A definitive diagnosis of lung cancer typically requires a biopsy of potentially cancerous lesions identified through high-resolution computer tomography (CT) scanning Various techniques can be used to collect a tissue sample from within the lung. For example, transbronchial biopsy (TBB) typically involves inserting a flexible bronchoscope into the patient's lung through the trachea and central airways, followed by advancing a biopsy tool through a working channel of the bronchoscope to access the biopsy site. As TBB is safe and minimally invasive, it is frequently preferred over more invasive procedures such as transthoracic needle biopsy.
Current systems and methods for TBB, however, can be less than ideal. For example, the relatively large diameter of current bronchoscopes (5-6 mm) precludes insertion into small airways of the peripheral lung where lesions are commonly found. In such instances, clinicians may be forced to perform blind biopsies in which the biopsy tool is extended outside the field of view of the bronchoscope, thus reducing the accuracy and diagnostic yield of TBB. Additionally, current TBB techniques utilizing fluoroscopy to aid the navigation of the bronchoscope and biopsy tool within the lung can be costly and inaccurate, and pose risks to patient safety in terms of radiation exposure. Furthermore, such fluoroscopic images are typically two-dimensional (2D) images, which can be less than ideal for visual navigation within a three-dimensional (3D) environment.
Thus, there is a need for improved methods and systems for imaging internal tissues within a patient's body, such as within a peripheral airway of the lung.
Methods and systems for imaging internal tissues within a body are provided. For example, in many embodiments, the methods and systems described herein provide tracking of an image gathering portion of an endoscope. In many embodiments, a tracking signal is generated by a sensor coupled to the image gathering portion and configured to track motion with respect to fewer than six degrees of freedom (DoF). The tracking signal can be processed in conjunction with supplemental motion data (e.g., motion data from a second tracking sensor or image data from the endoscope) to determine the 3D spatial disposition of the image gathering portion of the endoscope within the body. The method and systems described herein are suitable for use with ultrathin endoscopic systems, thus enabling imaging of tissues within narrow lumens and/or small spaces within the body. Additionally, in many embodiments, the disclosed methods and systems can be used to generate 3D virtual models of internal structures of the body, thereby providing improved navigation to a surgical site.
Thus, in one aspect, a method for imaging an internal tissue of a body is provided. The method includes inserting an image gathering portion of a flexible endoscope into the body. The image gathering portion is coupled to a sensor configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom. A tracking signal indicative of motion of the image gathering portion is generated using the sensor. The tracking signal is processed in conjunction with supplemental data of motion of the image gathering portion to determine a spatial disposition of the image gathering portion within the body. In many embodiments, the method includes collecting a tissue sample from the internal tissue.
In many embodiments, the sensor is configured to sense motion of the image gathering portion with respect to five degrees of freedom. The sensor can include an electromagnetic tracking sensor. The electromagnetic tracking sensor can include an annular sensor disposed around the image gathering portion.
In many embodiments, the supplemental data includes a second tracking signal indicative of motion of the image gathering portion generated by a second sensor configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom. For example, the second sensor can be configured to sense motion of the image gathering portion with respect to five degrees of freedom. The sensor and the second sensor each can include an electromagnetic sensor.
In many embodiments, the supplemental data includes one or more images collected by the image gathering portion. The supplemental data can further include a virtual model of the body to which the one or more images can be registered.
In many embodiments, processing the tracking signal in conjunction with supplemental data of motion of the image gathering portion to determine a spatial disposition of the image gathering portion within the body includes adjusting for tracking errors caused by motion of the body due to a body function.
In another aspect, a system is provided for imaging an internal tissue of a body. The system includes a flexible endoscope including an image gathering portion and a sensor coupled to the image gathering portion. The sensor is configured to generate a tracking signal indicative of motion of the image gathering portion with respect to fewer than six degrees of freedom. The system includes one or more processors and a tangible storage medium storing non-transitory instructions that, when executed by the one or more processors, process the tracking signal in conjunction with supplemental data of motion of the image gathering portion to determine a spatial disposition of the image gathering portion within the body.
In many embodiments, the image gathering portion includes a cantilevered optical fiber configured to scan light onto the internal tissue and a light sensor configured to receive light returning from the internal tissue so as to generate an output signal that can be processed to provide images of the internal tissue. The diameter of the image gathering portion can be less than or equal to 2 mm, less than or equal to 1.6 mm, or less than or equal to 1.1 mm.
In many embodiments, the flexible endoscope includes a steering mechanism configured to guide the image gathering portion within the body.
In many embodiments, the sensor is configured to sense motion of the image gathering portion with respect to five degrees of freedom. The sensor can include an electromagnetic tracking sensor. The electromagnetic tracking sensor can include an annular sensor disposed around the image gathering portion.
In many embodiments, a second sensor is coupled to the image gathering portion and configured to generate a second tracking signal indicative of motion of the image gathering portion with respect to fewer than six degrees of freedom, such that the supplemental data of motion includes the second tracking signal. The second sensor can be configured to sense motion of the image gathering portion with respect to five degrees of freedom. The sensor and the second sensor can each include an electromagnetic tracking sensor.
