The present invention relates to medical pumps for delivering medicament to a patient, and more specifically, to a user-wearable pump.
There are many applications in academic, industrial, and medical fields that benefit from devices and methods that are capable of accurately and controllably delivering fluids, such as liquids and gases, that have a beneficial effect when administered in known and controlled quantities. Such devices and methods can be particularly useful in the medical field where treatments for many patients include the administration of a known amount of a substance at predetermined intervals.
One category of devices for delivering such fluids is that of pumps that have been developed for the administration of insulin and other medicaments for those suffering from both type I and type II diabetes. Some pumps configured as portable infusion devices can provide continuous subcutaneous medicament injection and/or infusion therapy for the treatment of diabetes. Such therapy may include, e.g., the regular and/or continuous injection or infusion of insulin into the skin of a person suffering from diabetes and offer an alternative to multiple daily injections of insulin by an insulin syringe or an insulin pen. Such pumps can be ambulatory/portable infusion pumps that are worn by the user and may use replaceable cartridges. Examples of such pumps and various features that can be associated with such pumps include those disclosed in U.S. Patent Application Publication No. 2013/0053816; U.S. Pat. Nos. 8,573,027; 8,986,253; U.S. Patent Application Publication No. 2013/0324928; U.S. Patent Application Publication No. 2013/0331790; U.S. Pat. No. 8,287,495; U.S. patent application Ser. No. 15/241,257 (filed Aug. 19, 2016); and U.S. patent application Ser. No. 15/158,125 (filed May 18, 2016), each of which is hereby incorporated herein by reference in its entirety.
One type of pump that has been developed is a patch pump, or micro pump. Patch pumps are small pumps, typically ambulatory, that may be carried directly on the skin under the user's clothing. In some cases, the pumps are situated directly on, or very near to, the injection site such that little or no tubing is required to deliver the insulin or other medicament to the patient. Some patch pumps include a single button on the pump to initiate delivery of medicament and do not include a built-in display or user interface. These pumps are therefore primarily remote-controlled. Having only a single button on the pump provides the advantage of being more robust for waterproofing and resistance to external contaminants. However, a disadvantage is that the functionality of a pump with a single button is limited without the use of a remote control apparatus, typically including a user interface.
Embodiments of the present disclosure enable enhanced or altered functionality of an infusion pump in the presence of a recognized electromagnetic signal or following a predefined sequence of accelerometer-detected orientation shifts. For example, activation of at least one button on the pump normally initiates a first function or operation, such as initiating delivery of medicament, but in the presence of a recognized electromagnetic signal or following a predefined sequence of accelerometer-detected orientation shifts, the at least one button can initiate a second function or operation different from the first function, such as pairing the pump to a remote device. This can expand the number of functions that can be accomplished with a device that has a limited number of means for inputting commands into the device.
One embodiment of the present disclosure provides an infusion pump system including a pump for delivering medicament to a user of the pump. The pump can have a wirelessly chargeable battery and at least one button. When not in the presence of a wireless charging signal, activation of the at least one button can enable and/or initiate a first function or operation. When in the presence of a wireless charging signal, activation of the at least one button can enable and/or initiate a second, different function or operation.
Another embodiment of the present disclosure provides an infusion pump system including a pump for delivering medicament to a user of the pump. The pump can include a Bluetooth beacon receiver and at least one button. When not in the presence of a Bluetooth beacon, activation of the at least one button can enable and/or initiate a first function or operation. When in the presence of a Bluetooth beacon, activation of the at least one button can enable and/or initiate a second, different function or operation.
Another embodiment of the present disclosure provides an infusion pump system including a pump having for delivering medicament to a user of the pump. The pump can include a plurality of accelerometers that are configured to sense acceleration and detect pump orientation and at least one button. Activation of the at least one button can enable and/or initiate a first function or operation, but following a predefined sequence of accelerometer-detected orientation shifts, activation of the at least one button can enable and/or initiate a second, different function or operation.
