This application is based upon and claims the benefit of priority of the prior Japanese Patent Application 2006-162567 filed on Jun. 12, 2006 so that the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention generally relates to an electromagnetic switch of a starter, for example, used for a vehicle, and more particularly to an electromagnetic switch wherein a movable contact member is connected with fixed contact members to turn on the switch.
2. Description of Related Art
An electromagnetic switch of a starter is used to start driving an engine of a vehicle by supplying an electric current from a battery to a motor through the turned-on switch. An electromagnetic switch has been, for example, disclosed in Published Japanese Patent First Publication No. H05-126018.
This switch has two fixed contact members and a movable contact member. The fixed contact members are connected with a motor circuit of a starter and a battery, respectively. The movable contact member is fitted to a shaft connected with a plunger so as to be movable with the plunger. When the movable contact member comes in contact with the fixed contact members, the fixed contact members are electrically connected with each other through the movable contact member, the motor circuit receives an electric current from a battery through the contact members of the switch, and a motor is driven. In response to a rotational force of the motor, the driving of an engine is started. After the driving of the engine is continued due to the combustion of fuel, the movable contact member is detached from the fixed contact members, and the driving of the motor is stopped.
The movable contact member is slidably fitted to an end portion of the shaft fixed to the plunger through a set of insulating members. Further, a heated washer is fitted to an end of the shaft and is cooled. Therefore, the washer is tightly fixed to the shaft to prevent the movable contact member from coming out.
However, in the switch disclosed in the Patent Publication, to fix the movable contact member to the shaft, in addition to many parts such as a set of insulating members and a washer, it is required to heat and cool the washer. Therefore, a cost for manufacturing the switch is heightened, and it is difficult to downsize the switch.
In another electromagnetic switch, a movable contact member is directly attached to a shaft without using an insulator.
However, in this fixing of the movable contact member shown in
An object of the present invention is to provide, with due consideration to the drawbacks of the conventional electromagnetic switch, an electromagnetic switch of a starter wherein a movable contact member is easily fitted to a shaft at a low cost.
According to a first aspect of this invention, the object is achieved by the provision of an electromagnetic switch comprising an electromagnet, a shaft, two fixed contact members, respectively, connected with a power source and a motor circuit, and a movable contact member slidably supported by the shaft. The electromagnet generates a magnetic force in response to an electric current supplied to an electromagnetic coil and attracts a plunger toward a first direction to move the shaft with the plunger. In response to the movement of the shaft, the movable contact member connects the fixed contact members with each other. The shaft has a shaft body extending along the first direction and a projection projected from the shaft body along a second direction different from the first direction. The movable contact member has a hole in which the shaft body is disposed. The projection is engaged with the movable contact member.
Accordingly, the projection of the shaft can reliably maintain the shaft body in the hole of the movable contact member so as to prevent the movable contact member from coming out of the shaft, so that the movable contact member can easily be fitted to the shaft at a low cost.
According to a second aspect of this invention, the object is achieved by the provision of an electromagnetic switch comprising an insulator slidably supported by the shaft in addition to the electromagnet, the shaft, the fixed contact members and the movable contact member. The movable contact member is attached to the insulator to be slidably supported by the shaft through the insulator. The insulator has a hole in which the shaft body of the shaft is disposed. The projection is engaged with the insulator.
Accordingly, the projection of the shaft can reliably maintain the shaft body in the hole of the insulator so as to prevent the insulator from coming out of the shaft, so that the movable contact member attached to the insulator can easily be fitted to the shaft at a low cost.
According to a third aspect of this invention, the object is achieved by the provision of an electromagnetic switch comprising the electromagnet, the shaft, the insulator, the fixed contact members and the movable contact member. The insulator has a base portion slidably fitted to the shaft and a projecting portion projected from the base portion along a second direction different from the first direction. The movable contact member has a hole in which the base portion of the insulator is disposed. The projecting portion is engaged with the movable contact member
Accordingly, the projecting portion of the insulator can reliably maintain the base portion in the hole of the movable contact member so as to prevent the movable contact member from coming out of the insulator, so that the movable contact member can easily be fitted to the shaft through the insulator at a low cost.
Embodiments of the present invention will now be described with reference to the accompanying drawings, in which like reference numerals indicate like parts, members or elements throughout the specification unless otherwise indicated.