In many embodiments, the supplemental motion data includes one or more images collected by the image gathering portion. The supplemental data can further include a virtual model of the body to which the one or more images can be registered.
In many embodiments, the tangible storage medium stores non-transitory instructions that, when executed by the one or more processors, process the tracking signal in conjunction with the supplemental data of motion of the image gathering portion to determine a spatial disposition of the image gathering portion within the body while adjusting for tracking errors caused by motion of the body due to a body function.
In another aspect, a method for generating a virtual model of an internal structure of the body is provided. The method includes generating first image data of an internal structure of a body with respect to a first camera viewpoint and generating second image data of the internal structure with respect to a second camera viewpoint, the second camera viewpoint being different than the first camera viewpoint. The first image data and the second image data can be processed to generate a virtual model of the internal structure.
In many embodiments, a second virtual model of a second internal structure of the body can be registered with the virtual model of the internal structure. The second internal structure can include subsurface features relative to the internal structure. The second virtual model can be generated via one or more of: (a) a computed tomography scan, (b) magnetic resonance imaging, (c) positron emission tomography, (d) fluoroscopic imaging, and (e) ultrasound imaging.
In many embodiments, the first and second image data are generated using one or more endoscopes each having an image gathering portion. The first and second image data can be generated using a single endoscope. The one or more endoscopes can include at least one rigid endoscope, the rigid endoscope having a proximal end extending outside the body. A spatial disposition of an image gathering portion of the rigid endoscope relative to the internal structure can be determined by tracking a spatial disposition of the proximal end of the rigid endoscope.
In many embodiments, each image gathering portion of the one or more endoscopes can be coupled to a sensor configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom to generate a tracking signal indicative of the motion. The tracking signal can be processed in conjunction with supplemental data of motion of the image gathering portion to determine first and second spatial dispositions relative to the internal structure. The sensor can include an electromagnetic sensor.
In many embodiments, each image gathering portion of the one or more endoscopes includes a second sensor configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom to generate a second tracking signal indicative of motion of the image gathering portion, such that the supplemental data includes the second tracking signal. The sensor and the second sensor can each include an electromagnetic tracking sensor. The supplemental data can include image data generated by the image gathering portion.
In another aspect, a system for generating a virtual model of an internal structure of a body is provided. The system includes one or more endoscopes, each including an image gathering portion. The system includes one or more processors and a tangible storage medium storing non-transitory instructions that, when executed by the one or more processors, process first image data of an internal structure of a body and second image data of the internal structure to generate a virtual model of the internal structure. The first image data is generated using an image gathering portion of the one or more endoscopes in a first spatial disposition relative to the internal structure. The second image data is generated using an image gathering portion of the one or more endoscopes in a second spatial disposition relative to the internal structure, the second spatial disposition being different from the first spatial disposition.
In many embodiments, the one or more endoscopes consists of a single endoscope. At least one image gathering portion of the one or more endoscopes can include a cantilevered optical fiber configured to scan light onto the internal tissue and a light sensor configured to receive light returning from the internal tissue so as to generate an output signal that can be processed to provide images of the internal tissue.
In many embodiments, the tangible storage medium stores non-transitory instructions that, when executed by the one or more processors, registers a second virtual model of a second internal structure of the body with the virtual model of the internal structure. The second virtual model can be generated via an imaging modality other than the one or more endoscopes. The second internal structure can include subsurface features relative to the internal structure. The imaging modality can include one or more of (a) a computed tomography scan, (b) magnetic resonance imaging, (c) positron emission tomography, (d) fluoroscopic imaging, and/or (e) ultrasound imaging.
In many embodiments, at least one of the one or more endoscopes is a rigid endoscope, the rigid endoscope having a proximal end extending outside the body. A spatial disposition of an image gathering portion of the rigid endoscope relative to the internal structure can be determined by tracking a spatial disposition of the proximal end of the rigid endoscope.
In many embodiments, a sensor is coupled to at least one image gathering portion of the one or more endoscopes and configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom to generate a tracking signal indicative of the motion. The tracking signal can be processed in conjunction with supplemental data of motion of the image gathering portion to determine a spatial disposition of the image gathering portion relative to the internal structure. The sensor can include an electromagnetic tracking sensor. The system can include a second sensor configured to sense motion of the image gathering portion with respect to fewer than six degrees of freedom to generate a second tracking signal indicative of motion of the image gathering portion, such that the supplemental data includes the second tracking signal. The sensor and the second sensor each can include an electromagnetic sensor. The supplemental data can include image data generated by the image gathering portion.
Other objects and features of the present invention will become apparent by a review of the specification, claims, and appended figures.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Methods and systems are described herein for imaging internal tissues within a body (e.g., bronchial passages within the lung). In many embodiments, the methods and systems disclosed provide tracking of an image gathering portion of an endoscope within the body using a coupled sensor measuring motion of the image gathering portion with respect to less than six DoF. The tracking data measured by the sensor can be processed in conjunction with supplemental motion data (e.g., tracking data provided by a second sensor and/or images from the endoscope) to determine the full motion of the image gathering portion (e.g., with respect to six DoF: three DoF in translation and three DoF in rotation) and thereby determine the 3D spatial disposition of the image gathering portion within the body. In many embodiments, the motion sensors described herein (e.g., five DoF sensors) are substantially smaller than current six DoF motion sensors. Accordingly, the disclosed methods and systems enable the development of ultrathin endoscopes that can be tracked within the body with respect to six DoF of motion.
