b. Therefore, as illustrated in FIG. 8B, the upper portion 18a2 of the first movable piece 18a facing the lower portion 16b2 of the hanging portion 16b of the armature 16 (in concrete, the upper portion 18a2 positioned lower than the projection 16f) is warped and is spaced from the hanging portion 16b of the armature 16. That is, a clearance “A” is formed between the lower portion 16b2 of the hanging portion 16b of the armature 16 and the upper portion 18a2 of the first movable piece 18a.


When the movable contact 36a is in touch with the fixed contact 38a, the current flows to the upper portion 18a2 of the first movable piece 18a as illustrated in FIG. 8C, for example. Therefore, a magnetic field is generated in the upper portion 18a2 by a right-handed screw rule. The armature 16 is a magnetic substance. A magnetic field toward the upper portion 18a2 is generated in the armature 16. Accordingly, as illustrated in FIG. 8C, a pulling force is generated in the upper portion 18a2 of the first movable piece 18a toward the lower portion 16b2 of the hanging portion 16b.


As illustrated in FIG. 8D, when the direction of the current is opposite to FIG. 8C, the direction of the magnetic field is also opposite to FIG. 8C. However, as in the case of FIG. 8C, a pulling force is generated in the upper portion 18a2 of the first movable piece 18a toward the lower portion 16b2 of the hanging portion 16b.


Therefore, despite the direction of the current flowing into the first movable piece 18a, a pulling force is generated in the upper portion 18a2 of the first movable piece 18a toward the lower portion 16b2 of the hanging portion 16b. The pulling force presses the movable contact 36a to the fixed contact 38a. It is therefore possible to suppress getting away of the movable contact 36a from the fixed contact 38a when an electromagnetic repulsion force is generated, getting away of the movable contact 36a from the fixed contact 38a can be suppressed.


The hanging portion 16b of the armature 16 faces the upper portion 18a2 of the first movable piece 18a and has the lower portion 16b2 extending downward more than the projection 16f. Therefore, even if a new component for generating a pulling force between the movable contact and the fixed contact is not provided, the lower portion 16b2 can pull the upper portion 18a2 of the first movable piece 18a. Therefore, even if an electromagnetic repulsion force is generated during energization of an overcurrent, getting away of the lower portion 16b2 of the hanging portion 16b of the armature 16 and the movable contact 36a from the fixed contact 38a can be suppressed.


Here, a description is given of the first movable piece 18a. However, the upper portion 18b2 of the second movable piece 18b also generates a pulling force, similarly to the upper portion 18a2 of the first movable piece 18a. Therefore, the lower portion 16b2 of the hanging portion 16b can pull the upper portion 18b2 of the second movable piece 18b.


As mentioned above, in the first embodiment, the movable contact spring 18 has the pair of the movable pieces 18a and 18b that are connected to the fixed contacts 38a and 38b or are separated from the fixed contacts 38a and 38b and has the coupler 18c that couples the pair of the movable pieces 18a and 18b. And, the hanging portion 16b of the armature 16 has the projection 16f for fixed the movable contact spring 18 with caulking on the first face facing the electromagnetic device 31 and the lower portion 16b2 that extends downward more than the projection 16f and pulls the movable contact spring 18 when the current flows between the fixed contacts 38a and 38b and the movable contacts 36a and 36b. Therefore, in the relay 1 of the embodiment, the current that is input from one fixed contact is output to the other fixed contact via the movable contact spring 18 having a lateral C shape if viewed from a front, that is, a current path having a lateral C shape. Therefore, it is not necessary to provide current paths around a fixed contact and a movable contact. And, it is possible to downsize the relay. And the hanging portion 16b can pull the movable contact spring 18 (that is, the upper portions 18a2 and 18b2). It is not necessary to provide a new component for generating a pulling force between the movable contact and the fixed contact. Therefore, a manufacturing cost can be reduced.



FIG. 9 illustrates a perspective view of a relay 110 in accordance with a second embodiment. The relay 110 of the second embodiment has an armature 160, a plate spring 180 and a connection plate 181. Other structures of the relay 110 of the second embodiment are the same as the corresponding structure of the first embodiment. Therefore, an explanation of the structures is omitted.