The solenoid 2 has a flowerpot-shaped switch frame 4 forming a yoke, a cylindrical electromagnetic coil 5 received within the frame 4, a fixed core 6 magnetized in response to the supply of an electric current to the coil 5, a plunger 7 inserted in a center open space of the coil 5 so as to be movable along an inner circumferential surface of the coil 5, and a shaft 8 movable with the plunger 7 along its axial direction. The coil 5 receiving the electric current forms an electromagnet, and the core 6 magnetized by the electromagnet strengthens a magnetic field induced by the coil 5.
The coil 5 is wound in two layers around a bobbin 9 made of resin. One of the layers of the coil 5 denotes an attraction coil for generating a magnetic force to attract the plunger 7 along the axial direction, and the other layer denotes a holding coil for generating a magnetic force to hold the plunger 7 attracted by the attraction coil.
The core 6 is disposed on an opening side of the frame 4 and forms a magnetic circuit in the periphery of the coil 5 in cooperation with the frame 4 and the plunger 7. The core 6 has a center hole 6a extending along the axial direction in its center, and the shaft 8 penetrates through the hole 6a and reaches the chamber 3a.
The plunger 7 is disposed so as to face the core 6 in the axial direction. A return spring 10 is disposed between the plunger 7 and the core 6. The spring 10 produces a force biasing the plunger 7 toward an anti-core direction (left direction in
The shaft 8 is made of an insulating material such as resin. One end of the shaft 8 is fixed to an end surface of the plunger 7 facing the core 6 by an adhesive or the like, and the other end of the shaft 8 passes through the hole 6a of the core 6 and enters the chamber 3a of the cover 3.
The cover 3 is, for example, formed by shaping resin. The cover 3 is disposed on the core 6 through a seal member (not shown) such as a rubber packing or the like. The cover 3 is fixed to an end portion of the frame 4 by caulking.
The contact unit 21 has two fixed contact members 13 and a movable contact member 14. Each of the contact members 13 and 14 is formed in a plate shape extending on a plane substantially perpendicular to the axial direction. Two external terminals 11 and 12 are fixed to the cover 3, and the contact members 13 are attached to ends of the external terminals 11 and 12, respectively. The terminal 11 is connected with a positive terminal of a power source such as an onboard battery (not shown) through a battery cable (not shown) and acts as a B terminal. The terminal 12 is connected with a motor circuit (not shown) through a lead wire (not shown) of a motor (not shown) and acts as an M terminal. The motor is earthed. The contact member 14 is slidably fitted to an end portion of the shaft 8 in the chamber 3a.
The shaft 8 has a bar-shaped shaft body and a projection 8a integrally formed with the shaft 8. The projection 8a is projected from the shaft body substantially along the radial direction. The projection 8a may be fitted to the shaft body to form the shaft 8. The projection 8a may be placed at a tip of the shaft 8 opposite to the plunger 7. A contact spring 15 is disposed between the plunger 7 and the contact member 14. The spring 15 produces a force biasing the contact member 14 toward the projection 8a of the shaft 8. That is, the spring 15 pushes the contact member 14 toward the right direction in
Therefore, in response to the movement of the plunger 7 toward the core 6, the movable contact member 14 is movable toward the fixed contact members 13 to come in contact with the fixed contact members 13 and to electrically connect the fixed contact members 13 with each other. Further, in response to the movement of the plunger 7 toward the anti-core direction, the movable contact member 14 is movable toward the core 6 to detach from the fixed contact members 13 and to electrically disconnect the fixed contact members 13 from each other.
The switch 1 further has a joint 16 attached to the plunger 7 and placed on the opposite side of the shaft 8 with respect to the plunger 7. The joint 16 is connected with a shift lever (not shown) to shift the lever in response to the movement of the plunger 7.
An operation of the electromagnetic switch 1 is described below. When a starting switch (not shown)is turned on, an electric current is supplied from the battery to the coil 5 to form an electromagnet and to magnetize the core 6 due to a magnetic flux induced by the electromagnet. Therefore, an attraction force is generated by the electromagnet and is heightened by the core 6 such that the attraction force attracts the magnetized core 6 and plunger 7 each other. Because the core 6 is fixed to the frame 4, the plunger 7 is moved toward the core 6 while contracting the return spring 10 against a biasing force of the spring 10. In response to the movement of the plunger 7, the shaft 8 sliding with the plunger 7 is deeply pushed into the chamber 3a, and the contact member 14 fitted to the end portion of the shaft 8 comes in contact with the fixed contact members 13. The shaft 7 is still pushed into the chamber 3l while contracting the springs 10 and 15, 50 that the contact member 14 receives a resilient force of the contracted spring 15 so as to heighten a contact force of the contact member 14 applied to the fixed contact members 13.