Turning now to the drawings, in which like numbers designate like elements in the various figures,
Light for scanning internal tissues near the distal end of the flexible endoscope can be provided either by a high power laser 36 through an optical fiber 36a, or through optical fibers 42 by individual red (e.g., 635 nm), green (e.g., 532 nm), and blue (e.g., 440 nm) lasers 38a, 38b, and 38c, respectively, each of which can be modulated separately. Colored light from lasers 38a, 38b, and 38c can be combined into a single optical fiber 42 using an optical fiber combiner 40. The light can be directed through the flexible endoscope 24 and emitted from the distal tip 26 to scan adjacent tissues.
A signal corresponding to reflected light from the scanned tissue can either be detected with sensors disposed within and/or near the distal tip 26 or conveyed through optical fibers extending back to junction box 34. This signal can be processed by several modules, including a module 44 for calculating image enhancement and providing stereo imaging of the scanned region. The module 44 can be operatively coupled to junction box 34 through leads 46. Electrical sources and control electronics 48 for optical fiber scanning and data sampling (e.g., from the scanning and imaging unit within distal tip 26) can be coupled to junction box 34 through leads 50. A sensor (not shown) can provide signals that enable tracking of the distal tip 26 of the flexible endoscope 24 in vivo to a tracking module 52 through leads 54. Suitable embodiments of sensors for in vivo tracking are described below.
An interactive computer workstation and monitor 56 with an input device 60 (e.g., a keyboard, a mouse, a touch screen) is coupled to junction box 34 through leads 58. The interactive computer workstation can be connected to a display unit 62 (e.g., a high resolution color monitor) suitable for displaying detailed video images of the internal tissues through which the flexible endoscope 24 is being advanced.
The reflected light can be conveyed through multimode optical return fibers 82a and 82b having respective lenses 82a′ and 82b′ to light detectors disposed in the proximal end of the flexible endoscope 24. Alternatively, the multimode optical return fibers 82a and 82b can be terminated without the lens 82a′ and 82b′. For example, the fibers 82a and 82b can pass through the annular space of the window 77 and terminate in a disposition peripheral to and surrounding the lens 78 within the distal end of the housing 80. In many embodiments, the distal ends of the fibers 82a and 82b can be disposed flush against the window 79 or replace the window 79. Alternatively, the optical return fibers 82a and 82b can be separated from the fiber scan illumination and be included in any suitable biopsy tool that has optical communication with the scanned illumination field. Although
In many embodiments, the flexible endoscope 24 includes a sensor 84 that produces signals indicative of the position and/or orientation of the distal tip 26 of the flexible endoscope. While
The tracking data can be displayed to the user, for example, on display unit 62. In many embodiments, the displayed tracking data can be used to guide the endoscope to an internal tissue or structure of interest within the body (e.g., a biopsy site within the peripheral airways of the lung). For example, the tracking data can be processed to determine the spatial disposition of the endoscope relative to a virtual model of the surgical site or body cavity (e.g., a virtual model created from a high-resolution computed tomography (CT) scan, magnetic resonance imaging (MRI), positron emission tomography (PET), fluoroscopic imaging, and/or ultrasound imaging). The real-time location and orientation of the endoscope within the virtual model can thus be displayed to a clinician during an endoscopic procedure. In many embodiments, the display unit 62 can also display a path (e.g., overlaid with the virtual model) along which the endoscope can be navigated to reach a specified target site within the body. Consequently, additional visual guidance can be provided by comparing the current spatial disposition of the endoscope relative to the path.
In many embodiments, the flexible endoscope 24 is an ultrathin flexible endoscope having dimensions suitable for insertion into small diameter passages within the body. In many embodiments, the housing 80 of the distal tip 26 of the flexible endoscope 24 can have an outer diameter of 2 mm or less, 1.6 mm or less, or 1.1 mm or less. This size range can be applied, for example, to bronchoscopic examination of eighth to tenth generation bronchial passages.
Electromagnetic Tracking
The EMT sensors 310 can provide tracking signals indicative of the motion of the distal portion of the ultrathin endoscope 300. In many embodiments, each of the EMT sensors 310 provides tracking with respect to fewer than six DoF of motion. Such sensors can advantageously be fabricated in a size range suitable for integration with embodiments of the ultrathin endoscopes described herein. For example, EMT sensors tracking the motion of the distal portion with respect to five DoF (e.g., excluding longitudinal rotation) can be manufactured with a diameter of 0.3 mm or less.
Any suitable number of EMT sensors can be used. For example, the ultrathin endoscope 300 can include two five DoF EMT sensors configured such that the missing DoF of motion of the distal portion can be recovered based on the differential spatial disposition of the two sensors. Alternatively, the ultrathin endoscope 300 can include a single five DoF EMT sensor, and the roll angle can be recovered by combining the tracking signal from the sensor with supplemental data of motion, as described below.