In one embodiment, activation of the at least one button can be at least one of a single press of the at least one button or a predefined sequential pattern of presses of the at least one button over a determined length of time. In one embodiment, the first function can be at least one of initiating delivery of medicament, communicatively coupling the pump to a remote display and/or user interface, communicatively coupling the pump to a remote glucose monitor, or initiating a status check. In one embodiment, the second function can be at least one of suspending delivery of medicament, initiating a low-power mode for the pump, resetting the pump, communicatively coupling the pump to a remote display and/or user interface, communicatively coupling the pump to a remote glucose monitor, or initiating a test routine.
The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.
Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:
While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.
Referring to
Cartridge 116 of pump 102 can attach to drive unit 118 with, for example, a quarter turn attachment mechanism. The recess of cartridge 116 can be configured to initially attach to drive mechanism 122 of drive unit 118 such that an outer front housing surface 140 of the cartridge 116 is offset from an outer front housing surface 142 of the drive unit 118 and an angle of, e.g., between about 30 and about 150 degrees. The cartridge 116 can then be rotated toward the drive unit 118 to align the outer surface 140 of the cartridge 116 generally parallel with the outer surface 142 of the drive unit 118 and secure the cartridge 116 on the drive unit 118. In one embodiment, the engagement of the cartridge 116 to the drive unit 118 made by this rotation can cause an audible clicking sound that provides an auditory indication to the user that the cartridge is properly attached by the user of, e.g., detent projections and grooves as depicted. Such a feature can alternatively or additionally provide a tactile indication to the user that the cartridge is properly attached. Further details regarding such pumps can be found in U.S. patent application Ser. No. 14/707,851 (filed May 8, 2015); U.S. Patent Application Publication No. 2016/0339172; and U.S. Patent Application Publication No. 2017/0049957, each of which is hereby incorporated herein by reference in its entirety.
In one embodiment, pump system 100 can include a short length of tubing 153 and a connector 152. Connector 152 can be configured to attach to a corresponding connector of an infusion set that includes, e.g., a length of tubing extending from the corresponding connector to an infusion site having an infusion site connector to deliver medicament to the infusion site. In some embodiments, connector 152 extending from cartridge 116 and the corresponding connector of the infusion set can be Luer Lock connections. Other infusion set configurations and attachments are described in U.S. Patent Publication No. 2014/0276423, which is hereby incorporated by reference in its entirety.
As depicted in the embodiment of
In one embodiment, pump 102 includes a processor that controls operations of the pump and, in some embodiments, may communicate in either one-way or two-way modes to, e.g., receive operational commands and/or other signals, including data, from a separate device and/or, e.g., to send signals, including data, to a separate device. Pump 102 can include one or more buttons configured to cause the processor to initiate one or more functions. In the depicted embodiments, pump 102 includes only a single button 172, although more than one button may be present on pump 102. Button 172 can be configured to, for example, initiate delivery of medicament. Any single button such as button 172 can be utilized to execute a plurality of functions or operations. For example, a single press of button may initiate one function, holding the button down for a predetermined period of time may initiate another function, etc. Because the depicted pump 102 optionally does not itself include a display or user interface, information and feedback regarding medicament delivery or dosing initiated with button 172 can be communicated to and displayed on a remote control device or other device having a display and/or other type of user interface.
In one embodiment, pump 102 includes a light source, such as a light emitting diode (LED) 174. Light source 174 can be configured to provide user feedback regarding user input and/or the performance of a desired function. For example, in one embodiment, light source 174 can illuminate or blink one or more times to indicate that the one or more buttons 172 have been activated and/or that a desired function has been initiated. In one embodiment, pump 102 can additionally and/or alternatively vibrate and/or provide audible notifications to indicate that the one or more buttons 172 have been activated and/or that a desired function has been initiated or, e.g., to provide user feedback regarding user input and/or the performance of the desired function. Illumination of light source 174 and/or vibrations and/or audible notifications may be executed in any number of patterns, frequencies, durations, sequences, combinations, colors, brightness levels, etc. to indicate particular information, such as particular input received and/or particular functions or operations enabled and/or initiated, to the pump user or caregiver.