Therefore, the fixed contact members 13 are electrically connected with each other through the contact member 14, and the switch 1 is turned on. In this condition, electric power of the battery is supplied to the motor through the terminal 11, the fixed contact members 13, contact member 14 and the terminal 12 to drive the motor. The driven motor applies a rotational force to a driving shaft (not shown). Further, in response to the movement of the plunger 7, a shift lever (not shown) is shifted by the joint 16 to move the driving shaft toward an engine (not shown). Therefore, the engine receives the rotational force from the driving shaft and starts a driving operation. After the driving of the engine is continued, the starting switch is automatically turned off, the supply of the electric current to the coil 5 is stopped, and the attraction force of the electromagnet disappears. In this condition, the plunger 7 is pushed back due to a reactive force of the return spring 10 in the anti-core direction so as to be away from the core 6, and the contact member 14 is detached from the fixed contact members 13. Therefore, the switch 1 is turned off, the supply of the electric power to the motor is stopped, and the driving of the motor is stopped.
Next, the fitting of the movable contact member 14 to the shaft 8 is described in detail with reference to
As shown in
The movable contact member 14 has a hook receiving hole 14A corresponding to the projection 8a. That is, the hole 14A is shaped such that the projection 8a of the shaft 8 can pass through the hole 14A in conditions that the center axis of the shaft 8 is set to be substantially perpendicular to a surface of the contact member 14 having the hole 14A. More specifically, the hole 14A is partitioned into a circular hole 14a receiving the shaft body 8b and two sub-holes 14b receiving the projecting portions 8a. The hole 14a has an inner diameter slightly larger than an outer diameter of the shaft body 8b. The holes 14b are extended opposite to each other from the hole 14a. Each hole 14b is formed almost in a rectangular shape slightly larger than that of the projecting portion 8a.
Before the cover 3 is fixed to the frame 4, the contact member 14 is fitted to the shaft 8 protruded from the core 6. More specifically, as shown in
With this arrangement, because the projection 8a of the shaft 8 inserted into the hole 14A is disposed to be engaged with the contact member 14, the projection 8a can prevent the contact member 14 from coming out of the shaft 8 without using any washer for preventing the contact member 14 from coming out of the shaft 8 or without performing any attaching work such as caulking for attaching the contact member 14 to the shaft 8. Accordingly, the contact member 14 can be easily fitted to the shaft 8 at a low cost.
Further, because the shaft 8 is made of resin having insulation performance, no insulator is required between the shaft 8 and the contact member 14. Accordingly, the number of parts of the switch 1 can be reduced, and the switch 1 can be manufactured at low cost.
In this embodiment, the hole 14A of the contact member 14 has a size slightly larger than that of the projection 8a. Therefore, the projection 8a of the shaft 8 can pass through the hole 14A in conditions that the center axis of the shaft 8 is substantially perpendicular to the surface of the contact member 14 having the hole 14A. However, the hole 14A may have a size smaller than that of the projection 8a such that the projection 8a of the shaft 8 can pass through the hole 14A in conditions that the surface of the contact member 14 is inclined with respect to a plane substantially perpendicular to the center axis of the shaft 8. In other words, the hole 14A may be arbitrarily shaped on condition that the projection 8a of the shaft 8 can pass through the hole 14A.
As shown in
The wall 3b acts as a turn preventing member which prevents the contact member 14 from being turned or rotated around the center axis of the shaft 8 during the operation of the switch 1. Assuming that the contact member 14 is turned or rotated so as to place the projection 8a just on the holes 14b, the contact member 14 would come out of the shaft 8. However, in this embodiment, because the wall 3b prevents the turn of the contact member 14, the turn preventing member can maintain the engagement of the contact member 14 with the shaft 8. Accordingly, the combination of the projection 8a and the turn preventing member can reliably prevent the contact member 14 from coming out of the shaft 8.
In this embodiment, the wall 3b substantially occupies the entire space between the inner circumferential surface of the cover 3 and the contact member 4. However, in place of the wall 3b, the cover 3 may have a single bar-shaped projection or a plurality of bar-shaped projections protruded from the inner circumferential wall of the cover 3 toward the contact member 14 such that the projections placed near the contact member 14 prevent the contact member 14 from being turned or rotated around the center axis of the shaft 8 during the operation of the switch 1.
As shown in
Accordingly, the engagement of the contact member 14 with the shaft 8 can reliably be maintained by the turn preventing member, and the combination of the projection 8a of the shaft 8 and the turn preventing member can reliably prevent the contact member 14 from coming out of the shaft 8.