In many embodiments, the annular EMT sensor 322 can be fixed to the sheath 324 such that the sensor 322 and the sheath 324 move together. Accordingly, the annular EMT sensor 322 can provide tracking signals indicative of the motion of the distal portion of the ultrathin endoscope 320. In many embodiments, the annular EMT sensor 322 tracks motion with respect to fewer than six DoF. For example, the annular EMT sensor 322 can provide tracking with respect to five DoF (e.g., excluding the roll angle). The missing DoF can be recovered by combining the tracking signal from the sensor 322 with supplemental data of motion. In many embodiments, the supplemental data of motion can include a tracking signal from at least one other EMT sensor measuring less than six DoF of motion of the distal portion, such that the missing DoFs can be recovered based on the differential spatial disposition of the sensors. For example, similar to the embodiment of
In act 410, a flexible endoscope is inserted into the body of a patient. The endoscope can be inserted via a surgical incision suitable for minimally invasive surgical procedures. Alternatively, the endoscope can be inserted into a natural body opening. For example, the distal end of the endoscope can be inserted into and advanced through an airway of the lung for a bronchoscopic procedure. Any suitable endoscope can be used, such as the embodiments described herein.
In act 420, a tracking signal is generated by using a sensor coupled to the flexible endoscope (e.g., coupled to the image gathering portion at the distal end of the endoscope). Any suitable sensor can be used, such as the embodiments of
In act 430, supplemental data of motion of the flexible endoscope is generated. The supplemental motion data can be processed in conjunction with the tracking signal to determine the spatial disposition of the flexible endoscope with respect to six DoF. For example, the supplemental motion data can include a tracking signal obtained from a second EMT sensor tracking motion with respect to fewer than six DoF, as previously described in relation to
Alternatively or in combination, the supplemental data of motion can include image data that can be processed to recover the DoF of motion missing from the EMT sensor data (e.g., the roll angle). In many embodiments, the image data includes image data collected by the endoscope. Any suitable ego-motion estimation technique can be used to recover the missing DoF of motion from the image data, such as optical flow or camera tracking. For example, successive images captured by the endoscope can be compared and analyzed to determine the spatial transformation of the endoscope between images.
Alternatively or in combination, the spatial disposition of the endoscope can be estimated using image data collected by the endoscope and a 3D virtual model of the body (hereinafter “image-based tracking” or “IBT”). IBT can be used to determine the position and orientation of the endoscope with respect to up to six DoF. For example, a series of endoscopic images can be registered to a 3D virtual model of the body (e.g., generated from prior scan data obtained through obtained through CT, MRI, PET, fluoroscopy, ultrasound, and/or any other suitable imaging modality). For each image or frame, a spatial disposition of a virtual camera within the virtual model can be determined that maximizes the similarity between the image and a virtual image taken from the viewpoint of the virtual camera. Accordingly, the motion of the camera used to produce the corresponding image data can be reconstructed with respect to up to six DoF.
In act 440, the tracking signal and the supplemental data of motion are processed to determine the spatial disposition of the flexible endoscope within the body. Any suitable device can be used to perform the act 440, such as the workstation 56 or tracking module 52. For example, the workstation 56 can include a tangible computer-readable storage medium storing suitable non-transitory instructions that can be executed by one or more processors of the workstation 56 to process the tracking signal and the supplemental data. The spatial disposition information can be presented to the user on a suitable display unit to aid in endoscope navigation, as previously described herein. For example, the spatial disposition of the flexible endoscope can displayed along with one or more of a virtual model of the body (e.g., generated as described above), a predetermined path of the endoscope, and real-time image data collected by the endoscope.
Hybrid Tracking
In many embodiments, a hybrid tracking approach combining EMT data and IBT data can be used to track an endoscope within the body. Advantageously, the hybrid tracking approach can combine the stability of EMT data and accuracy of IBT data while minimizing the influence of measurement errors from a single tracking system. Furthermore, in many embodiments, the hybrid tracking approach can be used to determine the spatial disposition of the endoscope within the body while adjusting for tracking errors caused by motion of the body, such as motion due to a body function (e.g., respiration). The hybrid tracking approach can be performed with any suitable embodiment of the systems, methods, and devices described herein. For example, the hybrid tracking approach can be used to calculate the six-dimensional (6D) position and orientation, {tilde over (x)}=x, y, z, θ, φ, y, of an ultrathin scanning fiber bronchoscope (SFB) with a coupled EMT sensor as previously described.
Although the following embodiments are described in terms of bronchoscopy, the hybrid tracking approaches described herein can be applied to any suitable endoscopic procedure. Additionally, although the following embodiments are described with regards to endoscope tracking within a pig, the hybrid tracking approaches described herein can be applied to any suitable human or animal subject. Furthermore, although the following embodiments are described in terms of a tracking simulation, the hybrid tracking approaches described herein can be applied to real-time tracking during an endoscopic procedure.
Any suitable endoscope and sensing system can be used for the hybrid tracking approaches described herein. For example, an ultrathin (1.6 mm outer diameter) single SFB capable of high-resolution (500×500), full-color, video rate (30 Hz) imaging can be used.
