Embodiments described herein relate to the field of geological mapping.
Active source electromagnetic (EM) surveying encompasses ground based and airborne applications. In EM geological mapping, a magnetic receiver is used to measure the magnetic response of the earth (“earth response”) to a primary magnetic field (“primary field”) transmitted by the survey system. The relation between the transmitted primary field and the earth response is used to calculate the electrical resistivity structure of the earth, from which geological information is inferred.
EM surveying includes both frequency domain EM (FDEM) and time domain EM (TDEM) techniques. In FDEM, the earth response is measured as a function of frequency. In TDEM, the earth response is measured as a function of time after a transmitted pulse.
In all FDEM and TDEM techniques, the magnetic receiver senses the superimposed primary field and earth response. In order to determine the earth response, the component caused by the primary field must be removed from the received signal.
EM surveying is implemented using ground, water, and airborne equipment. Airborne systems exist for both fixed wing and helicopter aircraft.
In the case of helicopter borne EM systems, the receiver and transmitter may be attached to a structure (“bird”) which is towed by the helicopter. In some systems the receiver is located close to the receiver and the primary field magnitude is large relative to the earth response.
In a practical EM survey system, a time varying electric current (“transmitter current”) is passed through a wire coil or loop (“transmitter loop”), thereby generating a time varying magnetic field (“primary field”). The magnetic field induces electric currents in the earth, which generate a secondary magnetic field. The earth response is sensed by one or more receivers and is recorded by a data acquisition system. The receiver may itself be a wire coil or loop (“receiver coil”), although other types of receivers have been used.
In some EM systems, the effect of the primary magnetic field on the receiver may be reduced by the use of an additional coil or loop (“bucking loop”). The function of the bucking loop is to cancel the effect of the primary field on the receiver.
When a bucking loop is present, the transmitter current may be sensed by a current sensor and recorded by the data acquisition system, in addition to the receiver signals, since it cannot be measured accurately by the receiver.
In some EM systems, the bucking coil is designed so as to provide accurate and stable cancellation of the effect of primary field, so that the receiver sees a signal which depends substantially on the earth response only.
In some EM systems, the bucking coil is used to reduce the dynamic range of the received signal, to allow use of a more sensitive receiver having lower noise than would be possible in the absence of the bucking coil, but the cancellation is not relied upon to accurately cancel the primary field.
In some EM systems, the bucking coil is part of the circuit through which the transmitter current flows. For example, it may be in series with the main transmitter loop. In that case the bucking coil is configured and positioned so that it substantially cancels the magnetic field of the main transmitter loop within a defined spatial region close to the main transmitter loop, without substantially affecting the field at positions distant from the main transmitter loop. This may be accomplished by making the bucking loop smaller in diameter than the main loop, with fewer turns, to produce a region of cancellation at the center of the bucking loop. The receiver is then positioned in the region of cancellation. This configuration may be used when the receiver is a coil or loop, or when another type of receiver is used.
In some EM systems in which the receiver is a coil or loop, the bucking coil is part of the receiver circuit. For example, the bucking loop may be in series with the receiver coil. In that case the bucking coil is configured and positioned so that it substantially cancels the electric signal produced by the main transmitter loop in the receiver coil, without substantially affecting the response of the receiver coil to the secondary magnetic fields generated by the earth. This may be accomplished by placing the bucking coil closer to the main transmitter loop than the receiver coil, while providing the bucking coil with fewer or smaller turns than the receiver coil.
Examples of EM systems which include bucking coils may be found in patent applications PCT WO2010/022515A1, US 2003/0169045A1, US 2014/0285206 among others.
According to an example embodiment there is provided an EM system for geophysical surveying. The EM system includes a transmitter controller for generating a transmitter current with a controlled waveform; a current sensor for which measures the transmitter current waveform; a transmitter loop for generating a primary magnetic field; a bucking loop for generating a magnetic field that substantially cancels the primary field in a defined region; a network connected at two or more points to the transmitter loop and bucking loop; a magnetic receiver (which may comprise multiple sensors with different, possibly orthogonal, sensitive directions) positioned in the region of cancellation; a data acquisition system which records the signals from the current sensor and the receiver; a structure (bird) which supports the transmitter loop, network, bucking loop, and receiver; and an aircraft which tows the bird and carries the transmitter and data acquisition system.
According to an example embodiment there is provided a method for optimizing the accuracy of the bucking function, wherein the system is operated at high altitude to minimize the earth response; the acquired data is analyzed to determine parameters of the residual primary field waveform in the cancellation region; the network is adjusted according to predefined rules to reduce the residual primary field; and the process is repeated until a predefined level of residual field is achieved, or no further reduction can be obtained.
