The present invention relates to an electromagnetic stirrer capable of uniformly controlling flow of molten steel in one or more of casting mold (s) in a continuous casting apparatus for billet having round or angular cross section, and a continuous casting method using the electromagnetic stirrer.
Cast billets each having a round or angular cross section, going through steps of tubemaking and rolling, are used as materials of seamless pipes and shape steels having different sizes in cross section. Since the seamless pipes and shape steels have various kinds of product sizes and different rolling steps, the cast billets to be their base materials also have a variety of cross-sectional shapes. Therefore, a casting in which the number of casting mold is determined depending on production capacity is carried out.
Here, among cast slabs produced by means of a continuous casting or among rolling steel ingots after an ingot casting, a cast slab or ingot having a regular-square cross section or round cross section is defined as a billet, and a cast slab or ingot having a rectangle cross section is defined as a bloom. Also, in the billet, a billet having a regular-square cross section is defined as a square billet, and a billet having a round cross section is defined as a round billet.
A continuous casting will be described with reference to
In the continuous casting, the molten steel 2 poured from a ladle to the tundish 1 is teemed to the casting mold 4 via the submerged nozzle 3. While the molten steel 2 teemed to the casting mold 4 is drawn along a group of casting rolls 6 by the rotational drive of the pinch rolls 9, surface of the solidifying shell 8 is cooled by the second cooling spray zone to proceed solidification, whereby the cast slab 10 is made.
In the continuous casting, it is extremely important to control flow of molten steel in a casting mold in view of operation and quality of cast slab, for instance in view of melt stabilization of mold powder by supplying heat to meniscus and inclusion removal at a surface of cast slab. As a method for controlling flow of molten steel in a casting mold, an electromagnetic stirring applying electromagnetic force to the molten steel in the casting mold and stirring the molten steel is widely known. In a case where the electromagnetic stirring is operated with a plurality of casting molds, it is necessary to apply the electromagnetic force to each of the plurality of casting molds such that the casting molds have a uniform flow.
As methods for applying the electromagnetic force for electromagnetic stirring, a rotational shifting magnetic field type and a linear shifting magnetic field type are exemplified.
The rotational shifting magnetic field type is applied to continuous castings of billet, bloom and the like, and the rotational shifting magnetic field type is a method to obtain a uniform flow by applying a rotating magnetic field to inside of casting mold by means of a plurality of magnetic poles provided along whole circumference of the casting mold (for example, Patent Document 1).
However, in a case where the rotational shifting magnetic field type is applied to a plurality of casting molds, since an electromagnetic stirrer is needed for each of the casting molds, the number of installation of the electromagnetic stirrer is increased and the plurality of casting molds become unable to share a strand due to increase in size of the casting molds, which causes increase in equipment cost.
On the other hand, as the linear shifting magnetic field type, the applicant of the present invention has proposed, in Patent Document 2, an electromagnetic coil in which two of tooth 12 are provided to a core 11 of an iron core of a coil in a projecting manner to a side of a casting mold 4, an inner winding is applied to each of the two of tooth 12, and in addition, an outer winding is applied to the outside of the two of tooth 12 to unify the two of tooth 12. The electromagnetic coil proposed in Patent Document 2 will be described with reference to
An electromagnetic stirrer including this pie-shaped electromagnetic coil has a large magnetic flux since the magnetic field in a phase where the outer winding is applied goes in the same direction, and in a case where an electromagnetic force is applied to a casting mold having a large cross section, it is possible to obtain a favorable electromagnetic force along whole circumference of the casting mold (see
However, in a case where a plurality of casting molds each having a small cross section are installed between the pie-shaped electromagnetic coils, since the space L between the pie-shaped electromagnetic coils becomes narrow, the magnetic flux component going through the casting mold 4 becomes too strong, whereby shifting magnetic field becomes difficult to be made, which results in a creation of a discontinuous region in the electromagnetic force (see the distortion of the electromagnetic force at the non-uniform flowing part in
A problem to be solved by the present invention is that, in a case where electromagnetic stirrers of rotational shifting magnetic field type are applied to a plurality of casting molds, since an electromagnetic stirrer is required for each of the casting molds, the number of installation of the electromagnetic stirrer increases, and the plurality of casting molds cannot share a strand due to increase in size of the casting molds. Also, another problem to be solved by the present invention is that, in a case where a plurality of casting molds each having a small cross section are installed, the space between coils becomes narrow, the magnetic flux component going through the casting molds becomes too strong, whereby shifting magnetic field becomes difficult to be made, which results in creation of a discontinuous region in the electromagnetic force, which can occur at an electromagnetic stirrer including a pie-shaped electromagnetic coil.
The present invention has following configurations, for one or more of casting mold(s), in order to stabilize slab quality by applying a uniform electromagnetic force to straighten out flow of the molten steel inside the casting molds using an electromagnetic stirrer having a pair of pie-shaped electromagnetic coils.