Animal Preparation
A pig was anesthesized for the duration of the experiment by continuous infusion. Following tracheotomy, the animal was intubated and placed on a ventilator at a rate of 22 breaths/min and a volume of 10 mL/kg. Subsequent bronchoscopy and CT imaging of the animal was performed in accordance with a protocol approved by the University of Washington Animal Care Committee.
Free-Hand System Calibration
Prior to bronchoscopy, a miniature EMT sensor can be attached to the distal tip of the SFB using a thin section of silastic tubing. A free-hand system calibration can then be conducted to relate the 2D pixel space of the video images produced by the SFB to that of the 3D operative environment, with respect to coordinate systems of the world (W), sensor (S), camera (C), and test target (T). Based on the calibration, transformations TSC, TTC, TWS, and TTW can be computed between pairs of coordinate systems (denoted by the subscripts).
The transformations TSC and TTW can be computed directly from these equations, for example, using singular-value decomposition.
Bronchoscopy
Prior to bronchoscopy, the animal was placed on a flat operating table in the supine position, just above the EMT field generator. An initial registration between the EMT and CT image coordinate systems was performed.
CT Imaging
Following bronchoscopy, the animal was imaged using a suitable CT scanner (e.g., a VCT 64-slice light-speed scanner, General Electric). This can be used to produce volumetric images, for example, at a resolution of 512×512×400 with an isotropic voxel spacing of 0.5 mm. During each scan, the animal can be placed on a continuous positive airway pressure at 22 cm H2O to prevent respiratory artifacts. Images can be recorded, for example, on digital versatile discs (DVDs), and transferred to a suitable processor or workstation (e.g., a Dell 470 Precision Workstation, 3.40 GhZ CPU, 2 GB RAM) for analysis.
Offline Bronchoscopic Tracking Simulation
The SFB guidance system can be tested using data recorded from bronchoscopy. The test platform can be developed on a processor or workstation (e.g., a workstation as described above, using an ATI FireGL V5100 graphics card and running Windows XP). The software test platform can be developed, for example, in C++ using the Visualization Toolkit or VTK (Kitware) that provides a set of OpenGL-supported libraries for graphical rendering. Before simulating tracking of the bronchoscope, an initial image analysis can be used to crop the lung region of the CT images, perform a multistage airway segmentation algorithm, and apply a contouring filter (e.g., from VTK) to produce a surface model of the airways.
Video Preprocessing
Prior to registration of the SFB video images to the CT-generated virtual model (hereinafter “CT-video registration”), each video image or frame can first be preprocessed.
CT-Video Registration
CT-video registration can optimize the position and pose {tilde over (x)} of the SFB in CT coordinates by maximizing similarity between real and virtual bronchoscopic views, IV and I{tilde over (x)}CT. Similarity can be measured by differential surface analysis.
The weighting term wij can be set equal to the gradient magnitude ∥nijV∥ to permit greater influence from high-gradient regions and improve registration stability. In some instances, limiting the weighting can be necessary, lest similarity be dominated by a very small number of pixels with spuriously large gradients. Accordingly, wij can be set to min(∥nijV∥,10). Optimization of the registration can use any suitable algorithm, such as the constrained, nonlinear, direct, parallel optimization using trust region (CONDOR) algorithm.
Hybrid Tracking
In many embodiments, both EMT and IBT can provide independent estimates of the 6D position and pose {tilde over (x)}=[xT, θT]T of the SFB in static CT coordinates, as it navigates through the airways. In the hybrid implementation, the position and pose recorded by the EMT sensor {tilde over (x)}kEMT can provide an initial estimate of the SFB position and pose at each frame k. This can then be refined to as {tilde over (x)}kCT by CT-video registration, as described above. The position disagreement between the two tracking sources can be modeled as
x
k
CT
=x
k
EMT+δk.
If xkCT is assumed to be an accurate measure of the true SFB position in the static CT image, δ is the local registration error between the actual and virtual airway anatomies, and can be given by δ=[δx; δy, δz]T. The model can be expanded to include an orientation term θ, which can be defined as a vector of three Euler angles θ=[θz, θy, θz]T. The relationship of θ to the tracked orientations θEMT and θCT can be given by
R(θkCT)=R(θkEMT)R(θk)
where R(θ) is the resulting rotation matrix computed from θ. Both δ and θ can be assumed to vary slowly with time, as illustrated in
Generally, the discrete Kalman filter can be used to estimate the unknown state ŷ of any time-controlled process from a set of noisy and uniformly time-spaced measurements z using a recursive two-step prediction stage and subsequent measurement-update correction stage. At each measurement k, an initial prediction of the Kalman state ŷk− can be given by
ŷ
k
−
=Aŷ
k-1
P
k
−
=AP
k-1
A
T
+Q (time-update prediction)
where A is the state transition matrix, P is the estimated error covariance matrix, and Q is the process error covariance matrix. In the second step, the corrected state estimate ŷk can be calculated from the measurement zk by using
K
k
=P
k
−
H
T(HPk−HT+R)
ŷ
k
=ŷ
k
−
+K
k(zk−ŷk−)
P
k=(I−KkH)Pk− (measurement-update correction)
where K is the Kalman gain matrix, H is the measurement matrix, and R is the measurement error covariance matrix.