Referring to
Referring to
In some embodiments, pumps described herein can interface with a glucose meter, such as a blood glucose meter (BGM) or a continuous glucose monitor (CGM), the latter category of which provides a substantially continuous estimated of a blood glucose level through a transcutaneous sensor that measures analytes, such as glucose, in the patient's interstitial fluid rather than the patient's blood. Pump system can use data obtained from a glucose meter such as a CGM to adjust therapy with pump either automatically, such as in a closed-loop or semi-closed loop “artificial pancreas” system, or by providing such data for user review via a remote control device 170, 171. The data may be transmitted from the CGM to the pump and/or remote controller via a wireless transmitter, such as an NFC RF transmitter or an RF transmitter operating according to a “Wi-Fi” or Bluetooth® protocol or the like, or the data may be transmitted via a wire connector. Further detail regarding CGM systems and definitions of related terms can be found in, e.g., U.S. Pat. Nos. 8,311,749, 7,711,402 and 7,497,827, each of which is hereby incorporated by reference in its entirety.
Embodiments of the present invention include components capable of and methods using wired and wireless transmission and receipt of signals for exchange of information and commands between and among any of the components as described herein, including, e.g., between a pump and a smartphone; among a pump, a CGM and a smartphone; between a dedicated remote controller and a pump; among a dedicated remote controller, a CGM and a pump; among a dedicated remote controller, a BGM and a pump, and other combinations as would be contemplated by those of skill in the art.
Referring to
To charge the pump 102, the pump 102 may first be disconnected from the tubing of the infusion set (as depicted in
Inductive charging of pump 102 can be carried out according to known standards, such as, for example, the Qi open interface standard. In an example of such a system, both the pump 102 and the charging pad 180 include an inductive coil. A transmitting coil in the charging pad 180 connected to the power source generates an oscillating magnetic field that induces an alternating current in a receiving coil in the pump 102 to transfer power to pump 102. In one embodiment, charging pad 180 continuously (e.g., twice a second) sends an analog signal to detect the presence of a device such as pump 102. When the pad detects the presence of, e.g., a pump (via a magnetic load), it sends a digital communication signal to the pump 102. The pump receives the signal and sends a return signal to the pad 180, which causes the pad 180 to transmit charging power to the pump.
Referring to
At step 202, a recognized electromagnetic signal is received by pump 102 from another device. For example, the received electromagnetic signal can be a wireless charging signal such as an inductive charging signal. In one embodiment, the inductive charging methodology can require that the pump 102 detect the presence of a charging pad 180 when the charging pad 180 and the pump 102 are in close enough proximity for energy transfer via electromagnetic induction to occur. This communication between the charging pad 180 and the pump 102, sometimes referred to as a “handshake,” can aid in ensuring that the charging pad 180 only transmits an inductive charging signal when the pump 102 is present and its battery is ready to receive a charge, and cease transmission once the rechargeable battery has been fully charged, thereby avoiding energy waste and battery overcharging. It is noted that the wireless or inductive “charging signal” as used herein with regard to embodiments of the invention can in various embodiments refer to either the presence detecting signal sent out by the pad to detect the pump, the electromagnetic field or other signal transmitted by the pad to charge the pump, an additional signal transmitted continuously or periodically transmitted by the pad when, for example, the pad is idle or a charge is complete, or some combination thereof.
The received electromagnetic signal can be recognized as an input to software on the pump 102 operated by the pump processor to enable additional features of the pump, either on its own, or in combination with activation of button 172. Thus, at step 203, activation of button 172 can be configured to enable and/or initiate a second function or operation (i.e., function B) different from the first function or operation when the inductive charging signal is present. In one embodiment, the second function can be at least one of, for example, suspending delivery of medicament, initiating a low-power or shelf mode for the pump, resetting the pump processor, communicatively coupling the pump to a remote display and/or user interface, communicatively coupling the pump to a remote glucose monitor, initiating a test routine, initiating a software update protocol, etc. For example, in one embodiment, a single press of button 172 in the presence of inductive charging signal suspends delivery of medicament, while a predefined sequential pattern of presses of button 172 over a determined length of time communicatively resets the pump 102. In one embodiment, light source 174 can illuminate to indicate that button 172 has been activated and/or function B has been initiated.