The number of convexities 8c fitted into concavities 14c may be arbitrarily set. Further, all convexities 8c may be disposed only on one projecting portion 8a so as to be fitted into the concavities 14c. Moreover, convexities disposed on the contact member 14 may be received in concavities disposed on the projection 8a of the shaft 8.
As shown in
Accordingly, the fitting of the contact member 14 with the shaft 8 can reliably be maintained by the turn preventing member, and the combination of the projection 8a of the shaft 8 and the turn preventing member can reliably prevent the contact member 14 from coming out of the shaft 8.
A convexity disposed on the plunger 7 may be received in a concavity disposed on the joint 16. Further, the joint 16 may be formed in an elliptical shape so as to be received in the plunger 7 having an elliptical opening. Moreover, any combination of the turn preventing members according to the second to fourth embodiments may be applied to the switch 1.
In this embodiment, the attachment of the contact member 14 to an insulator slidably supported by the shaft 8 is described.
As shown in
As shown in
A process for attaching the contact member 14 to the insulator 17 is described.
The projecting portion 17c has substantially the same shape as that of the projection 8a of the shaft 8 shown in
A process for fitting the insulator 17 to the shaft 8 is described. Before the shaft 8 is attached to the plunger 7, an end portion of the shaft 8 placed on the opposite side of the projection 8d is inserted into the hole 17d of the insulator 17 with the contact member 14 such that the portion 17a and portion 17b or 17c come in contact with the projection 8d of the shaft 8. Therefore, the insulator 17 is slidably fitted to the shaft 8, while the projection 8d of the shaft 8 prevents the insulator 17 from coming out of the shaft 8. Then, the end portion of the shaft 8 is attached to the plunger 7, and the cover 3 is fixed to the frame 4.
Accordingly, the projecting portion 17c of the insulator 7 can prevent the contact member 14 from coming out of the insulator 17 without using any washer or without performing any troublesome attaching work such as caulking, and the contact member 14 can easily be fitted to the shaft 8 through the insulator 17 at a low cost.
Further, because the portions 17a to 17c of the insulator 17 are integrally formed with one another as a single constitutional part, the number of parts in the switch 31 can be reduced as compared with a prior art wherein an insulator is divided into two portions.
In this embodiment, any of the turn preventing members according to the second to fourth embodiments may be applied to attach the contact member 14 to the insulator 17.
Further, the portion 17b of the insulator 17 acts to fix the contact member 14 on the base portion 17a in cooperation with the portion 17c. However, because the spring 15 disposed between the plunger 7 and the portion 17b can fix the contact member 14 on the base portion 17a in cooperation with the portion 17c, the portion 17b may be omitted from the insulator 17.
Moreover, any one or combination of the turn preventing members according to the second and third embodiments may be applied to the switch 31.
In this embodiment, the fitting of the insulator 17 to the shaft 8 is described.
As shown in
After the contact member 14 is attached to the insulator 17 according to the fifth embodiment, the insulator 17 with the contact member 14 is fitted to the shaft 8 attached to the plunger 7. More specifically, the insulator 17 is disposed such that the projecting portion 17b or 17c faces the projection 8a of the shaft 8 shown in
Accordingly, the projection 8a can prevent the insulator 17 from coming out of the shaft 8 without using any washer or without performing any attaching work such as caulking, and the contact member 14 can easily be fitted to the shaft 8 through the insulator 17 at a low cost.
In this embodiment, any one or combination of the turn preventing members according to the second to fourth embodiments may be applied to the switch 31.
Number | Date | Country | Kind |
---|---|---|---|
2006-162567 | Jun 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3848206 | Prouty et al. | Nov 1974 | A |
4203084 | Yamaguchi et al. | May 1980 | A |
4243964 | Bogner et al. | Jan 1981 | A |
4318065 | Harbauer | Mar 1982 | A |
4871893 | Slovak et al. | Oct 1989 | A |
5103107 | Yamamoto et al. | Apr 1992 | A |
5132653 | Nakatake et al. | Jul 1992 | A |
5420555 | Toguchi et al. | May 1995 | A |
5488207 | Niwa et al. | Jan 1996 | A |
5548260 | Kogure et al. | Aug 1996 | A |
5812041 | Ishikawa et al. | Sep 1998 | A |
6650210 | Raklyar et al. | Nov 2003 | B1 |
7157996 | Enomoto et al. | Jan 2007 | B2 |
7321281 | Molyneux et al. | Jan 2008 | B2 |
Number | Date | Country |
---|---|---|
A 5-126018 | May 1993 | JP |
406046545 | Feb 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20070284234 A1 | Dec 2007 | US |