That is, a first aspect of the present invention is an electromagnetic stirrer 5, including electromagnetic coils C1 and C2, wherein a casting mold 4 including a plurality of strands is disposed between the electromagnetic coils C1 and C2 at predetermined intervals, and three-phase alternating currents each having a phase difference of 120° to each other are applied.
At this time, as the electromagnetic coils C1 and C2, pie-shaped electromagnetic coils C1 and C2 are employed, the pie-shaped electromagnetic coils C1 and C2 having a configuration in which: two tooth parts 12 are provided to a core 11 of each of the electromagnetic coils C1 and C2 in a projecting manner to a side of a casting mold 4 (two convex portions 12 projected to the side of the casting mold 4 are provided to the core 11 of each of the electromagnetic coils C1 and C2); an inner winding 13 is applied to the outside of each of the tooth parts 12; and an outer winding 14 is further applied to the outside of the two tooth parts 12 with the inner winding 13 to unify the two tooth parts 12.
For example, as shown in
At this time, in order to unify the electromagnetic force working in a circumferential direction at an arbitrary position in a radius direction inside the casting mold 4, a distance L between the electromagnetic coils C1 and C2 disposed facing to each other is determined as no more than 500 mm when the symmetric wiring system is applied, and 500 mm or more when the window-type wiring system is applied.
In the present invention, the reason for setting the value 500 mm as the bases of division is to secure the distance L between the electromagnetic coils C1 and C2, when sharing a frame of casting mold depending on the diameter of casting mold to be used in a single casting and a twin casting.
Also, when the number of casting molds per the pair of electromagnetic coils (the number of the casting molds 4 disposed in the region between an end surface of one end side and an end surface of the other end side of the casting direction of the pair of electromagnetic coils C1 and C2) is defined as n, the external size of each of the casting molds (in a case of round billet, the outer diameter of mold copper plate, and in a case of angular billet, outer width of long side of mold copper plate) is defined as φ (mm), the width of the electromagnetic coil is defined as W (mm), the number of the casting molds is determined so as to satisfy the following Formula (1).
n×φ<W (1)
A second aspect of the present invention is a continuous casting method using an electromagnetic stirrer, the method including using the electromagnetic stirrer 5 according to the first aspect of the present invention as the electromagnetic stirrer, and setting the minimum value Vmin of the flowing speed of molten steel to a circumferential direction of casting mold in the vicinity of the casting mold after meniscus as 10 cm/s (10 cm per second) or more. Such a configuration makes it possible to apply the electromagnetic force equally to each casting mold 4. Here, “the vicinity of the casting mold” means an area where flow can be applied to the molten steel by means of the electromagnetic stirrer 5, and as one example, a region having a distance of 100 mm or less from the wall surface of the casting mold having contact with the molten steel.
In the present invention, in a continuous casting apparatus in which one or more of casting mold(s) is/are used for casting at the same time, it is possible to apply the electromagnetic force to each casting mold 4, by means of the electromagnetic stirrer 5 including the pair of electromagnetic coils C1 and C2. As a result, since there becomes no need to install an electromagnetic stirrer individually to each casting mold, it is possible to hold down the equipment cost. Also, since the symmetric wiring system or the window-type wiring system is applied depending on the distance L between the electromagnetic coils C1 and C2, it is possible to prevent a discontinuous region from being generated in the electromagnetic force.
An object of the present invention is, for casting molds having a various sizes, to apply an electromagnetic force uniformly to inside of one or more of the casting mold(s) by means of a shared electromagnetic stirrer. The present invention satisfies the following conditions.
The inventors of the present invention carried out electromagnetic field analyses using a calculation model, regarding the wiring systems employed when the currents having phase differences are applied to each electromagnetic coil of the electromagnetic stirrer (see
As a result, the inventors have found out as follows. When a casting mold having a small cross section is employed in which the distance L between the electromagnetic coils C1 and C2 is no more than 500 mm, in the window-type wiring system shown in
It should be noted that, when the symmetric wiring system is applied to a case where a casting mold having a large cross section is employed in which the distance L between the electromagnetic coils C1 and C2 is 500 mm or more, although there is no stagnated part of the electromagnetic force generated, the flowing speed of the molten steel is reduced since the electromagnetic force is weak comparing with the window-type wiring system. Therefore, in a case where a casting mold having a large cross section is employed and the distance L between the electromagnetic coils C1 and C2 is 500 mm or more, it is preferred to employ the window-type wiring system shown in
Also, when the number of casting molds per the pair of electromagnetic coils (the number of casing molds to be disposed in a region between an end surface of one end side and an end surface of the other end side of the casting direction of the pair of electromagnetic coils C1 and C2) is defined as n, the outer size of each casting mold is defined as φ (mm), and the width of the electromagnetic coil is defined as W (mm), a reason of defining the casting molds so as to satisfy the above Formula (1) is, to prevent a generation of a region where the electromagnetic force is not applied as a result of installing a plurality of casting molds each having excessive size between the pair of electromagnetic coils C1 and C2 whereby the casting mold 4 runs off from the tooth part 12 which is a center of generation of the electromagnetic force. Another reason is, in a case where a plurality of the casting molds 4 are installed as well, to apply a uniform electromagnetic force to all of the casting molds 4, considering that the electromagnetic force by the electromagnetic stirrer 5 is applied in a direction perpendicular to the tooth part 12.