Although primarily described herein with respect to first and second functions, it should be understood that a plurality of different functions can be addressed by embodiments of the invention. For example, a single press of button 172 may cause the device to execute first and second functions depending on whether or not an electromagnetic signal is present as described herein, whereas a different type of activation of button 172, such, as for example, holding the button down for a predetermined period of time or pressing button 172 a number times within a certain period (e.g., two or three button presses in rapid succession or otherwise recognizable pattern/frequency) can initiate third and fourth or more functions in the absence and presence of such a signal, respectively.
In addition, although primarily described herein with regard to inductive charging, embodiments of the invention can utilize other types of wireless charging. For example, pumps as described herein could alternatively or additionally be charged with resonant wireless charging and RF-based wireless charging and utilize signals related thereto to alter functionality of the pump as described herein.
In another embodiment, the received electromagnetic signal can be a Bluetooth beacon, such as that emitted from the remote control device 170 or dedicated remote controller 171. Such an emitted beacon can have a unique address or name that is recognizable to the pump software when placed within a receivable range of pump 102.
In another embodiment, pump 102 is equipped with one or more accelerometers configured to detect or sense acceleration and/or pump orientation, the input of which can enhance or alter the functionality of button 172, in place of or in addition to an electromagnetic signal. For example, in one embodiment, at step 202, a user can shake the pump 102, either continuously, or for a specified number of times. Alternatively, the one or more accelerometers can detect the pump orientation based on the current orientation or a sequence of orientation shifts. For example, the pump can be held in a vertical orientation until a timeout is achieved, wherein the pump can beep or vibrate to indicate that the time requirement has been met. The pump can then be rotated between about 90 and about 180 degrees to a secondary position and held in that position until a second timeout is achieved. This sequence of orientation shifts can be used to enable pump features and can be useful in production or during patient use for tasks such as cartridge change or priming, to ensure that the pump 102 is in the optimal orientation. The sensed accelerations can be recognized as inputs to software on the pump 102 to enable additional features of the pump, either on its own, or in combination with activation of button 172.
Accordingly, through the receipt of a recognized electromagnetic signal and/or input from internal accelerometers, the functionality of button 172 can be increased, while still maintaining an overall usability of pump 102 that is both intuitive and safe for a user.
Embodiments of the present disclosure enable enhanced or altered operation and/or functionality of an infusion pump, such as a user-wearable infusion pump, in the presence of a recognized electromagnetic signal or following a predefined sequence of accelerometer detected orientation shifts. For example, activation of at least one button on the pump normally enables and/or initiates a first function or operation, such as enabling and/or initiating delivery of medicament, but in the presence of a recognized electromagnetic signal or following a predefined sequence of accelerometer detected orientation shifts, the at least one button can enable and/or initiate a second function or operation different from the first function, such as pairing the pump to a remote device.
Although the pump system described herein is described as a user-wearable pump system that has no display or user interface and is primarily controlled by a remote device, it should be understood that aspects of the present disclosure can be incorporated into other types of infusion pumps. For example, full-featured user-wearable infusion pumps having display and input capabilities, such as a touchscreen display on the pump housing, one example of which is disclosed in U.S. Pat. No. 8,287,495, which is hereby incorporated by reference herein, can incorporate aspects of the present disclosure.