From the process definition described above, an error-state Kalman filter can be used to recursively compute the registration error between {tilde over (x)}EMT and {tilde over (x)}CT from the error state ŷ=[δx, δy, δz, θz, θy, θz]T. At each new frame, an improved initial estimate {tilde over (x)}kCT can be computed from the predicted error state ŷk−, where A is simply an identity matrix, and the predicted position and pose can be given by xkCT=xkEMT+δk and R (θkCT)=R(θkEMT)R(θk). Following CT-video registration, the measured error zk can be equal to [zxT, zθT]T, where zxT=xCT−xEMT and zθ contains the three Euler angles that correspond to the rotational error R(θEMT)−1R(θCT). A measurement update can be performed as described above. In this way, the Kalman filter can be used to adaptively recomputed updated measurements of δ and θ, which vary with time and position in the airways.
In some instances, however, the aforementioned model can be limited by its assumption that the registration error is slowly varying in time, and can be further refined. When considering the effect of respiratory motion, the registration error can be differentiated into two components: a slowly varying error offset δ′ and an oscillatory component that is dependent on the respiratory phase φ, where φ varies from 1 at full inspiration to −1 at full expiration. Therefore, the model can be extended to include respiratory motion compensation (RMC), given by the form
x
k
CT
=x
k
EMT+δ′k+φkUk.
In this model, δ′ can represent a slowly varying secular error between the EMT system and the zero-phase or “average” airway shape at φ=0. The process variable Uk can be the maximum local deformation between the zero-phase and full inspiration (φ=1) or expiration (φ=−1) at {tilde over (x)}kCT. Deformable registration of chest CT images taken at various static lung pressure can show that the respiratory-induced deformation of a point in the lung roughly scales linearly with the respiratory phase between full inspiration and full expiration. Instead of computing φ from static lung pressures, an abdominal-mounted position sensor can serve as a surrogate measure of respiratory phase. The abdominal sensor position can be converted to φ by computing the fractional displacement relative to the maximum and minimum displacements observed in the previous two breath cycles. In many embodiments, it is possible to compensate for respiratory-induced motion directly. The original error state vector ŷ can be revised to include an estimation of U, such that ŷ=[δx, δy, δz, θz, θy, θz, Ux, Uy, Uz]T. The initial position estimate can be modified to: xkCT=xkEMT+δ′k+φkUk.
A hybrid tracking simulation is performed as described above. From a total of six bronchoscopic sections, four are selected for analysis. In each session, the SFB begins in the trachea and is progressively extended further into the lung until limited by size or inability to steer. Each session constitutes 600-1000 video frames, or 40-66 s at a 15 Hz frame rate, which provides sufficient time to navigate to a peripheral region. Two sessions are excluded, mainly as a result of mucus, which makes it difficult to maneuver the SFB and obscures images.
Validation of the tracking accuracy is performed by registrations performed manually at a set of key frames, spaced at every 20th frame of each session. Manual registration requires a user to manipulate the position and pose of the virtual camera to qualitatively match the real and virtual bronchoscopic images by hand. The tracking error Ekey is given as the root mean squared (RMS) positional and orientational error between the manually registered key frames and hybrid tracking output, and is listed in TABLE 1.
Error metrics Ekey, Epred, Eblind, and Δ{tilde over (x)} are given as RMS position and orientation errors over all frames. The mean number of optimizer iterations and associated execution times are listed for CT-video registration under each approach.
For comparison, tracking is initially performed by independent EMT or IBT. Using just the EMT system, Ekey is 14.22 mm and 18.52° averaged over all frames. For IBT, Ekey is 14.92 mm and 52.30° averaged over all frames. While this implies that IBT is highly inaccurate, these error values are heavily influenced by periodic misregistration of real and virtual bronchoscopic images, causing IBT to deviate from the true path of the SFB. As such, IBT alone is insufficient for reliably tracking the SFB into peripheral airway regions.
Hybrid Tracking
Three hybrid tracking methods are compared for each of the four bronchoscopic sessions. In the first hybrid method (H1), only the registration error δ is considered. In the second method (H2), the orientation correction term θ is added. In the third method (H3), RMC is further added, differentiating the tracked position discrepancy of EMT and IBT into a relative constant δ′ and a respiratory motion-dependent term φU. The positional tracking error Ekey is 6.74, 4.20, and 3.33 mm for H1, H2, and H3, respectively. The orientational error Eθkey is 14.30°, 11.90°, and 10.01° for H1, H2, and H3, respectively.
To eliminate the subjectivity inherent in manual registration, prediction error Epred is computed as the average per-frame error between the predicted position and pose, {tilde over (x)}kCT, and tracked position {tilde over (x)}kCT. The position prediction error Expred is 4.82, 3.92, and 1.96 mm for methods H1, H2, and H3, respectively. The orientational prediction error Eθpred is 18.64°, 9.44°, and 8.20° for H1, H2, and H3, respectively.