FIG. 10A illustrates a structure diagram of the plate spring 180 and the connection plate 181. FIG. 10B illustrates a structure diagram of the armature 160. FIG. 10C illustrates a condition where the plate spring 180 and the connection plate 181 are attached to the armature 160. FIG. 10D illustrates a side view of the plate spring 180, the connection plate 181 and the armature 160.


As illustrated in FIG. 10A, the plate spring 180 is a plate spring that is conductive and has a V shape if viewed from a side face. The plate spring 180 is bent at a position 180b that is closer to a bottom than a center thereof. Here, a portion of the plate spring 180 that is upper than the position 180b is an upper portion 180c. A portion of the plate spring 180 that is lower than the position 180b is a lower portion 180d. The upper portion 180c has a through hole 180a that is engaged with a projection 160f formed on a hanging portion 160b of the armature 160. As illustrated in FIG. 10C, when the projection 160f is engaged with the through hole 180a with caulking, the plate spring 180 is fixed to the first face of the hanging portion 160b of the armature 160. Here, a face of the hanging portion 160b facing the electromagnetic device 31 or the insulating cover 20 is the first face. A reverse face of the first face is a second face. The plate spring 180 is bent in a direction where the upper portion 180c gets away from the fixed contact terminals 22a and 22b (that is, the direction in which plate spring 180 gets closer to the electromagnetic device 31).


The connection plate 181 is a conductive plate and is horizontally fixed to the lower portion 180d. The movable contacts 36a and 36b made of a material with an excellent arc resistance are respectively provided on the both right and left edges of the connection plate 181.


A first edge of the plate spring 180 is fixed with caulking to the first face of the hanging portion 160b of the armature 160. A second edge of the plate spring 180 is fixed to the connection plate 181 so as to extend vertically to the direction between the movable contacts 36a and 36b and is fixed between the movable contacts 36a and 36b.


As illustrated in FIG. 10B and FIG. 10D, the armature 160 is a magnetic substance that is bent twice. The armature 160 has a flat plate 160a adsorbed to the iron core 24 and the plate-shaped hanging portion 160b extending downward from the flat plate 160a via a bent portion 160c. Moreover, as illustrated in FIG. 10B, a through hole 160d is formed in a center portion of the bent portion 160c such that the horizontal portion 14a of the hinge spring 14 projects. A cutout portion 160e with which the projection 34c of the yoke 34 is engaged is formed in the flat plate 160a. The armature 160 rotates under a condition that the projection 34c of the yoke 34 and the cutout portion 160e act as a supporting point, as in the case of the above-mentioned armature 16. When a current flows in the coil 30, the iron core 24 adsorbs the flat plate 160a. In this case, the horizontal portion 14a of the hinge spring 14 is in touch with the hanging portion 160b and is pressed upward by the hanging portion 160b. When the current of the coil 30 is shut off, the restoring force of the horizontal portion 14a of the hinge spring 14 presses down the hanging portion 160b. Thus, the flat plate 160a is separated from the iron core 24.


As illustrated in FIG. 10C, in the hanging portion 160b, the projection 160f for fixing the plate spring 180 to the hanging portion 160b with caulking is provided on the first face of the hanging portion 160b facing the electromagnetic device 31 or the insulating cover 20. As illustrated in FIG. 10B, the hanging portion 160b is a magnetic substance having a substantially T shape if viewed from a front thereof. And the hanging portion 160b has an upper portion 160g connected to the bent portion 160c, a center portion 160h extending downward from a bottom center of the upper portion 160g, and a lower portion 160j extending downward from the center portion 160h. The lower portion 160j acts as a pulling portion for pulling the connection plate 181 and the plate spring 180. The hanging portion 160b is bent at a position 160i between the center portion 160h and the lower portion 160j. When the lower portion 160j is arranged substantially vertically, the upper portion 160g and the center portion 160h of the hanging portion 160b are bent in a direction getting away from the fixed contact terminals 22a and 22b (that is, a direction approaching the insulating cover 20). The hanging portion 160b extends so as to overlap with the plate spring 180 and the connection plate 181 as illustrated in FIG. 10D. Moreover, as illustrated in FIG. 10D, the hanging portion 160b is bent along a shape of the plate spring 180. That is, the hanging portion 160b is bent so as to overlap with the plate spring 180. Therefore, the upper portion 160g and the center portion 160h overlap with the upper portion 180c, and the lower portion 160j overlaps with the lower portion 180d.