Also incorporated herein by reference in their entirety are commonly owned U.S. Pat. Nos. 8,287,495; 8,408,421 8,448,824; 8,573,027; 8,650,937; 8,986,523; 9,173,998; 9,180,242; 9,180,243; 9,238,100; 9,242,043; 9,335,910; 9,381,271; 9,421,329; 9,486,171; 9,486,571; 9,492,608; 9,503,526; 9,555,186; 9,565,718; 9,603,995; 9,669,160; 9,715,327; 9,737,656; and 9,750,871 commonly owned U.S. Patent Publication Nos. 2009/0287180; 2012/0123230; 2013/0053816; 2014/0276419; 2014/0276420; 2014/0276423; 2014/0276531; 2014/0276556 2014/0276569; 2014/0276570; 2014/0378898; 2015/0073337; 2015/0182693; 2016/0082188; 2016/0339172; 2017/0049957; 2017/0142658; 2017/0182248; and 2017/0250971 and commonly owned U.S. patent application Ser. Nos. 14/707,851; 15/564,895; and 15/705,983 and commonly owned U.S. Provisional Application Ser. Nos. 61/911,576; 61/920,902; 61/920,914; 61/920,940; 62/139,275; 62/352,164; 62/445,041; and 62/545,228.
Further incorporated by reference herein in their entirety are U.S. Pat. Nos. 8,601,465; 8,502,662; 8,452,953; 8,451,230; 8,449,523; 8,444,595; 8,343,092; 8,285,328; 8,126,728; 8,117,481; 8,095,123; 7,999,674; 7,819,843; 7,782,192; 7,109,878; 6,997,920; 6,979,326; 6,936,029; 6,872,200; 6,813,519; 6,641,533; 6,554,798; 6,551,276; 6,295,506; and 5,665,065.
Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the claimed inventions. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the claimed inventions.
Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.
Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. § 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
The present application claims the benefit of U.S. Provisional Application No. 62/445,041 filed Jan. 11, 2017, which is hereby incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5582593 | Hultman | Dec 1996 | A |
5860957 | Jacobsen et al. | Jan 1999 | A |
6070761 | Bloom et al. | Jun 2000 | A |
6165155 | Jacobsen et al. | Dec 2000 | A |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6514689 | Han et al. | Feb 2003 | B2 |
6561978 | Conn et al. | May 2003 | B1 |
6649403 | McDevitt et al. | Nov 2003 | B1 |
6656159 | Flaherty | Dec 2003 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6963770 | Scarantino et al. | Nov 2005 | B2 |
6970742 | Mann et al. | Nov 2005 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7181505 | Haller et al. | Feb 2007 | B2 |
7193521 | Moberg et al. | Mar 2007 | B2 |
7198603 | Penner et al. | Apr 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7316899 | McDevitt et al. | Jan 2008 | B2 |
7366925 | Keely et al. | Apr 2008 | B2 |
7385443 | Denison | Jun 2008 | B1 |
7399401 | Rush | Jul 2008 | B2 |
7483743 | Mann et al. | Jan 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7558629 | Keime et al. | Jul 2009 | B2 |
7604593 | Parris et al. | Oct 2009 | B2 |
7605710 | Crnkovich et al. | Oct 2009 | B2 |
7651868 | McDevitt et al. | Jan 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7714757 | Denison et al. | May 2010 | B2 |
7737581 | Spurlin et al. | Jun 2010 | B2 |
7774145 | Brauker et al. | Aug 2010 | B2 |
7775975 | Brister et al. | Aug 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7933780 | De La Huerga | Apr 2011 | B2 |
7949382 | Jina | May 2011 | B2 |
7973667 | Crnkovich et al. | Jul 2011 | B2 |
8005547 | Forsberg et al. | Aug 2011 | B2 |
8034019 | Nair et al. | Oct 2011 | B2 |
8100852 | Moberg et al. | Jan 2012 | B2 |