From the proposed hybrid models, the error terms in ŷ are considered to be locally consistent and physically meaningful, suggesting that these values are not expected to change dramatically over a small change in position. Provided this is true, {tilde over (x)}kCT at each frame should be relatively consistent with a blind prediction of the SFB position and pose computed from ŷk-τ, at some small time in the past. Formally, the blind prediction error for position Exblind can be computed as
For time, a time lapse of τ−1 s, Ex
From the hybrid model H3, RMC produces an estimate of the local and position-dependent airway deformation U=U(xCT). Unlike the secular position and orientation errors, δ and θ, U is assumed to be a physiological measurement, and therefore, it is independent of the registration. For comparison, the computed deformation is also independently measured through deformable image registration of two CT images taken at full inspiration and full expiration (lung pressures of 22 and 6 cm H2O, respectively). From this process, a 3D deformation field {right arrow over (U)} is calculated, describing the maximum displacement of each part of the lung during respiration.
The results show that the hybrid approach provides a more stable and accurate means of localizing the SFB intraoperatively. The positional tracking error Ekey for EMT and IBT is 14.22 and 14.92 mm, respectively, as compared to 6.74 mm in the simplest hybrid approach. Moreover, Exkey reduces by at least two-fold from the addition of orientation and RMC to the process model. After introducing the rotational correction, the predicted orientation error Eθkey reduces from 18.64° to 9.44°. Likewise, RMC reduces the predicted position error Expred from 3.92 to 1.96 mm and the blind prediction error Exblind from 4.17 mm to 2.73 mm.
Using RMC, the Kalman error model more accurately predicts SFB motion, particularly in peripheral lung regions that are subject to large respiratory excursions. From
Overall, the results from in vivo bronchoscopy of peripheral airways within a live, breathing pig are promising, suggesting that image-guided TBB may be clinically viable for small peripheral pulmonary nodules.
Virtual Surgical Field
Suitable embodiments of the systems, methods, and devices for endoscope tracking described herein can be used to generate a virtual model of an internal structure of the body. In many embodiments, the virtual model can be a stereo reconstruction of a surgical site including one or more of tissues, organs, or surgical instruments. Advantageously, the virtual model as described herein can provide a 3D model that is viewable from a plurality of perspectives to aid in the navigation of surgical instruments within anatomically complex sites.
Any suitable number of endoscopes can be used in the system 600, such as a single endoscope, a pair of endoscopes, or multiple endoscopes. The endoscopes can be flexible endoscopes or rigid endoscopes. In many embodiments, the endoscopes can be ultrathin fiber-scanning endoscopes, as described herein. For example, one or more ultrathin rigid endoscopes, also known as needle scopes, can be used.
In many embodiments, the endoscopes 602, 604 are disposed relative to each other such that the respective viewing fields or viewpoints 610, 612 are different. Accordingly, a 3D virtual model of the internal structure can be generated based on image data captured with respect to a plurality of different camera viewpoints. For example, the virtual model can be a surface model representative of the topography of the internal structure, such as a surface grid, point cloud, or mosaicked surface. In many embodiments, the virtual model can be a stereo reconstruction of the structure generated from the image data (e.g., computed from disparity images of the image data). The virtual model can be presented on a suitable display unit (e.g., a monitor, terminal, or touchscreen) to assist a surgeon during a surgical procedure by providing visual guidance for maneuvering a surgical instrument within the surgical site. In many embodiments, the virtual model can be translated, rotated, and/or zoomed to provide a virtual field of view different than the viewpoints provided by the endoscopes. Advantageously, this approach enables the surgeon to view the surgical site from a stable, wide field of view even in situations when the viewpoints of the endoscopes are moving, obscured, or relatively narrow.
In order to generate a virtual model from a plurality of endoscopic viewpoints, the spatial disposition of the distal image gathering portions of the endoscopes 602, 604 can be determined using any suitable endoscope tracking method, such as the embodiments described herein. Based on the spatial disposition information, the image data from the plurality of endoscopic viewpoints can be aligned to each other and with respect to a global reference frame in order to reconstruct the 3D structure (e.g., using a suitable processing unit or workstation). In many embodiments, each of the plurality of endoscopes can include a sensor coupled to the distal image gathering portion of the endoscope. The sensor can be an EMT sensor configured to track motion with respect to fewer than six DoF (e.g., five DoF), and the full six DoF motion can be determined based on the sensor tracking data and supplemental data of motion, as previously described. In many embodiments, the hybrid tracking approaches described herein can be used to track the endoscopes.
Optionally, the endoscopes 602, 604 can include at least one needle scope having a proximal portion extending outside the body, such that the spatial disposition of the distal image gathering portion of the needle scope can be determined by tracking the spatial disposition of the proximal portion. For example, the proximal portion can be tracked using EMT sensors as described herein, a coupled inertial sensor, an external camera configured to image the proximal portion or a marker on the proximal portion, or suitable combinations thereof. In many embodiments, the needle scope can be manipulated by a robotic arm, such that the spatial disposition of the proximal portion can be determined based on the spatial disposition of the robotic arm.