When a current flows from the movable contact 36a to the movable contact 36b as illustrated in FIG. 10D under a condition that the movable contacts 36a and 36b are respectively in touch with the fixed contacts 38a and 38b, a magnetic field is generated in the connection plate 181 by a right-handed screw rule. The armature 160 is a magnetic substance. A magnetic field is generated toward the lower portion 160j. Therefore, in the connection plate 181, a pulling force is generated toward the lower portion 160j of the hanging portion 160b. When the direction of the current is opposite to FIG. 10D, the direction of the magnetic field is also opposite to FIG. 10D. However, a magnetic field toward the lower portion 160j is generated. Therefore, as in the case of FIG. 10D, in the connection plate 181, a pulling force is generated toward the lower portion 160j of the hanging portion 160b. Therefore, despite the direction of the current flowing into the connection plate 181, a pulling force is generated toward the lower portion 160j of the hanging portion 160b in the connection plate 181. When an electromagnetic repulsion force is generated, the pulling force can suppress getting away of the movable contacts 36a and 36b from the fixed contacts 38a and 38b.


The hanging portion 160b of the armature 160 faces the lower portion 180d of the plate spring 180 and has the center portion 160h and the lower portion 160j extending downward from the projection 160f. Therefore, even if a new component for generating a pulling force between the movable contact and the fixed contact is not provided, the lower portion 160j can pull the connection plate 181 and the lower portion 180d of the plate spring 180. Even if an electromagnetic repulsion force is generated during energization of an overcurrent, the lower portion 160j of the hanging portion 160b can suppress getting away of the movable contacts 36a and 36b from the fixed contacts 38a and 38b.



FIG. 11A illustrates a modified embodiment of the armature 16. FIG. 11B illustrates a modified embodiment of the armature 160. FIG. 12A illustrates a cross sectional view taken along a line A-A of FIG. 11A. FIG. 12B illustrates a cross sectional view of the armature 16 and the movable contact spring 18 without a sidewall. FIG. 12C illustrates a cross sectional view taken along a line A-A of FIG. 11B. FIG. 12D illustrates a cross sectional view of the armature 160, the connection plate 181 and the plate spring 180 without a bottom wall. A direction of the current illustrated in FIG. 12A to FIG. 12D is an example and may be reversed. When the direction of the current is reversed, the direction of the magnetic field is also reversed.


As illustrated in FIG. 11A, a sidewall 162 may be provided so as to have a predetermined angle θ toward the electromagnetic device 31 on at least one of the both right and left edges of the lower portion 16b2 of the hanging portion 16b. It is preferable that the predetermined angle θ is within 90 degrees with respect to the first face of the hanging portion 16b in order to reduce the magnetic resistance of the magnetic field (magnetic circuit) generated during energization of an overcurrent. The sidewall 162 may be formed by bending at least one of the both right and left edges of the lower portion 16b2 of the hanging portion 16b toward the electromagnetic device 31 side. The sidewall 162 is made of a magnetic substance.


In the cross section taken along a line A-A of FIG. 11A, as illustrated in FIG. 12A, a magnetic field (a magnetic circuit) is generated around the first movable piece 18a of the movable contact spring 18. When the sidewall 162 is formed on the hanging portion 16b as illustrated in FIG. 12A, a magnetic resistance of a magnetic field (magnetic circuit) generated during energization of the overcurrent is smaller than a case where the sidewall 162 is not formed on the hanging portion 16b as illustrated in FIG. 12B. Therefore, the movable contact spring 18 is pulled by a larger force by the armature 16.


As illustrated in FIG. 11B, a bottom wall 163 may be provided so as to have a predetermined angle θ toward the electromagnetic device 31 on the lower edge of the lower portion 160j of the hanging portion 160b of the armature 160. It is preferable that the predetermined angle θ is within 90 degrees with respect to the first face of the hanging portion 160b in order to reduce the magnetic resistance of the magnetic field (magnetic circuit) generated during energization of an overcurrent. The bottom wall 163 may be formed by bending the lower portion 160j of the hanging portion 160b toward the electromagnetic device 31 side. The bottom wall 163 is made of a magnetic substance.