8106534 | Spurlin et al. | Jan 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8280476 | Jina | Oct 2012 | B2 |
8287495 | Michaud et al. | Oct 2012 | B2 |
8311749 | Brauker et al. | Nov 2012 | B2 |
8323188 | Tran | Dec 2012 | B2 |
8369919 | Kamath et al. | Feb 2013 | B2 |
8414523 | Blomquist et al. | Apr 2013 | B2 |
8444595 | Brukalo et al. | May 2013 | B2 |
8449523 | Brukalo et al. | May 2013 | B2 |
8454557 | Qi et al. | Jun 2013 | B1 |
8573027 | Rosinko et al. | Nov 2013 | B2 |
8639288 | Friedman | Jan 2014 | B1 |
8986253 | DiPerna | Mar 2015 | B2 |
9049982 | Brukalo | Jun 2015 | B2 |
9155900 | Meskens | Oct 2015 | B2 |
9381297 | Brown et al. | Jul 2016 | B2 |
9750873 | Brown et al. | Sep 2017 | B2 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20070150019 | Youker et al. | Jun 2007 | A1 |
20080097912 | Dicks et al. | Apr 2008 | A1 |
20080097913 | Dicks et al. | Apr 2008 | A1 |
20080097914 | Dicks et al. | Apr 2008 | A1 |
20080097917 | Dicks et al. | Apr 2008 | A1 |
20080125700 | Moberg et al. | May 2008 | A1 |
20080208627 | Skyggebjerg | Aug 2008 | A1 |
20080215035 | Yodfat et al. | Sep 2008 | A1 |
20080215120 | Dicks et al. | Sep 2008 | A1 |
20080224852 | Dicks et al. | Sep 2008 | A1 |
20080231226 | Hoffman et al. | Sep 2008 | A1 |
20090069868 | Bengtsson | Mar 2009 | A1 |
20090115628 | Dicks et al. | May 2009 | A1 |
20090177142 | Blomquist et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090209945 | Lobl et al. | Aug 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090254037 | Bryant, Jr. | Oct 2009 | A1 |
20100093319 | Sherman | Apr 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100134305 | Lu et al. | Jun 2010 | A1 |
20100179402 | Goode, Jr. et al. | Jul 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100234709 | Say et al. | Sep 2010 | A1 |
20100324382 | Cantwell et al. | Dec 2010 | A1 |
20110040251 | Blomquist et al. | Feb 2011 | A1 |
20110066555 | Dicks et al. | Mar 2011 | A1 |
20110078441 | Dicks et al. | Mar 2011 | A1 |
20110172744 | Davis et al. | Jul 2011 | A1 |
20110190614 | Brister et al. | Aug 2011 | A1 |
20110213329 | Yodfat et al. | Sep 2011 | A1 |
20110213621 | Dicks et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20120029433 | Michaud | Feb 2012 | A1 |
20120091813 | Spurlin et al. | Apr 2012 | A1 |
20120095393 | Reinke | Apr 2012 | A1 |
20120185267 | Kamen et al. | Jul 2012 | A1 |
20120232520 | Sloan et al. | Sep 2012 | A1 |
20130053816 | DiPerna et al. | Feb 2013 | A1 |
20130324928 | Kruse | Dec 2013 | A1 |
20130331790 | Brown et al. | Dec 2013 | A1 |
20140175682 | Johnson | Jun 2014 | A1 |
20140276423 | Lecanu-Fayet | Sep 2014 | A1 |
20160339172 | Michaud et al. | Nov 2016 | A1 |
20170049957 | Michaud | Feb 2017 | A1 |
20170142658 | Kruse | May 2017 | A1 |
20170173261 | O'Connor | Jun 2017 | A1 |
20180071454 | Betts et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
WO 2009013736 | Jan 2009 | WO |
WO 2009016636 | Feb 2009 | WO |
Entry |
---|
Wu et al., Wireless Power and Data Transfer via a Common Inductive Link Using Frequency Division Multiplexing, Jul. 9, 2015, IEEE Transactions on Industrial Electronics, vol. 62, Iss. 12, p. 1-10. |
Search Report and Written Opinion for PCT Application No. PCT/US2018/013331 dated May 3, 2018, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20180193555 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62445041 | Jan 2017 | US |