This is the electromagnetic stirrer 5 of the present invention.
Next, the inventors of the present invention examined, using the continuous casting system 100 shown in
Here, regarding the incidence of surface defection of cast slabs, the examination was carried out targeting at powder defects. The number of cast slabs in which the powder defect is occurred to the total number of cast slabs of 10 to 50 (vary depending on the diameter of casting mold) of one charge of casting is defined as the incidence (%) of surface defection of cast slabs for evaluation.
Regarding the flowing speed of molten steel, samples of horizontal section were collected from the round billets of Examples described below, and deflection angles of dendrite generated having a distance of 10 mm from the surface skin were measured with respect to whole circumference of the casting mold with intervals of 15 degrees each (24 points in total), and among the values obtained by converting the measurement values, the minimum value was defined as Vmin.
As a result, the inventors have found out that, as shown in
In the continuous casting method of the present invention, in view of further decreasing the incidence of the surface defection of cast slabs, it is preferred that the minimum value of the flowing speed of molten steel in the vicinity of the wall of casting mold after meniscus is 20 cm/s or more.
Since the stirring by means of the electromagnetic stirrer of the present invention is an electromagnetic stirring by means of a stirrer having a pie-shaped iron core (core), a rotating magnetic field is not applied to each casting mold individually, but an electromagnetic force is generated by the electromagnetic field shifting parallel to the core and the three-phase alternating currents A, B and C each having phase difference of 120° to each other. Consequently, molten steel in the vicinity of the electromagnetic stirrer 5 (molten steel in the vicinity of the wall of the casting mold) flows along with the shift of the magnetic field, therefore, not only in a case where one casting mold 4 is used as shown in
Hereinafter, Examples carried in order to confirm the effects of the present invention will be described.
The present invention applies an electromagnetic force to inside of the casting mold 4 by means of the electromagnetic stirrer 5 to uniformly flow the molten steel, thereby improving the inner quality of cast slabs. The electromagnetic stirrer 5 is disposed to a position where a meniscus exists, in a region between an end surface of one end side and an end surface of the other end side of the casting direction of the electromagnetic coils C1 and C2 each having a width in the casting direction of W.
As the electromagnetic stirrer 5 of the continuous casting system 100 shown in
Two kinds of electromagnetic stirrers having the width W of 550 mm and 400 mm, respectively, were prepared to be used. For the electromagnetic stirrer whose width W is 550 mm, the distance L between the electromagnetic coils C1 and C2 was set as two levels of 450 mm and 600 mm, and for the electromagnetic stirrer whose width W is 400 mm, the distance L between the electromagnetic coils C1 and C2 was set as only 600 mm, then the testing was carried out.
Also, in Table 1, regarding Examples 1 to 5 that satisfy the conditions defined in the present invention and Comparative Examples 6 to 8 that do not satisfy the conditions defined in the present invention, each condition and the minimum value Vmin of the flowing speed of molten steel to the casting direction in the vicinity of the casting mold after meniscus are shown.
In the following Table 1, when the incidence λ of surface defection is λ<0.5%, the electromagnetic stirrer was evaluated as “very good”, when 0.5%≦λ<1.5%, the electromagnetic stirrer was evaluated as “good”, and when 1.5%≦λ, the electromagnetic stirrer was evaluated as “poor”. The evaluation is based on the surface defection, and the surface defection that can be handled by trimming applies to “very good” or “good”, and the surface defection that cannot be handled by trimming because of high frequency of the defection applies to “poor”.
As shown in Table 1, Examples 1 to 5 in which the minimum value Vmin of the flowing speed of molten steel to the casting direction in the vicinity of the casting mold after meniscus is 10 cm/s or more each had the incidence λ of surface defection of no more than 1.5%, and it was possible to handle the defection by trimming. On the other hand, Comparative Examples 6 to 8 not satisfying the conditions of the continuous casting method of the present invention each had the incidence λ of surface defection of 1.5% or more, and it was not possible to handle the defection by trimming.
Needles to say, the present invention is not limited to the Examples described above, and the embodiments can be adequately modified as long as the embodiments are within the scope of technical ideas described in the claims of the present invention.
The present invention described above can be applied to any types of continuous casting such as bending type, vertical type, as long as it is a continuous casting. Also, the present invention can be applied not only to a continuous casting for slab but also to a continuous casting for bloom.
Number | Date | Country | Kind |
---|---|---|---|
2012-188933 | Aug 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/072861 | 8/27/2013 | WO | 00 |