In the cross section taken along a line A-A of FIG. 11B, as illustrated in FIG. 12C, a magnetic field (that is, a magnetic circuit) is generated around the lower portion 180d of the plate spring 180. When the bottom wall 163 is formed on the lower portion 160j as illustrated in FIG. 12C, a magnetic resistance of a magnetic field (magnetic circuit) generated during energization of the overcurrent is smaller than a case where the bottom wall 163 is not formed on the lower portion 160j as illustrated in FIG. 12D. Therefore, the plate spring 180 and the connection plate 181 fixed to the plate spring 180 are pulled by a larger force by the armature 160.


As mentioned above, in the second embodiment, the relay 110 has the connection plate 181 that has the movable contacts 36a and 36b connected to and separated from the fixed contacts 38a and 38b. The hanging portion 160b of the armature 160 has the projection 160f for fixing the movable plate spring 180 with caulking to the first face facing the electromagnetic device 31 and the lower portion 160j that extends downward more than the projection 160f and pulls the plate spring 180 and the connection plate 181 when a current flows between the fixed contacts 38a and 38b and the movable contacts 36a and 36b. Therefore, in the relay 110 of the embodiment, the current input from one fixed contact is output to the other fixed contact via the connection plate 181 having the movable contacts 36a and 36b on the both right and left edges thereof, that is, via a straight-shaped current path. Therefore, it is not necessary to provided current paths around the fixed contact and the movable contact. It is therefore possible to downsize the relay. Since the lower portion of the hanging portion 160b can pull the connection plate 181 and the plate spring 180 (that is, the lower portion 180d), it is not necessary to provide a new component for generating a pulling force between the movable contact and the fixed contact. The manufacturing cost can be reduced.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various change, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.