In many embodiments, the virtual model can registered to a second virtual model. Both virtual models can thus be simultaneously displayed to the surgeon. The second virtual model can be generated based on data obtained from a suitable imaging modality different from the endoscopes, such as one or more of CT, MRI, PET, fluoroscopy, or ultrasound (e.g., obtained during a pre-operative procedure). The second virtual model can include the same internal structure imaged by the endoscopes and/or a different internal structure. Optionally, the internal structure of the second virtual model can include subsurface features relative to the virtual model, such as subsurface features not visible from the endoscopic viewpoints. For example, the first virtual model (e.g., as generated from the endoscopic views) can be a surface model of an organ, and the second virtual model can be a model of one or more internal structures of the organ. This approach can be used to provide visual guidance to a surgeon for maneuvering surgical instruments within regions that are not endoscopically apparent or otherwise obscured from the viewpoint of the endoscopes.
Accordingly, a virtual model of the surgical site can be displayed to the surgeon such that a stable and wide field of view is available even if the current viewpoint of the endoscope 642 is obscured or otherwise less than ideal. For example, the distal image gathering portion of the endoscope 642 can be tracked as previously described to determine its spatial disposition. Thus, as the instrument 644 and endoscope 642 are moved through a plurality of spatial dispositions within the body 646, the plurality of image data generated by the endoscope 642 can be processed, in combination with the spatial disposition information, to produce a virtual model as described herein.
One of skill in the art will appreciate that elements of the endoscopic viewing systems 600, 620, and 640 can be combined in many ways suitable for generating a virtual model of an internal structure. Any suitable number and type of endoscopes can be used for any of the aforementioned systems. One or more of the endoscopes of any of the aforementioned systems can be coupled to a surgical instrument. The aforementioned systems can be used to generate image data with respect to a plurality of camera viewpoints by having a plurality of endoscopes positioned to provide different camera viewpoints, moving one or more endoscopes through a plurality of spatial dispositions corresponding to a plurality of camera viewpoints, or suitable combinations thereof
In act 710, first image data of the internal structure of the body is generated with respect to a first camera viewpoint. The first image data can be generated, for example, with any endoscope suitable for the systems 600, 620, or 640. The endoscope can be positioned at a first spatial disposition to produce image data with respect to a first camera viewpoint. In many embodiments, the image gathering portion of the endoscope can be tracked in order to determine the spatial disposition corresponding to the image data. For example, the tracking can be performed using a sensor coupled to the image gathering portion of the endoscope (e.g., an EMT sensor detecting less than six DoF of motion) and supplemental data of motion (e.g., EMT sensor data and/or image data), as described herein.
In act 720, second image data of the internal structure of the body is generated with respect to a second camera viewpoint, the second camera viewpoint being different than the first. The second image data can be generated, for example, with any endoscope suitable for the systems 600, 620, or 640. The endoscope of act 720 can be the same endoscope used to practice act 710, or a different endoscope. The endoscope can be positioned at a second spatial disposition to produce image data with respect to a second camera viewpoint. The image gathering portion of the endoscope can be tracked in order to determine the spatial disposition, as previously described with regards to the act 710.
In act 730, the first and second image data are processed to generate a virtual model of the internal structure. Any suitable device can be used to perform the act 730, such as the workstation 56. For example, the workstation 56 can include a tangible computer-readable storage medium storing suitable non-transitory instructions that can be executed by one or more processors of the workstation 56 to process the image data. The resultant virtual model can be displayed to the surgeon as described herein (e.g., on a monitor of the workstation 56 or the display unit 62).
In act 740, the virtual model is registered to a second virtual model of the internal structure. The second virtual model can be a provided based on data obtained from a suitable imaging modality (e.g., CT, PET, MRI, fluoroscopy, ultrasound). The registration can be performed by a suitable device, such as the workstation 56, using a tangible computer-readable storage medium storing suitable non-transitory instructions that can be executed by one or more processors to register the models to each other. Any suitable method can be used to perform the model registration, such as a surface matching algorithm. Both virtual models can be presented, separately or overlaid, on a suitable display unit (e.g., a monitor of the workstation 56 or the display unit 62) to enable, for example, visualization of subsurface features of an internal structure.
The acts of the method 700 can be performed in any suitable combination and order. In many embodiments, the act 740 is optional and can be excluded from the method 700. Suitable acts of the method 700 can be performed more than once. For example, during a surgical procedure, the acts 710, 720, 730, and/or 740 can be repeated any suitable number of times in order to update the virtual model (e.g., to provide higher resolution image data generated by moving an endoscope closer to the structure, to display changes to a tissue or organ effected by the surgical instrument, or to incorporate additional image data from an additional camera viewpoint). The updates can occur automatically (e.g., at specified time intervals) and/or can occur based on user commands (e.g., commands input to the workstation 56).
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application claims the benefit of U.S. Provisional Application No. 61/728,410 filed Nov. 20, 2012, which application is incorporated herein by reference.
This invention was made with government support under CA094303 awarded by the National Institutes of Health. The government may have certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/70805 | 11/19/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61728410 | Nov 2012 | US |