In any configuration using a bucking coil, it is possible to optimize the cancellation of the primary field, for example by moving the receiver and bucking coil to positions of greater or lesser primary field amplitude. A limitation of this process is that the behavior of the transmitter, receiver, and bucking coils is a function of frequency or delay time. A position that is optimum for one frequency or delay time may produce poor cancellation at a different frequency or delay time. Specifically, parasitic (“stray”) capacitance between turns of the transmitter, receiver, and bucking loops and coils will result in slightly different current waveforms flowing in each of the turns of each of these components of the system, and the relative differences increase with frequency due to the lower reactance of the parasitic capacitance and the higher reactance of the loop and coil inductance. This causes the accuracy of the bucking to diminish with increasing frequency. In the time domain, this is seen as reduced accuracy at times when the transmitter current is changing rapidly, which especially affects early delay times.
Example embodiments of a bucking enhancement for an EM survey system for geological mapping will now be described.
For the purposes of explaining the example embodiments,
The bucking loop assembly 102, which houses a bucking coil 102A of one or more turns, is also polygonal, consisting of multiple tubular straight sections joined at vertices which allow limited relative motion. The bucking loop assembly vertices may also be supported by and held in position relative to the transmitter loop assembly and each other by the radial ropes 106 and by additional suspension ropes, which have been omitted for clarity in the drawing. The sensor assembly 103, which houses a sensor 103A such as a receiver coil, is held in position by the radial ropes and by additional suspension ropes 105, which have been omitted for clarity in the drawing. The suspension ropes 105 meet at a tow point 107. Electrical wires 111 that drive the transmitter coil 101A of the transmitter loop assembly 101 are connected to a transmitter driver 121 carried within an aircraft such as helicopter 120, run down the tow cable 108, passing through a current sensor 109, to the tow point 107, and then down a suspension rope to the network 110. The transmitter coil 101A, wires 111, and bucking coil leads 112 (
The semi-flexible tow assembly configuration shown in
In the embodiment of
Referring to
In one example embodiment, in order to determine the best capacitor value, the system 100 is flown at high altitude (to eliminate the effect of the earth on the response), the transmitter coil 101A is used to generate a pulsed output at its normal operating frequency, and the response of the receiver sensor 103A is recorded. This test is performed with various values of capacitance, adjusting the capacitance before each test based on the results of the prior tests, until the response of the receiver sensor 103A at the turn-off of the pulse has been minimized.
More specifically, given a new configuration of transmitter coil and bucking coil, the initial value of capacitors 131 to be tested may first be determined from tests on the transmitter coil on the ground. Using known methods (e.g. Tektronix Inc. Capacitance and inductance measurements using an oscilloscope and a function generator. Application Note) inductance L and self-resonant frequency fSRF of the transmitter coil is measured at its connection to the transmitter. (e.g. Tektronix Inc. Capacitance and inductance measurements using an oscilloscope and a function generator. Application Note). The equivalent parallel capacitance CP=1/(2πfSRF)2/L is calculated. At high altitude, the response at the receiver sensor 103A to the transmitter coil 101A turnoff is measured with no capacitors 131, then with capacitance 0.1 CP, doubling the capacitance value in successive tests until a significant reduction of the response is observed. Then the capacitance value is adjusted for minimum response.
Alternatively, the best capacitor value can be determined by simulating the behavior of the transmitter coil, bucking coil, and receiver using know circuit simulation software (e.g. University of California at Berkeley, Spice circuit simulator, http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/MANUALS/spice3.html). The self and mutual inductances and parasitic capacitances between each turn or half-turn in the transmitter coil 101A, bucking coil 102A, and a sensor 103A, are calculated from known theory. The simulation software is then used to calculate the response of the sensor 103A to sinusoidal currents input to the transmitter coil terminals. The network capacitance values are then adjusted to minimize the response at a frequency comparable to the self-resonant frequency of the transmitter coil. Due to uncertainties in the theoretical calculations of the circuit parameters, it is prudent to verify the simulation results experimentally as described above.
In one example embodiment, the transmitter coil 101A is 13 m in radius and has four turns. The separation between the turns of the coil 101A is 15 mm-55 mm depending on the construction. Capacitor values that give the best results are in the range 0.6 nF-3 nF
Referring to
Referring now to
Referring now to
In some embodiments, the equalizing resistance 132 may be a length of wire which is positioned beside the leads 112 to the bucking coil, but doubled back on itself so as to create no significant magnetic field. In some embodiments it may be positioned beside the turns of the transmitter coil 101A, doubled back to as to create no significant magnetic field. These embodiments allow the heat generated in the equalizing resistance to be easily dissipated.
The particular embodiments disclosed above are illustrative only and should not be taken as limitations upon the present invention, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Accordingly, the foregoing description is not intended to limit the invention to the particular form set forth, but on the contrary, is intended to cover such alternatives, modifications and equivalents as may be included within scope of the description so that those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the scope of the appended claims. In addition, features from one or more of the above-described embodiments may be selected and combined to create alternative embodiments comprised of a combination of features which may not be explicitly described above. Features suitable for such combinations and sub-combinations would be readily apparent to persons skilled in the art upon review of the present application as a whole. The subject matter described herein and in the recited claims intends to cover and embrace all suitable changes in technology.
This application claims the benefit of and priority to U.S. Patent Application No. 62/092,564, filed Dec. 16, 2014, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2015/051334 | 12/16/2015 | WO | 00 |