Claims
  • 1. An electromagnetic relay comprising: a pair of fixed contact terminals, each of which has a fixed contact;a movable contact spring that has a pair of movable pieces and a coupler that couples the pair of movable pieces, each of the movable pieces having a movable contact that contacts and is separable from a respective fixed contact,wherein a current flows between the movable contacts via the pair of movable pieces and the coupler;an armature that has a first portion to be attracted to an iron core and a second portion bent from the first portion and extending downward, and moves the movable contact spring by a rotation operation; andan electromagnetic device, including the iron core, that drives the armature,wherein the coupler is directly attached to an area of the second portion of the armature facing the electromagnetic device, andwherein the second portion of the armature has a pulling portion that extends downward more than the area and pulls the movable pieces of the movable contact spring when a current flows between the fixed contact and the movable contact.
  • 2. The electromagnetic relay as claimed in claim 1, comprising: a sidewall that stands on at least one of a left edge and a right edge of the pulling portion and toward the electromagnetic device, and is made of a magnetic substance.
  • 3. An electromagnetic relay comprising: a pair of fixed contact terminals, each of which has a fixed contact;a movable contact spring that has a pair of movable pieces and a coupler that couples the pair of movable pieces, each of the pair of movable pieces having a movable contact that contacts and is separated from a respective fixed contact;an armature that has a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the movable contact spring by a rotation operation;an electromagnetic device that drives the armature,wherein the hanging portion has a projection to fix the movable contact spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the movable contact spring when a current flows between the fixed contact and the movable contact; anda sidewall that stands on at least one of a left edge and a right edge of the pulling portion and toward the electromagnetic device, and is made of a magnetic substance.
  • 4. An electromagnetic relay comprising: a pair of fixed contact terminals, each of which has a fixed contact;a connection plate that has a pair of movable contacts, each of which contacts and is separated from a respective fixed contact;a plate spring to which the connection plate is fixed;an armature that has a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the connection plate and the plate spring by a rotation operation;an electromagnetic device that drives the armature,wherein the hanging portion has a projection to fix the plate spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the plate spring and the connection plate when a current flows between the fixed contact and the movable contact; anda bottom wall that stands on a lower edge of the pulling portion and toward the electromagnetic device.
  • 5. The electromagnetic relay as claimed in claim 4, wherein the plate spring is bent, and the hanging portion extends so as to overlap with the plate spring and the connection plate and is bent along a shape of the plate spring.
  • 6. An electromagnetic relay comprising: a pair of fixed contact terminals, each of which has a fixed contact;a connection plate that has a pair of movable contacts, each of which contacts and is separated from a respective fixed contact;a plate spring to which the connection plate is fixed;an armature that has a flat plate to be adsorbed to an iron core and a hanging portion bent from the flat plate and extending downward, and moves the connection plate and the plate spring by a rotation operation;an electromagnetic device that drives the armature,wherein the hanging portion has a projection to fix the plate spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the plate spring and the connection plate when a current flows between the fixed contact and the movable contact, wherein:the plate spring is bent; andthe hanging portion extends so as to overlap with the plate spring and the connection plate and is bent along a shape of the plate spring.
  • 7. An electromagnetic relay comprising: a pair of fixed contact terminals, each of which has a fixed contact;a movable contact spring that has a pair of movable pieces and a coupler that couples the pair of movable pieces, each of the movable pieces having a movable contact that contacts and is separable from a respective fixed contact,wherein a current flows between the movable contacts via the pair of movable pieces and the coupler;an armature that has a first portion to be attracted to an iron core and a second portion bent from the first portion and extending downward, and moves the movable contact spring by a rotation operation;an electromagnetic device, including the iron core, that drives the armature,wherein the second portion has a projection to fix the movable contact spring on a face thereof facing the electromagnetic device and a pulling portion that extends downward more than the projection and pulls the movable contact spring when a current flows between the fixed contact and the movable contact; anda sidewall that stands on at least one of a left edge and a right edge of the pulling portion and toward the electromagnetic device, and is made of a magnetic substance.
Priority Claims (1)
Number Date Country Kind
2014-152870 Jul 2014 JP national
US Referenced Citations (8)
Number Name Date Kind
20020036557 Nakamura et al. Mar 2002 A1
20090322454 Tanaka et al. Dec 2009 A1
20100066468 Iwamoto et al. Mar 2010 A1
20130021121 Uchida Jan 2013 A1
20130021122 Uchida Jan 2013 A1
20140015627 Uchida Jan 2014 A1
20140035705 Uchida Feb 2014 A1
20150048908 Isozaki et al. Feb 2015 A1
Foreign Referenced Citations (13)
Number Date Country
2 672 497 Dec 2013 EP
6-139891 May 1994 JP
8-2906 Jan 1996 JP
2002-100275 Apr 2002 JP
2010-10056 Jan 2010 JP
2010-73323 Apr 2010 JP
2012-199112 Oct 2012 JP
2012-199133 Oct 2012 JP
2012-256482 Dec 2012 JP
2013-25906 Feb 2013 JP
2013-41815 Feb 2013 JP
2013-80692 May 2013 JP
2013-84425 May 2013 JP
Non-Patent Literature Citations (12)
Entry
Patent Abstracts of Japan, Publication No. 2013-41815, published Feb. 28, 2013.
Patent Abstracts of Japan, Publication No. 2013-25906, published Feb. 4, 2013.
Patent Abstracts of Japan, Publication No. 2012-256482, published Dec. 27, 2012.
Patent Abstracts of Japan, Publication No. 2013-84425, published May 9, 2013.
Patent Abstracts of Japan, Publication No. 2012-199112, published Oct. 18, 2012.
Patent Abstracts of Japan, Publication No. 2010-10056, published Jan. 14, 2010.
Patent Abstracts of Japan, Publication No. 2012-199133, published Oct. 18, 2012.
Patent Abstracts of Japan, Publication No. 2002-100275, published Apr. 5, 2002.
Patent Abstracts of Japan, Publication No. 6-139891, published May 20, 1994.
Patent Abstracts of Japan, Publication No. 2010-73323, published Apr. 2, 2010.
J-PlatPat English Abstract, Publication No. 2013-080692 published May 2, 2013.
Korean Office Action dated Sep. 22, 2016 in corresponding Korean Patent Application No. 10-2015-0082504.
Related Publications (1)
Number Date Country
20160027602 A1 Jan 2016 US